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Abstract: Problem statement: The study evaluated the effectiveness of the variquantile
estimators of the LQ-moments method for estimagiagameters of the Extreme Value Type 1 (EV1)
distribution.Approach: The performances of the LQ-moments were analyréldcampared against a
widely used method of L-moments by using simulaadhples of both EV1 and generalized Lambda
distribution, focusing on small and moderate sangi#es.Results: The analysis results showed that
LQOMOM method wais more efficient in many cases ey for the upper tails of the distribution
and for various sample siz&Sonclusion: This study demonstrated that conventional LMOM was
optimal for the estimation of the EV1 distribution.
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INTRODUCTION (maximum entropy) and PWM estimators for the EV1
distribution. PWM estimators were found to be hHast
The Extreme Value Type | (EV1) distribution is terms of mean square error.
widely used in various fields including hydrologgr f Mudolkar and Hutsdi! extended L-moments to
modeling extreme evefts”'*l Despite its extensive new moment like entitles called LQ-moments to
use, however, there is generally no accepted method estimate the GEV distribution parameters. The LQ-
estimating its parameters. Its successful applinati moments are constructed by using functional dedinin
depends, doubtless, upon the accuracy with whigh itthe quick estimators, where the parameters of quick
parameters can be estimated. Thus, the problemes o estimator take the values p == 1 for the median,
of selecting an appropriate method for estimatimg t p = 1/4,a = 1/4 for the trimean and p = 08,= 1/3 for
EV1 distribution parameters. the Gastwirth, in places of expectations in L-motaen
The methods of PWM, ordinary product Moment Ani and Jemaifi® proposed the LQMOM based on the
(MOM) and Maximum Likelihood (ML) estimation are Weighted Kernel Quantile (WKQ) estimator in which
commonly used to estimate the parameter of the EVihe quick estimators parametecs and p are not
distribution. The method of ML is known to be restricted, such as the median, trimean or Gastwint
asymptotically unbiased and optimal for the EV1the value of p and such as the median, trimean or the
distributiot"®, However, there is no guarantee that theGastwirth but we explore an extended class of
ML-method is the best in small samples. Guibel LQMOM with consideration combinations of p and
argued that the method of Maximum Likelihood values in the range 0 and 0.5.
Estimation (MLE) was very complicated and required The objective of this study is to analyze and
numerical work and favored the Method Of Momentscompare statistically various quantile estimatdrE@-
(MOM). Landwehf”! used the method of Probability moments to estimate the parameters of the EV1
Weighted Moments (PWM) and the related L-Momentsdistributions. We considered five different quamtil
(LMOM). They found that the method, in general, estimators namely the LIQ estimator, the L-quantile
compared with the MLE and MOM methods. Raynalestimators, two of the weighted L-quantile estimsito
and Salds? analyzed six different methods of and the HDL estimator for estimating the sample LQ-
parameter estimation and preferred PWM for largemoments. The performances of the LQMOM based on
samples. Phiélf! compared the MOM, ML, ME these quantile estimators were compared with the
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method of the LMOM for various sample sizes usingQ(q)= F*(q)= inf{ x:F(x)2 ¢ , 0< & !

(7)

simulated samples of both EV1 and generalized

Lambda distribution, focusing on small and moderate

sample sizes.
MATERIALSAND METHODS

Definition and  properties of LQ-moments
estimators: Let X3, X,,...,X,, be a random sample from
a continuous distribution function F(.) with qudeti
function Q(u) = Fi(u) and let %..<X,.<...<X,n denote

the corresponding order statistics. Then the rth LQ

momentss, is given by

-1 -1
3 =%Z(—1)k[r ) ]T (X,o)r 1212, @)
where, G0<1/2, G6<p<1/2:
Toa (X r—k:r) = pQX,,k, () +@- ZP)Q@% /2
+ X 1- = 1.k:r
PQx,,, A-a)= pQ[EZ, @ )] @

+(1-2p)QIB Y, (1/2)]
+pQIB, (1-a)]

Is the quick estimator of location ar@}’, . (a) is

the quantile of a beta random variable with paramet
k and k+1 and Q(.) denotes the quantile estimatbe.

where, F(x) is the distribution functibh The qth
population quantile of F denoted &y and defined
&= Q(a).

Sample quantiles have been studied in statistical
literaturd”). The qth sample quantile is defined by:

SQq = X[nq]+1 (8)

where, [nq] denotes the integral part of nq. Thamea
quantiles experience a substantial lack of efficyen
caused by the variability of individual order s$étis.
Mudholkar and Hutsdtt! used the other quantile
function estimator namely the Linear Interpolation
Quantiles (LIQ) for constructed LQ-moments. The LIQ
quantile is used commonly in statistical packageshs
as MINITAB, SAS, IMSL and S-PLUS!.

A popular class of L-quantile estimator for
improving the efficiency of sample quantiles usgaat
weight to average over the order statistics andbleas
widely applied to reduce this variabifity. In recent
years, researchers have studied weighted L-quantile
estimator which use unequal weights for data ppiots
obtain better performance of estimato?s

Huang and Brill! applied the level crossing
empirical distribution function to propose a clasfs
level crossing kernel quantile estimators. The

first four LQ-moments of the random variable X aretheoretical and simulation results show that those

defined as:

€& =T,,(X1) ®)
€2 = 3[Tha(X 2 —Tpu(X 1] 4)
€3 =3[T0a(X 5 =27, (X 2) +T (X )] )
€4 =310 (X 1) =3T,,(X ) +3T (X ) —T (X )] (6)

Quantile estimators: The sample quantiles estimators
of the values of the population quantile Q(.), ased
widely in a variety of applications such as a Qi
and a box plot in the exploratory data analysim-no
parametric estimators involving statistics suchtlaes
quartiles and their ranges, to theoretical topisshsas
density function estimation.

Let X,,<X,,<...<X,,, be the corresponding order

In—

estimators improve the efficiencies relative to the
corresponding regular kernel quantile estimatorst B
selection of kernel or bandwidth of the kernel
estimators has always been a sensitive prdflem

Harrell and Davi§ proposed an L-quantile
estimator of§, namely, HD quantile estimator which
not only gives better efficiencies but also avoitle
problems of selection of kernel or bandwith. Sheath
and Marrof® showed the HD performs as well as
other L-quantile estimators in large sample. Hifang
use a level crossing empirical distribution funotito
propose a new estimator HDL which is a weighted
version of HD. The theoretical and computational
results show that the new estimator HDL is more
efficient than the HD quantile in many cases, efsfigc
for the tails of the distributions and small samgilees.

In this study, five different quantile estimators
namely the LIQ estimator, the L-quantile estimators
two of the weighted L-quantile estimators and thalLH
estimator were considered for estimating the sample

statistics. The population quantiles estimator of a.Q-moments. In the following, we discuss each of

distribution is defined as:
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Linear interpolation quantiless The Linear The approximation form of WKQare considered
Interpolation Quantiles (LI is given by: in this study are the following:
LIQy =@ =&)X qn + X jnrqen 9) Wiy, = Zn:{anh(Zl:Wj,n ) qj Xi;n} 14
i=1 j=1
where, e=n'g-[n'q], n'=n+1and [ng] denotes the J
integral part of nq. . :
WKQ2, = Z{n'lKh[z w,— - qﬂ X, (15)
L-quantile estimators: A popular class of L-quantile i=1 = n+1
estimators is called Kernel Quantile (KQ) estimatof
Sheather and Marr8flis given by: New level crossing HDL quantile estimators. The
new level crossing qth HD quantile estimators chlle
n [ in HDL quantiles is given by:
KQ, =Z{ [ K —q)dt}xi;n (10)
i=L| (i-1)/n HDL,
where, K is a density function symmetric about @:an n | Pin 1 y(m-art (16)
=y j B{(n +1)(1-q), (n+ 1)q} Xin
K, (*) =(@/h)K(s/h) PP - y) iy

The approximation forms ofkKQ, estimator is Where:
Sheather and Marrdn': |
n : Pin = ij,n
KQ, :;{n‘lKh(r]:_l—qﬂxi:n (11) =
and w, is given in (13).
where, K(t) =(2m “?exp(t/2) is the Gaussian

Kernel, h=[g(1- g)/n}? is an optimal bandwidth given
in Corollary 1 of Sheather and Marfbh

EV1 distribution: The extreme value distribution type
1 (EV1) was introduced by Gumiséand is commonly

known as Gumbel's distribution. It one of the most
_ ) _ i i widely used probability distribution functions for
Weighted L estimators: Huang and Brill” introduced  gyireme value in hydrologic and meteorological &sid

the weighted L estimator called Weighted Kernel¢,, prediction of flood peaks, maximum rainfalls,
Quantile (WKQ). The weighted stimators is given mayimum wind speed. The Cumulative Distribution

by: Function (CDF) of EV1 distribution is:
n P — _ _ _
WKQ, = Z[ I Kiu(t -Q)dtlxi;n (12) F)=expt-expb (op)folp —eo<x<e (7)
i=1 Pi-1,n
where, 4 and o are location and scale parameters,
Where: respectively. Quantiles function of EV1 distributics
given by
1{4__n-2 -
" - 2[1 .lin(n—l)j’ =k (13 Q@=k-ologtlog@).0<as<1 (18)
in 1 . .
nn-1)’ 1=2,3,..m1 Method of LQ-moments: The LQ-moments estimators

for the EV1 distribution behave similarly to the
LMOM. From Eq. 6, 7 and 16, the first two LQ-

and TR )
moment of the EV1 distribution can be written as

Pin =D W, &, =p+0[T, (X )] (19)
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EZ = %O[Tp,u(x 2:2) -1 pa(x 1:2] (20)
The LQMOM estimatorgl ando of the parameters
are the solution of (19) and (20).
6 and [ican be estimated successively from Eq.
20 and 19 as:

2,

GER . (21)
Tp,a (X 2:2) _Tpa(x 1:)

=8 - 0[t,u(X )] (22)

Method of L-moments (LMOM): The LMOM

estimators for the EV1 distributions are given by:

(23)

(24)

Where:

b, = n‘lzn:

i=1

n
bO = n_lz Xi:n
i=1

y=0.577is Euler’s constant

(-1
(n-1 "

Monte Carlo simulations. Monte Carlo simulations
have been carried out to investigate the effect@f

purpose, 1000 random samples of differentame

generated from the EV1 distribution with the looati
and scale parametersy,§) were set 0 and 1
respectively.

Initially, parameters of EV1 were estimated by the
LOMOM method using combinations of the quick
estimators parametera @nd p) values in the ranges O-
0.5. In the computer simulations the valuesoofre
0.01(0.02)0.41 and p are 0.05(0.05)0.45 were chosen
and all possible combination afand p were examined
in order to find the best combination in term of BE
The presentation of our results will focus on the
properties of quantile estimators because theyrame
direct practical interest.

The smallest RMSE of the LQMOM based on five
quantile estimators obtained by simulation were
compared with RMSE obtained using the LMOM
method for sample sizes of n =10, 25 andwBl
p = 0.01, 0.05, 0.1, 0.025, 0.5, 0.75, 0.90, 0.88 a
0.99. Results are presented in Table 1 in terms of
estimation efficiency (EFF) of the LQMOM method
relative to LMOM method defined as:

_ RMSE(LQMOM)
RMSE(LMOM)

EFF (25)

Values EFF >1 indicated that the LMOM method
is superior to the LQMOM methods.

The simulation results of the Table 1 show that
when the data are generated form the EV1 distdbulti
only the LQMOM based on WKQ1 is more efficient
relative to the LMOM method in 16 out of 27 (eqtml
59.26%). The LQMOM based on the KQ, HDL, WKQ2
and LIQ estimators are significantly less effici¢ginan

moments methods based on five different quantilghe LMOM.

estimators compared with L-moments method. In eac
simulation a total of 1000 samples of size 10, 2% 30

h In the upper tails (@ = 0.90, 0.95, 0.99), the
LOMOM based on the WKQ1 estimator has higher

are used to generate random samples to obtain thsficiency than LMOM equal to 100% cases. The

guantile estimators of Q(q), q = 0.01, 0.05, 0.D26,
0.5, 0.75, 0.90, 0.95 and 0.99.

Statistical analysis of extremes is often intarést
to analysis the upper tails of the distributiongnide in
this study, the quantile Q(q) for upper tails, {80,
0.95 and 0.99 are considered.

RESULTSAND DISCUSSION

Simulation study for parent distribution function
known: Although the true underlying distribution
function is never known in practice, it is stillafsl to
look at how estimation is affected by various metho
when the distribution function is known. For this

LQMOM method based on the KQ, WKQ2 and HDL
are in many cases significantly more efficient thha
LMOM in 6 out of 9 (equal to 66.67%), in 7 out of 9
(equal to 77.78%) and in 6 out of 9 (equal to 6%p7
cases, respectively. The LIQ quantile estimator is
significantly less efficient than the LMOM method.

Parent distribution function unknown: In practice,
the true distribution function is never known. Thus
will be even more useful to look how estimation is
affected by various methods when the assumed
distribution function differs from the parent dibtition
function. In this study generalized Lambda disttidu
was considered to generate the random samples data.
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Table 1: Estimation efficiency of the LQMOM methaative to LMOM method. Data are generated forsENV1 distribution
Sample size n = 10, 25, 50

Estimator\p 0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 0.99
LIQ (10) 0.9613 0.9616 0.9706 0.9776 1.0333 1.0580 0.9943 0.9990 0.9989
(25) 0.8545 0.8258 0.8273 0.8858 0.9581 0.9670 982 0.9885 0.9912
(50) 0.8060 0.8058 0.8135 0.8601 0.9440 0.9690 9563 0.9462 0.9311
KQ (10) 0.9826 0.9524 0.9280 0.9762 2.0749 1.0570 .0591 1.0615 1.0596
(25) 0.9901 0.9752 0.9631 0.9449 1.1979 1.0157 1810 1.0171 1.0129
(50) 0.9431 0.9440 0.9438 0.9406 0.9781 0.9766 7940.9 0.9788 0.9791
WKQ1 (10) 1.0786 1.0929 1.1025 1.1251 1.1176 1.0438 1.0278 1.0231 1.0259
(25) 1.0322 1.0369 1.0399 1.0478 1.0338 1.0238 23r0 1.0231 1.0225
(50) 1.0084 1.0005 0.9982 1.0000 1.0035 1.0382 50B.0 1.0534 1.0544
WKQ2 (10) 0.9992 0.9764 0.9573 1.0114 1.9813 1.0642 1.0627 1.0635 1.0600
(25) 0.9908 0.9858 0.9787 0.9641 1.1145 1.0131 168.0 1.0148 1.0141
(50) 0.9438 0.9440 0.9449 0.9496 0.9540 0.9728 7309 0.9689 0.9648
HDL (10) 1.0024 0.9821 0.9660 0.9405 0.9893 1.0373 1.0514 1.0553 1.0592
(25) 0.9774 0.9730 0.9700 0.9686 0.9821 0.9989  OooQu 0.9997 0.9986
(50) 0.9450 0.9411 0.9401 0.9472 0.9703 0.9996 005B 1.0051 1.0024

Table 2: Estimation efficiency of the LQMOM methadative to LMOM method. Data are generated formngtandard normal distribution
Sample size n = 10, 25, 50

Estimator\p 0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 0.99
LIQ (10) 1.1606 1.0568 0.9894 1.0878 1.4081 1.3666 0.9669 1.1378 1.7151
(25) 1.2638 1.1547 1.0103 0.9827 1.3034 1.1867 7789 1.2468 2.1768
(50) 1.3791 1.2529 1.0783 1.0023 1.5530 1.1957 648.8 1.3102 2.2389
KQ (10) 1.0593 0.9533 0.9254 1.0388 2.3060 1.0103 1.0537 1.2721 1.9959
(25) 11141 1.0453 0.9776 1.0519 1.8459 1.0828 89D.0 1.4827 2.6818
(50) 1.1251 1.1122 1.0382 1.0675 1.7016 1.2189 5310 1.5736 3.0147
WKQ1 (20) 0.9038 0.9071 0.9562 1.1849 1.4518 1.1376 0.9834 1.1905 1.8116
(25) 0.9390 0.9206 0.9325 1.1299 1.4826 1.0276 5450 1.4312 2.4279
(50) 1.0009 1.0105 1.0076 1.0925 1.4112 1.1986 722.0 1.5864 2.7071
WKQ2 (10) 1.0160 0.9433 0.9301 1.0574 2.3496 1.0205 1.0597 1.2862 1.9968
(25) 1.0430 0.9932 0.9552 1.0607 1.7502 1.0885 85D.0 1.4860 2.6939
(50) 1.0783 1.0725 1.0236 1.0728 1.4375 1.2256 546.0 1.5877 2.8742
HDL (10) 0.9210 0.9195 0.9429 1.0510 1.1200 1.0321 1.0565 1.2568 1.9282
(25) 0.9858 0.9719 0.9659 1.0441 1.2370 1.0899 606.0 1.3646 2.3194
(50) 1.0933 1.1187 1.0641 1.0655 1.4495 1.2197 28r.0 1.4220 2.4894

Huang and Brill! used the Generalized Lambda symmetric distribution (a = 0, b = -0.3203, ¢ =18b9,
Distribution (GLD) to compare the performance ofth d = -0.1359) and the medium positive skewed
new quantile estimation method (WKQ) with the usualdistribution (a = 0.6390, b =0.0979, 0.8251,
Kernel Quantile (KQ) estimation method. The GLD hasd = 0.0953). The three GLDs then used as parent
four parameters and a wide variety of curve shapesjistributions in simulations to assess the perforeaof
Hence it is useful for the representation of dateew yarious quantile estimation of the LQMOM method
the qnderlylng dlstr!butllon is unknown. The quamtil compared to the LMOM method for estimating the
function of the GLD is given by: parameters of the EV1 distribution.

The simulation result for the Q(q), g = 0.01, 0.05

Q@)= a+ [d - (- 9§ 1/6,0<q<1, b#0 (26) 0.1, 0.025, 0.5, 0.75, 0.90, 0.95 and 0.99 for damp
Where: sizes of n = 10, 25 and 50 of the EV1 distributaoe

a = A location parameter listed in terms of Estimation Efficiency (EFF) are
b = A scale parameter shown in Table 3 and 4. The simulation results show
c and d = Shape parameters. that the LQMOM methods have better efficiencieSén

out of 81 (equal to 69.14%) cases for WKQ1, in 62 o
By varying parameter values, Huang and BYill of 81 (equal to 76.54%) cases for KQ, in 50 ouBbf
constructed three generalized Lambda distributions(equal to 61.73% cases for the HDL and for the LIQ
identified as the standard normal-like dlisttion  estimator and in 60 out of 81 (equal to 74.07%ksas
(a=0,b=0.1974, c = 0.1349, d = 0.1349), thekpd for the WKQ1 estimator.
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Table 3: Estimation efficiency of the LQMOM methiaative to LMOM method. Data are generated formpghaked symmetric distribution

Sample size n = 10, 25, 50

Estimator\p 0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 0.99
LIQ (10) 1.1389 1.0753 1.0879 1.2994 1.3056 1.0384 1.1300 1.1960 1.1978
(25) 1.3006 1.0463 1.0260 1.4021 1.4630 0.9871 1191 1.2001 1.1424
(50) 15171 1.0880 0.9680 1.6745 1.8289 1.0294 132B 1.2380 1.1495
KQ (10) 1.0653 1.0489 1.0645 1.4094 2.3916 1.1126 1.2869 1.3552 1.2833
(25) 1.0287 1.0205 1.0654 1.4087 1.6015 1.0810 304B 1.4046 1.2810
(50) 1.2235 1.1391 1.0347 1.6873 1.8061 1.0485 2678 1.3764 1.2849
WKQ1 (10) 0.9048 0.9555 1.1049 1.4796 1.3723 1.1385 1.2689 1.3254 1.2779
(25) 0.9705 0.9453 1.0387 1.4350 1.4458 1.1486 8582 1.3523 1.3200
(50) 1.2055 1.0850 1.0113 1.7233 1.8227 1.1569 2312 1.3252 1.3045
WKQ2 (10) 1.0139 1.0332 1.0889 1.4456 2.3788 1.1374 1.2890 1.3574 1.2866
(25) 1.0152 0.9952 1.0592 1.4167 1.4458 1.0784 2163 1.4208 1.2860
(50) 1.2403 1.1273 1.0303 1.7063 1.8243 1.0418 981L.2 1.4160 1.2737
HDL (10) 0.9544 0.9734 1.0765 1.2877 1.2600 1.0814 1.2143 1.3021 1.2645
(25) 1.1408 0.9950 1.0342 1.4454 1.4739 1.0489 76D1 1.2667 1.2256
(50) 1.4308 1.1085 1.0061 1.7184 1.8412 1.0809 8160 1.1585 1.2323

Table 4: Estimation efficiency of the LQMOM methoelative to LMOM method. Data are generated forra thedium positive skewed
distribution

Sample size n = 10, 25, 50

Estimator\p 0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 990
LIQ (10) 0.8732 0.9186 0.9253 0.9485 1.0143 1.1898 0.9556 0.9599 1.0135
(25) 0.8680 0.8269 0.8360 0.8771 0.9327 0.9604 285.9 0.9342 0.9789
(50) 0.8993 0.8245 0.8341 0.8902 0.9473 0.9489 092.9 0.8697 0.9079
KQ (10) 0.9651 0.9662 0.9534 0.9355 1.5563 1.0385 .027b 1.0421 1.1213
(25) 0.9921 0.9758 0.9738 0.9545 1.1665 0.9942 9.9 1.0091 1.0877
(50) 1.0354 0.9710 0.9703 0.9631 1.0347 0.9776 7B 0.9776 1.0582
WKQ1 (10) 0.9196 1.0028 1.0347 1.0688 1.1118 1.0281 0.9566 0.9692 1.0500
(25) 0.9428 0.9934 1.0107 1.0219 1.0380 0.9818 7.9 0.9955 1.0934
(50) 0.9283 0.9802 0.9985 1.0017 1.0008 0.9842 797.9 0.9884 1.0937
WKQ2 (10) 0.9613 0.9770 0.9701 0.9392 1.6483 1.0474 1.0327 1.0445 1.1202
(25) 0.9847 0.9794 0.9814 0.9649 1.1877 0.9939 93D.9 1.0039 1.0833
(50) 1.0275 0.9729 0.9746 0.9727 1.0015 0.9771 7339 0.9721 1.0489
HDL  (10) 0.9599 0.9791 0.9747 0.9485 0.9937 1.0139 1.0262 1.0407 1.1125
(25) 0.9716 0.9790 0.9804 0.9705 0.9667 0.9822 8419 0.9823 1.0266
(50) 0.9655 0.9638 0.9689 0.9695 0.9733 0.9853 779 0.9605 0.9612

In the upper tails (g = 0.90, 0.95, 0.99), thethis study, we develop improved the LQMOM that does
LQMOM based on all quantile estimators also alwaysiot impose restrictions on the value of the quick
perform better than the LMOM. The KQ and WKQ2 estimators parameters p and a but we explore an
have higher efficiency relative to the LMOM in 2dt@f  extended class of LQ-moments with consideration
27 (88.89%) respectively, followed by the HDL hds 2 combinations of p and a values in the range 0 abd 0
out 27 (81.48%), the WKQ1 has 20 out of 27 (74.07%)he method of the LQMOM based on five different
and the LIQ has 16 out of 27 (59.26%) cases overall  quantile estimators were examined and compared thei

Overall results presented in Table 2-4 show thatt performances against a widely acceptable methdd of
LQMOM based on the WKQ1 has 72 out of 108 (equaimoments using simulated samples of both EV1 and
to 66.67%) cases, the KQ has 67 out of 108 (62.04%peneralized Lambda distribution.
the HDL has 54 out of 108 (50%), the WKQ2 has 65  Considering all factors of comparison, the
out of 108 (60.19%) and the LIQ has 50 out of 108_.QMOM based on WKQ1 in many cases significantly
(46.30%) cases with better efficiencies. more efficient than LMOM, when the data are

generated from the EV1 distribution and other
CONCLUSION distributions. The LQMOM based on WKQ2, KQ and

An accurate estimation of parameters of theHDL have higher efficiency relative to the LMOM
Extreme Value Type 1 (EV1) distribution in stagsii when only the data are simulated from the genamdliz
analysis of extremes is of considerable importahte. Lambda distribution.
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When the upper quantiles>@90 are considered, 7.
the LQMOM based on all quantile estimators except
LIQ always perform better than LMOM for moderate
and small sample sizes.

This study has demonstrated that the conventional
LMOM is not optimal for the estimation of the EV1 8.
distribution. The new method of estimation, denoted the
LQMOM in many cases represents higher efficiency in
the quantile estimation compared the other quantile
estimators. The simplicity and generally good9.
performance of this method make it an attractive option
for estimating quantiles in the EV1 distribution.

10.

ACKNOWLEDGEMENT

The researchers would like to thanks Ministry of
Science, Technology and Innovation, Malaysia for
funding this research.

REFERENCES 11

1. Ani, S. and A.A. Jemain, 2006. LQ-moments:
Application to the extreme value type |
distribution. J. Applied Sci, 6: 993-997.

2. Ani, S. and A.A. Jemain, 2006. LQ-moments for
statistical analysis of extreme events. J. Modern
Applied Stat. Method., 6: 228-238.

http://eprints.utm.my/7643/1/Anishabri2007_LQM 13,

omentsForStatisticalAnalysis. pdf

3. Ani, S. and A.A. Jemain, 2007. LQ-moments:
Application to the generalized extreme value. J.
Applied Sci., 7 115-120.

http://www.doaj.org/doaj?func=abstract&id=31805 14,

9

4. David, H.A. and H.N. Nagaraja, 2003. Order
Statistics.3rd Edn., Wiley, New Jersey, ISBN: O-
471-38926-9.

5. Gumbel, E.J., 1958. Statistics of Extremes.s.

Columbia University Press, New York, ISBN:
0486436047,pp: 377.

6. Harrell, F.E. and C.E.Davis, 1982. A new
distribution-free quantile estimator. Biometrika,
69: 635-640.
http://biomet.oxfordjournals.org/cgi/content/abstra
Cct/69/3/635

304

Huang, M.L. and P. Brill, 1999. A level crossing
gquantile estimation method. Stat. Probability Lett.,
45:111-119.
http://cat.inist.fr/?aModele=afficheN&cpsidt=1967
635

Huang, M.L., 2001. On a distribution-free quantile
estimator. Comput. Stat. Data Anal., 37: 477-486.
http://portal.acm.org/citation.cfm?id=568747.5687
52

Hyndman, R.J. and Y. Fan, 1996. Sample quantiles
in statistical packages. Am. Stat., 50: 361-365.
http://www.jstor.org/stable/2684934

Landwehr, J.M., N.C. Matalas and J.R. Wallis,
1979. Probability weighted moments compared
with some traditional techniques in estimating
Gumbel parameters and quantiles. Water Resour.
Res., 15: 1055-1064.
http://adsabs.harvard.edu/abs/1979WRR....15.1055
L

. Mudholkar, G.S. and A.D. Hutson, 1998. LQ-

Moments: Analogs of L-moments. J. Stat. Plann.
Inference, 71: 191-208.
http://cat.inist.fr/?aModele=afficheN&cpsidt=1771
266

. Phien, H.N., 1987. A review of methods of

parameter estimation for the extreme value type |
distribution. J. Hydrol., 86: 391-398.
http://adsabs.harvard.edu/abs/1987JHyd...90..251P
Rasmussen, P.F. and N. Gautam, 2003. Alternative
PWM-estimators of the Gumbel distribution. J.
Hydrol., 280: 265-271.
http://adsabs.harvard.edu/abs/2003JHyd..280..265
R

Raynal, J.A. and J.D. Salas, 1986. Estimation
procesures for the type-1 extreme value
distribution. J. Hydrol., 87: 315-336.
http://cat.inist.fr/?aModele=afficheN&cpsidt=7872
247

Sheather, S.J. and J.S. Marron, 1990. Kernel
quantile estimators. J. ArStat. Assoc., 85: 410-416.
http://www.jstor.org/stable/2289777



