
Journal of Mathematics and Statistics 5 (3):215-225, 2009 
ISSN 1549-3644 
© 2009 Science Publications 

Corresponding Author: Concepción González-Concepción, Department of Applied Economics, Faculty of Economics Science and 
Business Administration, University of La Laguna, Campus of Guajara, s/n, 38701, La Laguna, Tenerife, 

 Canary Islands, Spain Tel: (34) 922 317029-25-26 Fax: (34) 922 317204 
215 

 
The Numerical Computation of Rational Structures and Asymptotic 

Standard Deviations in Causal Time Series Data 
 

Concepción González-Concepción, María Candelaria Gil-Fariña and Celina Pestano-Gabino 
Department of Applied Economics, Faculty of Economics Science and Business Administration, 

University of La Laguna, Campus of Guajara, s/n, 38701 La Laguna, Tenerife, Canary Islands, Spain 
 

Abstract: Problem statement: The specific properties of data series are of primary importance in 
several sciences. In the field of time series analysis, several researchers have considered the rational 
approximation theory, particularly the Padé Approximation and Orthogonal Polynomials. Approach: In 
this study, an approach for the statistical significance of two numerical methods, the r-s and q-d 
algorithm, was proposed which made possible to identify and compute certain rational structures 
associated with chronological data. Consideration was given to both univariate and multivariate cases. 
Results: Both algorithms were illustrated empirically through the use of simulated ARMA and TF 
models and economic data, some of which were taken from previous studies to compare results. 
Conclusion: This study highlighted the usefulness of several numerical methods (which were all 
closely related to the PA and OP) in identifying the rational structures associated with data series. 
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INTRODUCTION 
 

 Over the last two decades, several research 
programs have developed new procedures and 
characterization techniques for studying dynamic 
relations associated with time series. In particular, 
several authors have considered the use of rational 
approximation techniques in econometric modeling. 
Many other research areas also share this concern, such 
as numerical analysis, control theory, statistics and 
operations research. 
 In the univariate case, Autoregressive Moving 
Average (ARMA) models have been extensively 
studied over the last two decades[1-3]. As for the 
multivariate case, some research has been devoted to 
identifying the most appropriate vector ARMA 
(VARMA) models[4-6] and Transfer Function (TF) 
models[2,7,8] for a given dataset. The latter can be 
considered as a particular case of the VARMA models 
and are often used to represent dynamic stochastic 
systems as a set of rational polynomial expressions in 
an input-output context. 
 This study shows the statistical significance of 
several numerical methods which are closely related to 
the Padé Approximation (PA) and Orthogonal 
Polynomials (OP)[9,10]. The methods described here will 

be used for modeling time series and computing the 
orders of their rational structures. Since the covariance 
structure of an underlying process exhibits features 
related to the orders of a model, it is possible to use 
Hankel determinants with these numerical algorithms to 
estimate the unknown orders from observations [11] and 
expectations [12]. 
 Regarding the paper’s structure, we chose not to 
separate the preliminaries and the auxiliary part of the 
new results, since the reading and understanding of the 
text are more consistent if organized into three large 
blocks (the algorithms, ARMA models and TF models). 
This explains the criterion selected for the use of 
indices, that is to say, to maintain the general notation 
in each field: k, n for the algorithms in numerical 
analysis; i, j for the ARMA models and k, j for TF 
models. This notation is the same as in González-
Concepción and Gil-Fariña[13]. 
 First, some known numerical methods for ARMA 
models (corner method, epsilon algorithm, r-s algorithm 
and q-d algorithm) and their statistical significance are 
briefly reviewed. These related techniques can be 
considered as “feasible alternatives” to each other and 
are useful for contrasting and/or confirming models 
which have been identified by other methods. We 
illustrate the role of the statistical significance of the r-s 
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and q-d algorithms in a simulated ARMA model given 
in Berlinet and Francq[3] to compare results. 
 Next, we consider these techniques in the context 
of a causal TF model with one output and one or more 
inputs and we present our research on the statistical 
significance of the r-s and q-d algorithms. This original 
contribution is along similar lines as Tsay[14] for the 
corner method and González-Concepción et al.[8] for 
the epsilon-algorithm, from which we have selected 
some examples for the purpose of comparing results.  
 Finally, we present the empirical results and 
illustrate the main role of the statistical significance in 
both proposals for a TF model. A simulated TF model 
from Liu and Hanssens[7] is studied. Some economic 
applications are also considered using data from Box 
and Jenkins[16] (a single input TF model for the series 
M) and from González-Concepción and Gil-Fariña[13] 
and Gil-Fariña and Lorenzo-Alegría[18] (a multiple input 
TF model for financial data). Empirical findings shed 
light on the value of the statistical significance in a real 
data context.  
 Each of the numerical examples required costly 
simulation exercises and considerable computational 
resources. 
 This study concludes with a brief summary of our 
results, the most relevant conclusions and some open 
questions of interest. 
 

MATERIALS AND METHODS 
 
The Univariate case: Some methods of rational 
characterization in ARMA models: 
Theoretical characterization: Let us consider a 
minimal stationary and invertible ARMA model of 
order (p,q), defined as:  
 

p t q t(L)X (L)a ,     tΦ = Θ ∀ ∈  
 
where, L is the backward-shift operator 

m
t t mL X X (t )−= ∈ ; p q(L),  (L)Φ Θ  are polynomial 

operators of degree p and q respectively and 
{ }ta ; t 0, 1, 2,...= ± ±  is a sequence of independently and 
identically distributed random variables with mean zero 
and variance σ2

a; i.e., a noise term. It is assumed that 
Φp(L) and Θq(L) have no common factors. 
 Various methods have been proposed for 
identifying the polynomial orders p and q, generally 
starting from data autocorrelations and the application 
of criteria from PA theory. We can mention the C-table 
method from PA[9] and the corner method from the 
econometric literature[1]. Both methods use a similar 
rational characterization based on Hankel determinants, 
although the two approaches evolved independently. 

Beguin et al.[1] have also studied the statistical 
significance of the C-table method. Their study was 
followed by Tsay[14] and Lii[2], who proposed an 
estimator of the asymptotic variance written in terms of 
the partial derivatives of entries in the C-table. 
 The relationship between the Hankel determinant 
and the PA has stimulated the study of other algorithms 
for ARMA models. The epsilon algorithm, proposed by 
Berlinet and Francq[3,6], is of particular interest. Its 
relationship to OP, the PA and the corner method is 
examined in Brezinski[10] and its use to characterize 
ARMA processes is described in Berlinet and Francq[3]. 
The latter pointed out that the table entries of the 
epsilon algorithm have also useful statistical properties, 
based on the methods and assumptions used by[1,2,14] for 
the corner method. 
 Finally, we also mention the r-s algorithm 
proposed by Gray et al.[15] and the q-d algorithm by 
Berlinet and Francq[3], both of which have already been 
proposed for ARMA models. 
 
The r-s algorithm and its statistical significance: 
This algorithm is linked to the Hankel determinants 

j
i, j i h k h,k 1C ( ) det( )− + =ρ = ρ  associated with the sequence 

{ }i
∞

−∞
ρ ≡ ρ of autocorrelations of Xt. The algorithm is 
defined by the relations: 
 

( )( )
( )( )

n n
0 1 n

1n n 1 n n 1
k k 1 k k

1n n 1 n n 1
k 1 k k k

n ,    s ( ) 1,     r ( )

k , n ,  s ( ) s ( ) r ( ) r ( ) 1
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−

−+ +
+

∀ ∈ ρ = ρ = ρ

∀ ∈ ∀ ∈ ρ = ρ ρ ρ −

ρ = ρ ρ ρ −

 

 
 Brezinski[10] proved that: 
 

n k 1,kn
k

1 n k 2,k 1

1 n k 1,kn
k

n k 1,k

C ( )
k , n ,   r ( )

C ( )
C ( )

                            s ( )
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ρ
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where, 1 ijC ( )ρ  is the determinant of the Hankel matrix 
associated with the sequence Lρ. It follows that: 
 

i j 1
j ijr 0 C 0− + = ⇔ =  

 
 The statistical significance of this algorithm can be 
shown by a method similar to that used by González-
Concepción et al.[8] for the epsilon algorithm, namely 
by computing the Asymptotic Standard Deviation 

(ASD), that is, the values of the t-Student 
n
k

n
k

s ( )
v(s ( ))

ρ

ρ
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(analogous to
n
k

n
k

r ( )
v(r ( ))

ρ

ρ
), where n

kv(s ( ))ρ  (analogous 

to n
kv(r ( ))ρ ) represents the estimated asymptotic variance. 

Following Tsay[14] and Berlinet and Francq[3], the 
variance can be approximately represented by 

'n n n n
k k k kv(s ( )) F ( )M ( )F ( )ρ ≅ ρ ρ ρ  (analogous to 

'n n n n
k k k kv(r ( )) F ( )M ( )F ( )ρ ≅ ρ ρ ρ ), where n

kM ( )ρ  is the sample 
covariance matrix of the sequence n k n( ,..., )+ρ ρ . That is: 
 

n k,n k,n
k ij i, j 1,...,k 1 ii k i 1

k,n
ij n i 1 n j 1

M ( ) (m )  ,   m v( ),    

                                          m cov( , )
= + + −

+ − + −

ρ = = ρ

= ρ ρ
 

 
 n

kF ( )ρ is the sequence n n n k n
k k( s ( ),..., s ( ))+ρ ρ  (analogous 

to n n n k n
k k( r ( ),..., r ( ))+ρ ρ ), where: 

 

( )

n
i n k

k
i

n i n 1 n 1 i n
n 1 k k k k
k 1 2n

k

n 1
i n 1 k

k 1 n
k

ss ( ) ( )

r ( ) r ( ) r ( ) r ( )s ( )
r ( )

r ( )s ( ) 1           i n, n 1,..., n k
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0                           otherwise

+ +
+
−

+
+
−

∂
ρ ≡ ρ

∂ρ

 ρ ρ − ρ ρ
ρ

ρ
=   ρ

+ ρ − = + +  
ρ  
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and 
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k 1
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n i n 1 n 1 i n
n 1 k k k k
k 2n

k
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i n 1 k

k n
k

rr ( ) ( )

s ( ) s ( ) s ( ) s ( )r ( )
s ( )
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+
+

+ +
+
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ρ ≡ ρ
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 ρ ρ − ρ ρ
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 Note that the initial values are: 
 

 i n i n
0 1

1 i n
s ( ) 0   and   r ( )

0 i n
=

ρ = ρ =  ≠
 (∀n, i≥0) 

 
The q-d algorithm and its statistical significance: 
This algorithm is defined by the relations: 
 

n n n 1
0 1

n
n n 1 n n 1
k k k k 1

n 1 n 1
n k k
k+1 n

k
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 It is not directly related to the PA or to OP 
Brezinski[10], but it can be shown that: 
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 It follows that: 
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ρ ≠ ρ ≠  ⇒ ρ =ρ ≠ ρ = 

 

 
 In order to study the statistical significance of the 
q-d algorithm elements, we use the same statistical 
technique and a similar notation. Partial derivatives are 
computed according to the following iterative 
procedure: 
 

i n
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For k>0: 
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

 

 
 The methods explained here have allowed us to 
obtain a tentative specification of the orders, or even 
several possible models which can be discriminated 
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between by statistical methods and/or during the 
estimation stage. Other techniques can also be found, 
for example in Berlinet and Francq[3]. 
 Both of these proposals will now be illustrated. To 
this end, we follow Berlinet and Francq[3] and consider 
the simulated ARMA(1,1) model Xt-0.7Xt-1 = at+0.5at-1, 

t∀ ∈  where at∼N(0,1). The initial values of this series 
were set to zero and 200 values were generated, but 
only the last 100 values were considered in the analysis. 
 We applied the r-s algorithm to the ρ sequence using 
SCA software. The results concerning to the standard 
deviations of the i j 1

jr
− +  elements are shown in Table 1. 

Taking into account that a stationary process has a 
minimal ARMA (p,q) representation if[13]: 
 

i p q p q p j
p 1 p 1 pr ( ) 0, i q;   r ( ) 0;   r ( ) 0, j 0− − − +

+ +ρ = ∀ > ρ ≠ ρ ≠ ∀ >  
 
and comparing these numerical entries to certain critical 
values, different patterns of probable orders can be 
selected (Table 2). Note that the empirical results in 
Table 3 and 4 confirm the simulated model considering 
a given critical value. 
 
Table 1: ASD of the r-table 
j i 1 2 3 4 5 
1 7.30 
2 -5.70 -0.30 
3 6.08 -0.84 0.07 
4 -1.24 -0.84 0.07 -0.01 
5 7.68 -0.28 -0.01 -0.00 -0.00 
6 -8.68 1.59 -0.24 -0.01 0.00 
7 3.79 -0.03 0.01 0.00 
8 -1.59 -1.13 0.00 
9 6.08 -0.27 
10 -7.95 
 
Table 2: Accepted models 
Critical value Accepted (p,q) models 
1.28 (1,6) (2,2) 
1.64 (1,1) 
1.96 (1,1) 
2.33 (1,1) 
2.58 (1,1) 
2.81 (1,1) 
3.09 (1,1) 
3.29 (1,1) 
3.72 (1,1) 
4.26 (1,1) 
 
Table 3: ASD of the q-table 
j i 1 2 3 4 5 
1 -6.14 
2 -5.18 0.76 
3 -1.29 2.58 0.39 
4 -1.30 1.07 5.68 0.75 
5 -6.97 -1.07 0.42 0.15 0.01 
6 -3.98 -0.37 -1.53 0.80 -0.01 
7 -1.67 0.10 -0.10 0.25  
8 -1.68 1.23 -0.07 
9 -5.85 1.10 
10 -8.31 

 The results obtained via the q-d algorithm relative 
to the standard deviation of the i j

jq −  elements and 
possible selected models are shown in Table 3 and 4 
respectively. Again, these results take into account that 
a stationary process has a minimal ARMA(p,q) 
representation if[13]: 

 
i j i p
j p

q j
j

q ( ) 0, i q 1,  j p;  q ( ) 0, i q;  

q ( ) 0, j p

− −

−

ρ = ∀ = + > ρ ≠ ∀ ≥

ρ ≠ ∀ ≥
 

 
 These results suggest that both methods are 
efficient alternatives for reproducing the orders of the 
simulated model. 
 
The multivariate case: Some methods of rational 
characterization in causal TF models: The PA can 
also be applied in the context of causal rational models 
to identify the proper VARMA model and is 
particularly useful in finding the more adequate TF 
model to available data[16]. 
 
Theoretical characterization: Let us consider a 
VARMA (p,q) process defined as: 
 
Φp(L) Zt = Θq(L)ut  
 
Where: 
Φp(L), Θq(L) = Now matrix polynomials of dimension 

m and degrees p and q respectively 
L = The back-shift operator 
Zt = A multiple process 
ut = A vector of independent white noise 

components 
 
 A structure of particular interest arises when: 
 

t t
t p q t

t t

X c0 0
Z , , ,u

Y a0
ϕ α      

= Φ = Θ = =      ψ φ θ      
 

 
which can be expressed as: 
 

t t

t t t

(L)X (L)c
(L)Y (L)X (L)a ,    t

ϕ = α
φ + ψ = θ ∀ ∈

 

 
Table 4: Accepted models 
Critical value Accepted (p,q) models 
1.28 (1,1) 
1.64 (1,1) 
1.96 (1,1) 
2.33 (1,1) 
2.58 (1,1) (0,2) 
2.81 (1,1) (0,2) 
3.09 (1,1) (0,2) 
3.29 (1,1) (0,2) 
3.72 (1,1) (0,2) 
4.26 (1,1) (0,2) 
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 If φ is invertible, then Yt is given by: 
 

1
t t tY (L) (L)X N ,    t−= −φ ψ + ∀ ∈  

 
 In this expression, which is usually referred to as the 
TF model, the output Yt is a function of both 
contemporary and delayed effects of the input variable 
Xt. The existence of a dynamic one-way causal relation 
Xt→Yt is assumed; that is, we assume that there is no 
“feedback” between output and input. We also assume 
the  presence  of  a  disturbance  series  described  by 
Nt = φ-1 (L)θ(L)at, where at is a Gaussian white noise 
process. 
 This type of causal model has a great number of 
practical applications, not only in economics but also in 
fields such as engineering, geography and business. It is 
especially useful where there is a correlative or causal 
structure between variables that are temporally or 
spatially related. 
 From the perspective of time series analysis, the 
Box-Jenkins approach deals with modeling input-output 
dynamic relations. Here we refer to TF models with 
only one output Yt ≡ yt and one or more inputs Xt ≡ (xit)I 

= 1,...,n (n = m-1):  
 

i i

i

n
is b

t it t
i 1 ir

(L)
y L x N

(L)=

ω
= +

δ∑  

 
where, i

i i

s
is i0 i1 is(L) L ... Lω = ω + ω + + ω  and 

i

i i

r
ir i0 i1 ir(L) L ... Lδ = δ + δ + + δ  and bi is the delay in the 

response of yt to xit. 
 We wish to identify the values of bi, si and ri and to 
obtain a satisfactory response of yt to each input. To 
this aim, several proposals based on algorithms related 
to the PA have already been considered in previous 
research. The use of PA offers consistent and reliable 
initial parameter estimations and no prior information 
about the noise structure is required. 
 We can write the relation in the following compact 
form: 
 

n
j

t i it t i ij
i 1 i 0

y v (L)x N ;       v (L) v L    
∞

= =

= + =∑ ∑  

 
where vi(L), which transforms xit into yt, denotes the 
Impulse Response Function (IRF). 
 The matrix covariance and the impulse response 
weights vij for each input are computed first. This may 
be done either by using the ordinary least squares 
method or by maximizing the likelihood function in 
accordance with the following expression: 

ikn
j *

t ij it t
i 1 j 0

ˆy v L x N
= =

≅ +∑∑  

 
 In this formula ki is a finite number used for 
approximating the lag structure in the inputs xit, ijv̂  are 
the estimated weights and *

tN  is the re-estimated noise 
term. 
 After having defined i,max ijj

ˆ ˆv max v= , we construct 

a sequence of estimated relative weights i ij jˆ ˆ( ) ∈η = η  for 
the xit as ij ij i,maxˆ ˆ ˆ  v / vη = . 
 This theoretical sequence of relative weights 
satisfies the following linear difference equation of 
order ri and rank bi+si: 
 

i i

i
ij i1 i, j 1 i2 i, j 2 ir i, j r

i i

0 s
...

0 j b s− − −

= +
η − δ η − δ η − − δ η ≠ = +

ij>b
 

 
which constitutes a characterization of the TF model.  
 Several methods have been proposed to provide a 
rational characterization of a TF model, among them 
the corner method[2,7,14]. This is a generalization of the 
corner method given in the univariate case, which is 
applied to each sequence ηi. A study of its statistical 
significance in terms of the ASD can be found in 
Tsay[14]. 
 In this context we should also mention the epsilon 
algorithm of González-Concepción et al.[8], which can 
be applied either to the sequence of relative weights or 
to a transformed sequence if necessary. A study of its 
statistical significance can be found in Berlinet and 
Francq[3] and González-Concepción et al.[8].  
 
The r-s algorithm and its statistical significance: 
This iterative procedure has been proposed by 
González-Concepción and Gil-Fariña[13] for identifying 
a TF model, in accordance with the following result: 
 
Theorem 1: v̂ i(L) has a rational representation with 
orders (bi,si,ri) if the following conditions are satisfied: 
 

• 
i

i

i i i

i

k r
r i 1 i i

b s r
r i 1

ˆs ( ) C ,     k b s

ˆs ( ) C

−

+ −

 η = ∀ > +


η ≠
  

•  i

i

i i i

i

k j 1
j 1 i i

k r 1
r 1 i i i

b s r
r 1 i

ˆr ( ) 0,     j,    k<b

ˆr ( ) 0,     k b +s

ˆr ( ) 0

− +
+

− +
+

+ −
+

 η = ∀ ∀
 η = ∀ >


η ≠

 

 
 Displaying these values in a tabular form, we 
obtain the block structures given in Table 5 and 6 for 
each input xit. 
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Table 5: s-table 
j k 1 ... j ... ri-1 ri 
0 
1 
. 
. 
. 
k   k j

js −  

. 

. 

. 
bi+si      ≠ C1 
bi+si+1      C1 
.      .C1 
.      .C1 
.      .C1 

 
 In certain cases, for example in the epsilon 
algorithm, some transformation of the sequence of 
relative weights could be necessary to avoid 
computational instability. 
 The statistical significance of this algorithm can be 
analyzed in a manner similar to the ARMA models, by 
replacing the autocorrelation sequence (ρ) with the 
sequence of relative weights (η). 
 
The q-d algorithm and its statistical significance: 
This last algorithm was also proposed by González-
Concepción and Gil-Fariña[13] and identifies a TF model 
according to the following characterization: 
 
Theorem 2: If v̂ i(L) has a rational representation with 
orders (bi,si,ri), then one of the following statements 
holds: 
 

• 
i

i

i i

k j
j i i

k j
j i i i i

k r
r i i i

b s j
j i i

ˆq ( ) 0,    j, k<b

ˆq ( ) 0,    k>b +s ,j>r

ˆq ( ) 0,    k b s

ˆq ( ) 0,    j r

−

−

−

+ −

 η = ∀ ∀


η = ∀


η ≠ ∀ ≥ +


η ≠ ∀ ≥

 

• 
i

i

i i

k j 1
j 1 i i

k j 1
j 1 i i i i

k r 1
r 1 i i i

b s j 1
j 1 i i

ˆd ( ) 0,    j, k<b

ˆd ( ) 0,    k>b +s ,j>r

ˆd ( ) 0,    k b s

ˆd ( ) 0,    j r

− +
−

− +
−

− +
−

+ − +
−

 η = ∀ ∀


η = ∀


η ≠ ∀ ≥ +


η ≠ ∀ ≥

  

 
 Displaying the elements q and d in tabular form, 
the structures in Table 7 and 8 can be obtained for each 
xit: The comments about statistical significance of the r-
s algorithm can be apply to this case. 

Table 6: r-table 
j k 1 ... j ... ri ri+1 
0 0  
1 0  
. 0  
. 0 
. 0 
bi-1 0  
bi ηi,bi  
. .  
. . 
. . 
k  η i,k   k j 1

jr
− +  

. .  

. . 

. . 
bi+si ηi,bi+si    ≠ 0 ≠ 0 
bi+si+1 ηi,bi+si+1       ≠ 0 0 
. .       ≠ 0 0 
. .    ≠ 0 0 
. .    ≠ 0 0 
 
Table 7: d-table  
j k 1 2 ... J ... ri-1 ri 
η0ι 
0 0    
. 0    
.   
.   
bi-1 0    
bi      
.      
.   
.   
k       k j 1

jd − +  

.      

.   

.   
bi+si       ≠ 0 ≠ 0 
bi+si+1       ≠ 0 0 
.       ≠ 0 0 
.      ≠ 0 0 
.      ≠ 0 0 
If ηi0 is significantly different from zero, then bi = 0 
 
Table 8: q-table 
j k 1 2 ... j ... ri ri+1 … 
0    0 
.    0 
. 
. 
bi-1    0 
bi 
.  
. 
. 
k       k j

jq −  
. 
. 
. 
bi+si       ≠ 0 ≠ 0 ≠ 0 ≠ 0 ≠ 0 
bi+si+1       ≠ 0 0 0 0 0 
If ηi0 is significantly different from zero, then bi = 0 
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RESULTS AND DISCUSSION 
 
Empirical results: To illustrate these identification 
methods, we consider the following simulated model 
with two inputs[7]: 
 

2 3
3 4

t 1t 2t t2

1.5L 3Ly (2L 4L )x x N ,
1 L 0.24L

t 1,..,100

+
= + + +

− +
=                                       

 

 
(1-1.3L+0.4L2)Nt = at, at∼N(0,2)  
(1-1.4L+0.48L2)x1t = ct, ct∼N(0,1)  
(1-0.7L)x2t = dt, dt∼N(0,2) 
 
 In this model at is independent of ct and dt and ct 
and dt are contemporaneously correlated (with a 
correlation coefficient of 0.7). 
 The desired identification pattern is clearly b1 = 3, 
s1 = 1, r1 = 0 for the first input and b2 = 2, s2 = 1 r2 = 2 
for the second one. 
 Previous results for the corner method and the 
epsilon algorithm are given in Liu and Hanssens[7] and 
González-Concepción et al.[8], respectively. They do not 
differ substantially from those given for the r-s algorithm 
and the q-d algorithm in Table 9-12 of this study. 
 The Impulse Response Function (IRF) is now 
computed using the Cochrane-Orcutt iterative method. 
Ordinary least squares and the other methods yield 
similar results. 
 
Table 9: ASD of the r-table for {(-1)jη1j} 
 1 2 3 4 5 6 
0 -0.132 
1 0.241 -0.006 
2 -0.176 -0.036 0.002 
3 1.566 -0.052 0.009 -0.001 
4 2.523 -1.170 0.503 -0.020 0.001 
5 1.265 -0.090 0.001 0.000 0.000 0.000 
6 1.050 0.004 -0.002 0.000 0.000 0.000 
7 0.795 0.062 -0.001 0.000 0.000 
8 -0.142 -0.046 0.006 0.000 
9 0.626 -0.020 0.000 
10 -0.123 -0.003 
11 0.081 
  
Table 10: ASD of the r-table for {(-1)jη2j} 
 1 2 3 4 5 6 
0 -0.215 
1 0.212 -0.010 
2 1.839 -0.050 0.006 
3 -6.227 1.316 -0.029 0.006 
4 5.428 -0.643 -0.010 0.000 0.000 
5 -3.890 0.124 -0.013 0.000 0.000 0.000 
6 2.378 0.082 0.002 0.000 0.000 0.000 
7 -1.562 -0.093 0.001 0.000 0.000 
8 1.480 -0.167 0.001 0.000 
9 -0.583 -0.072 0.000 
10 0.897 -0.056 
11 -0.271 

 The correct orders for the first input can be 
adequately identified. For the second input, the possible 
patterns are (b2,s2,r2) = (2,0,1), (2,0,2), (2,1,1), (2,1,2). 
In this case, the tables of critical values are not included 
since the changes in the element values are negligible. 
 
Applications: 
Economic data: Now we consider some empirical 
results of these algorithms, using a data set from a 
leading sales indicator. These data are identified as 
“series M” in Box and Jenkins[16] and have also been 
studied by Tsay[14]. The data consist of 150 bivariate 
observations and were used by these authors to forecast 
the sales yt using the leading indicator xt. 
 The TF model found by Box and Jenkins[16] is: 
 

3

t t t
4.82Ly 0.035 x (1 0.54L)a

1 0.72L
∆ = + ∆ + −

−
 

 
where, t tx (1 0.32L)b∆ = −  (∆xt = xt – Lxt) is the 
difference operator and at and bt are white noise 
processes. The identification pattern is thus b = 3, s = 0 
and r = 1, which is clearly confirmed by the corner 
method given in Box and Jenkins[16]. Tsay[14] carried the 
investigation further, however, studying the statistical 
significance of the elements in the corner method.  
 
Table 11: ASD of the q-table for {(-1)jη1j } 
 1 2 3 4 5 6 
η0= -0.051 
0 -0.138 
1 -0.170 0.068     
2 -0.180 0.254 0.027    
3 1.205 -0.211 -0.238 -0.031   
4 1.035 -0.832 0.421 0.216 0.093  
5 0.723 -0.203 -0.347 0.295 0.302 -0.276 
6 0.572 0.046 -0.055 0.019 0.004 -0.027 
7 -0.146 -0.443 0.049 -0.019 -0.025  
8 -0.148 0.148 -0.475 -0.044   
9 -0.126 0.141 0.024    
10 -0.078 -0.125     
11 -0.084 
 
Table 12: ASD of the q-table for {(-1)jη2j} 
 1 2 3 4 5 6 
η0= -0.031 
0 -0.128 
1 0.222 -0.215     
2 -1.580 0.327 -0.061    
3 -3.380 -0.594 0.262 0.087   
4 -2.632 -0.265 0.067 -0.089 1.302  
5 -1.690 0.534 -0.164 0.135 0.075 -0.005 
6 -1.081 -0.064 0.084 0.090 -0.058 -0.006 
7 -0.884 0.331 -0.046 -0.058 0.045  
8 -0.473 0.349 0.124 0.051   
9 -0.412 1.112 0.171    
10 -0.232 -0.123     
11 -0.058 



J. Math. & Stat., 5 (3):215-225, 2009 
 

222 

Table 13: ASD of the epsilon table for {(-1)jηj } 
 0 1 2 3 4 5 6 
0 0.105  
1 -0.105 -0.053 
2 -0.211 -0.109 0.103 
3 10.541 6.419 5.199 4.729 
4 -7.800 -0.046 0.025 -0.010 -0.117 
5 5.692 0.025 0.002 0.024 -0.082 -0.066 
6 -4.360 -0.011 0.025 0.042 -0.032 0.032 0.058 
7 3.130 -0.123 -0.083 -0.032 -0.039 0.044 0.051 
8 -2.460 -0.017 -0.074 0.033 0.043 0.025 
9 1.792 0.189 0.173 0.059 0.051 
10 -1.054 0.144 0.162 0.024 
11 0.843 -0.086 -0.117 
12  -0.843 -0.206 
13 0.422 
 
Table 14: Accepted models 
Critical value Accepted (p,q) models 
1.28 (3,6,0) (3,0,1) 
1.64 (3,6,0) (3,0,1) 
1.96 (3,5,0), (3,0,1) 
2.33 (3,5,0) (3,0,1) 
2.58 (3,4,0) (3,0,1) 
2.81 (3,4,0) (3,0,1) 
3.09 (3,4,0) (3,0,1) 
3.29 (3,3,0) (3,0,1) 
3.72 (3,3,0) (3,0,1) 
4.26 (3,3,0) (3,0,1) 
 
Table 15: ASD of the r-table 
 1 2 3 4 5 6 
0 -0.208 
1 0.122 -0.002 
2 0.083 0.000 -0.000 
3 -10.998 0.084 -0.001 0.000 
4 8.169 -0.410 0.020 0.000 0.000 
5 -5.533 -0.176 0.000 0.000 0.000 0.000 
6 4.239 -0.177 0.002 0.000 0.000 0.000 
7 -2.930 -0.137 0.001 0.000 0.000 
8 2.561 -0.152 -0.000 0.000 
9 -1.733 0.004 -0.000 
10 1.155 0.037 
11 -0.976 
 
 González-Concepción et al.[8] studied the statistical 
significance of null entries in the epsilon algorithm 
table, starting from the results of Berlinet and Francq[3] 
for ARMA models and adopting the approach of 
Tsay[14] to compute first-order approximations of the 
variances in the corner method. 
 We computed the sequence η and applied the 
epsilon algorithm to the transformed sequence {(-1)jηj} 
using SCA software and FORTRAN programming 
respectively, which yielded the standard deviations 
table and possible pattern orders in Table 13 and 14. 
 These results confirm the model proposed by Box 
and Jenkins[16], which was also obtained by Tsay[14]. 
Other possible patterns could be given, but they are less 
parsimonious. Applying the r-s algorithm instead yields 
the results in Table 15 and 16. Finally, Table 17 and 18 
provide results obtained with the q-d algorithm. 

Table 16: Accepted models 
Critical value Accepted (p,q) models 
1.28 (3,6,0) (3,0,1) 
1.64 (3,6,0) (3,0,1) 
1.96 (3,5,0), (3,0,1) 
2.33 (3,5,0) (3,0,1) 
2.58 (3,4,0) (3,0,1) 
2.81 (3,4,0) (3,0,1) 
3.09 (3,3,0) (3,0,1) 
3.29 (3,3,0) (3,0,1) 
3.72 (3,3,0) (3,0,1) 
4.26 (3,2,0) (3,0,1) 

 
Table 17: ASD of the q-table 
 1 2 3 4 5 6 
η0 = -0.017 
0 -0.089 
1 0.090 -0.107     
2 -0.083 0.082 0.416    
3 -5.513 -0.078 -0.048 0.078   
4 -3.862 0.351 -0.197 3.282 -1.223  
5 -2.820 0.651 -0.191 0.164 0.352 -0.241 
6 -2.025 0.187 -0.143 -0.153 0.201 -0.169 
7 -1.601 0.594 0.152 -0.130 0.109  
8 -1.209 -0.046 0.559 -0.138   
9 -0.811 0.016 -0.015    
10 -0.621 0.292     
11 -0.452 

 
Table 18: Accepted models 
Critical Value Accepted (p,q) models 
1.28 (3,4,0) (3,0,1) 
1.64 (3,3,0) (3,0,1) 
1.96 (3,3,0), (3,0,1) 
2.33 (3,2,0) (3,0,1) 
2.58 (3,2,0) (3,0,1) 
2.81 (3,2,0) (3,0,1) 
3.09 (3,1,0) (3,0,1) 
3.29 (3,1,0) (3,0,1) 
3.72 (3,1,0) (3,0,1) 
4.26 (3,0,0) (3,0,1) 

 
 Comparing the results of these four methods 
confirms that the pattern (3,0,1) is probably the best 
model. 
 
Financial data: Volatility is one of the main variables 
in modern financial theory and particularly relevant for 
operators dealing with portfolio management, risk 
hedging and financial structure selection. Authors in the 
field of financial research have studied a variety of 
estimators in an effort to identify the one that provides 
the best information concerning real volatility. In 
particular, Canina and Figlewski[17] concluded that only 
a combination of historical volatility (historical data) 
and implied volatility (market perception) can explain 
the behavior of real volatility, which is defined as the 
standard deviation of the stock-pricing rate. 
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 Next, empirical results provided by the algorithms 
under investigation are used to illustrate the dynamic 
relationship between real volatility (an endogenous 
variable) and the historical and implied volatilities (two 
exogenous variables). Our sample information (for the 
Spanish market) consists of 905 observations of the 
IBEX 35 daily futures price, taken from January 14, 
1992, through January 26, 1996. 
 Due to the limitations of available software 
packages (SCA, Microfit) in dealing with long series, 
we decided to use Mathematical to estimate the IRF. 
We used the Ordinary Least Squares (OLS) approach to 
calculate the sequences η1 and η2 and standard 
covariance matrices as input data for algorithms 
programmed in FORTRAN. 
 We consider the model for yt (real volatility), x1t 
(implied volatility) and x2t (historical volatility) 
obtained by Gil-Fariña and Lorenzo-Alegría[18] using 
data taken from November 7, 1994 through September 
27, 1995 (200 observations). They estimated the 
following TF model using SCA software, according to 
orders identified from the corner method: 
 

t 1t 2t2

t

.0890 .0324Ly x .7082 x
1 1.3626L .9106L

1 .5404L a
1 .2894L

+
∆ = ∆ + ∆

− +
−

+
−

                                   
 

 
where, 1t t 2t tx (1 .5654)b , x c ∆ = − ∆ =  and ∆ = 1-L is 
again the difference operator. The terms at, bt and ct are 
all white noise processes.  
 Applying the r-s algorithm to identify the dynamic 
structure of both inputs, we obtain Table 19 and 20 for 
the transformed sequence {(-1)jη1j}. These numerical 
results suggest a (0,1,2) model for the first input. 
 The results obtained for the sequence {η2j} suggest 
a (0,0,0) pattern then, the second input has only a 
contemporaneous effect. Table 21 shows the ASD for 
the second input. 

 
Table 19: r-table for {(-1)jη1j} 
 1 2 3 4 5 6 7 
0 -0.771  
1 0.323 0.035 
2 -0.185 -0.241 0.263     
3 0.486 -0.314 0.349 -0.895    
4 -0.136 -0.284 1.976 -0.233 -0.073   
5 0.402 -0.336 0.609 0.023 -0.394 1.180  
6 0.141 -0.033 1.148 0.416 -0.613 -2.239 3.295 
7 0.071 -1.347 1.107 -2.001 2.739 -2.897  
8 0.704 -0.817 1.287 3.295 0.393   
9 -0.303 0.331 -0.012 0.553    
10 -0.344 5.036 -0.578     
11 0.297 0.399 
12 -1.000  

 Turning now to the q-d algorithm, we again 
identify a rational model for the first input. The 
suggested orders are now (0,1,2), (0,2,2) and (0,3,3), 
however, which are less parsimonious. The second 
input is again confirmed to have only a 
contemporaneous effect on the real volatility. The 
numerical   results  of  this algorithm are shown in 
Table 22-24. 
 
Table 20: ASD of the r-table for {(-1)jη1j} 
 1 2 3 4 5 6 7 
0 -29.059  
1 10.691 1.249 
2 -5.897 -3.374 0.087     
3 15.034 -2.016 0.099 -0.002    
4 -4.151 -1.804 0.021 -0.000 0.000   
5 12.163 -1.382 0.056 0.000 0.000 0.000  
6 4.264 -0.060 0.027 0.000 0.000 0.000 0.000 
7 2.149 -0.244 0.019 -0.005 0.000 0.000  
8 21.348 -1.141 0.078 0.011 0.001   
9 -9.202 3.267 -0.018 0.002    
10 -10.466 0.913 -0.054     
11 9.022 8.108 
12 -49.070  

 
Table 21: ASD of the r-table for {η2j} 
 1 2 3 4 5 6 7 
0 -3.361  
1 0.020 -0.004 
2 0.725 -0.003 0.000     
3 0.219 0.020 -0.000 0.000    
4 -0.316 0.018 0.002 0.000 0.000   
5 -0.388 0.011 -0.000 0.000 0.000 0.000  
6 0.386 0.007 -0.000 0.000 0.000 0.000 0.000 
7 -0.439 0.007 0.000 0.000 0.000 0.000  
8 0.428 -0.007 0.000 0.000 0.000   
9 -0.357 -0.008 0.000 0.000    
10 0.375 -0.036 0.001     
11 0.847 -0.068 
12 -0.021  

 
Table 22: q-table for {(-1)jη1j} 
 1 2 3 4 5 6 7 
η0 = -0.771 
0 -0.419  
1 -0.574 -7.591 
2 -2.621 2.998 -0.118     
3 -0.280 0.320 -0.625 -0.408    
4 -2.957 3.654 -1.833 -0.089 7.093   
5 0.351 0.016 -1.530 18.421 -24.567 3.782  
6 0.504 31.014 -32.360 -6.550 2.111 6.017 -0.333 
7 9.888 -10.872 0.207 1.331 -0.053 0.000  
8 -0.430 0.065 0.005 0.598 0.237   
9 1.137 -1.451 47.634 -47.206    
10 -0.864 -1.081 2.014     
11 -3.367 4.459 
12 -0.052  
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Table 23: ASD of the q-table for {(-1)jη1j} 
 1 2 3 4 5 6 7 
0 -8.757  
1 -4.278 -1.714 
2 -4.662 11.963 -1.155     
3 -3.510 3.394 -1.693 -1.101    
4 -3.366 6.213 -7.324 -0.078 0.406   
5 5.074 5.178 -1.627 0.044 -0.056 0.288  
6 2.653 1.007 -1.053 -0.354 0.075 0.145 -0.017 
7 2.276 -2.478 0.902 0.118 -0.023 0.001  
8 -7.076 2.536 1.737 0.716 0.029   
9 10.670 -7.732 0.356 -0.353    
10 -5.438 -15.685 7.012     
11 -7.674 31.681 
12 -1.538  
 
Table 24: ASD of the q-table for {η2j} 
 1 2 3 4 5 6 7 
0 -0.020  
1 0.020 -0.020 
2 0.209 0.020 0.000     
3 -0.182 0.246 -0.199 -0.001    
4 0.242 -0.177 -0.149 0.007 -0.007   
5 -0.277 -0.067 0.146 -0.081 0.007 0.000  
6 -0.294 0.040 -0.058 0.152 0.433 -0.436 0.000 
7 -0.309 -0.020 0.026 0.042 -0.042 0.052  
8 -0.275 0.037 0.030 -0.026 0.036   
9 -0.260 0.042 -0.040 0.037    
10 0.341 -0.227 -0.035     
11 -0.021 -0.284 
12 -0.016  
 
 The results obtained confirm the models given in 
Gil-Fariña and Lorenzo-Alegría[18] and González-
Concepción and Gil-Fariña[13].  
 

CONCLUSION  
 
 This study highlights the usefulness of several 
numerical methods (which are all closely related to the 
PA and OP) in identifying the rational structures 
associated with data series. We illustrate these methods 
in the context of causal time series models; that is, 
ARMA and TF Models. 
 Special emphasis is placed on the statistical 
significance of the r-s algorithm and q-d algorithm, in 
terms of their ASD, as a continuation of several 
previous contributions in the field of time series 
analysis. 
 Empirical findings emphasize the role of this 
statistical significance in determining the numerical 
values of the aforementioned algorithms. In general 
many different possible models may be obtained.  
 For future research topics, we point out that the 
correct generalization of these results to VARMA 
models is not evident. For the corner method, for 
example, consideration has to be given to the rank of 
the matrices and not the determinants. The 

generalization of the r-s and q-d algorithms to VARMA 
models has not yet been considered. It would also be of 
interest to consider the generalization of these 
numerical algorithms to non-causal contexts, including 
the estimated future values for the inputs of TF models. 
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