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Abstract: Problem statement: We studied the inventory-production system with two-parameter 
Weibull distributed deterioration items. Approach: The inventory model was developed as linear 
optimal control problem and by the Pontryagin maximum principle, the optimal control problem was 
solved analytically to obtain the optimal solution of the problem. Results: It was then illustrated with 
the help of an example. By the principle of optimality we also established the Riccati based solution of 
the Hamilton-Jacobi-Bellman (HJB) equation associated with this control problem. Conclusion: As an 
application to quadratic control theory we showed an optimal control policy to exist from the 
optimality conditions in the HJB equation. 
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INTRODUCTION 
 
 Many management science applications involve the 
control of dynamic systems, i.e., systems that evolve 
over time called continuous time systems or discrete-
time systems depending on whether time varies 
continuously or discretely which is a rich research 
area[22]. We are especially interested in the application 
of optimal control theory to the production planning 
problem. Inventory-Production system consists of a 
manufacturing plant and a finished goods warehouse to 
store those products which are manufactured but not 
immediately sold. The advantages of having products in 
inventory are: First they are immediately available to 
meet demand; second, by using the warehouse to store 
excess production during low demand periods to be 
available for sale during high demand periods. 
Typically, the firm has to balance the high production 
costs and find the quantity it should produce in order to 
keep the total cost at a minimum. 
 Now a days the optimal control theory has been 
applied to different inventory-production control 
problems where researchers are involved to analyze the 
effect of deterioration and the variations in the demand 
rate with time in logistics. The model of inventory-
production system considered the inventory depletion 
not only by demand but also by item's deterioration[10]. 
These types of problems have been studied by several 
researchers to determine the optimum order quantity for 

different demand patterns[1,2,14]. The model was 
presented for deteriorating items with time proportional 
demand[14] whereas a heuristic model was developed 
that allowed the variation in both replenishment-cycle 
length and the size of the order[2]. A linear quadratic 
regulator problem was used with known disturbance to 
an inventory-production system with items that 
deteriorate at a known constant rate[1]. They used a 
first-order model to represent the inventory system in 
deriving the optimal production policy. Importance of 
items of deteriorating in inventory modeling is now 
widely acknowledged, as shown by[13,23]. A number of 
studies have been done with the assumption that the 
deterioration rate follows the Weibull 
distribution[5,6,11,12,20,25]. The assumption of the constant 
deterioration rate was relaxed[7] using a two-parameter 
Weibull distribution to represent the distribution of time 
to deterioration. This model was further generalized[19] 
taking a three-parameter Weibull distribution. A two-
parameter Weibull distribution deterioration is adopted 
to develop an inventory model with a finite rate of 
replenishment[18]. 
 In general, in formulating inventory models, two 
factors of the problem have been of growing interest to 
the researchers, one being the deterioration of items and 
the other being the variation in the demand rate with 
time. This study develops an optimal control model and 
utilizes the optimal control theory to obtain optimal 
production policy for inventory production systems 
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where the novelty we take into consideration in our 
research is that the time of deterioration is a random 
variable followed by the two-parameter Weibull 
distribution. This distribution can be used to model 
either increasing or decreasing rate of deterioration, 
according to the choice of the parameters. The 
probability density function of a two-parameter Weibull 
distribution is given by: 
 

1 tg(t) t e , t 0
γγ− −η= ηγ >  

 
where, η>0 is the scale parameter, γ>0 is the shape 
parameter. The probability distribution function is: 
 

tG(t) 1 e , t 0
γ−η= − >  

 
 The instantaneous rate of deterioration of the on-
hand inventory is given by: 
 

1g(t)A(t) t , t 0
1 G(t)

γ−= = ηγ >
−

 (1) 

 
 Applications of optimization methods to 
production and inventory problems date back at least to 
the classical economic order quantity model. Some 
references that apply control theory to production and 
inventory problems are[4,8,9,15,16,19,24].  
 In the present study, we assume that time-
dependence of the demand rate. Deterioration rate is 
assumed to follow a two-parameter Weibull 
distribution. The purpose of the study is to give an 
optimal production policy which minimizes the cost for 
inventory production systems where items are 
deteriorating with a Weibull -distribution. To establish 
the Riccati based solution form to the Hamilton Jacobi-
Bellman (in short, HJB) equation associated with the 
optimal control problem is also of our interest. Finally 
an attempt has been made to give an optimal control 
policy from the optimality condition in the HJB 
equation. 
 

MATERIALS AND METHODS 
 
 To build our optimal control model, we consider 
that a firm can manufactures a certain product, selling 
some and stocking the rest in a warehouse. We assume 
that the demand rate varies with time and the firm has 
set an inventory goal level and production goal rate. We 
also assume that the firm has no shortage, the 
instantaneous rate of deterioration of the on-hand 
inventory follows the two-parameter Weibull 
distribution and the production is continuous. 

 Since our objective is to minimize the setup and the 
inventory costs, the objective function can be expressed 
as the quadratic form: 
 

[ ] [ ]{ }
T

2 2

0

1 ˆ ˆminimize J h x(t) x(t) C u(t) u(t) dt
2

= − + −∫  

 
 The interpretation of this objective function is that 
we want to keep the inventory x as close as possible to 
its goal x̂  and also keep the production rate u as close 
to its goal level û.  The quadratic terms 2ˆh[x(t) x(t)]− ; 
and 2ˆC[u(t) u(t)]−  impose 'penalties' for having either x 
or u not being close to its corresponding goal level. The 
dynamics of the state equation of this dynamic model 
which says that the inventory at time t is increased by 
the production rate and decreased by the demand rate 
and the instantaneous rate of deterioration 1t γ−ηγ  of 
Weibull distribution can be written as according to: 
 

1dx(t) [u(t) y(t) t x(t)]dt x(0) x, x 0γ−= − − ηγ = >  (2) 
 
Where: 
x(t) = The inventory level in the warehouse at any 

instant of time t∈[0,T]  
x̂(t)  = An inventory goal level what is set by the 

firm taking into consideration the available 
storage space, 

h ≥ 0 = The inventory holding cost incurred for the 
inventory level to deviate from its goal 

u(t) ≥ 0 = The firm manufactured units of the 
production rate at any instant of time t∈[0,T]  

û(t)  = The production goal rate 
C>0 = The unit cost incurred for the production rate 

to deviate from its goal 
y(t) = The demand rate 
T>0 = Represents the fixed length of the planning 

horizon 
 
 The methodologies applied in this study are as 
follows: Pontryagin maximum principle[21] and the 
principle of optimality[3]. Pontryagin maximum 
principle is used to solve the optimal control problem 
analytically and to obtain the optimal solution of this 
problem. The principle of optimality is also used to 
establish the Riccati based solution of the Hamilton-
Jacobi-Bellman (HJB) equation associated with this 
control problem. 
 

RESULTS AND DISCUSSION 
 
Development of the optimal control model: By the 
virtue of (2) the instantaneous state of the inventory 
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level x(t) at any time t is governed by the differential 
equation: 
 

1
1

1

dx(t) t x(t) u(t) y(t),0 t t ,
dt

x(0) x and x(t ) 0

γ−+ ηγ = − ≤ ≤

= =
 (3) 

 
 This is a linear ordinary differential equation of 
first order and its integrating factor is: 
 

1exp{ t dt} exp{ t }.γ− γ= ηγ = η∫  
 
 Multiplying both sides of (3) by exp{ t }γη  and then 
integrating over [0, t],  we have: 
 

t

0

1

x(t)exp{ t } x(0) [y(t) u(t)]exp{ t }dt,

0 t t

γ γη − = − − η

≤ ≤

∫  (4) 

 
 Substituting this value of x(0) in (4), we obtain the 
instantaneous level of inventory at any time t [0,T]∈  is 
given by: 
 

1t t

0 0

1

[y(t) u(t)]exp{ t }dt [y(t) u(t)]exp{ t }dt
x(t) ,

exp{ t }
0 t t .

γ γ

γ

− η − − η
=

η
≤ ≤

∫ ∫
 

 
 In order to develop the optimal control model, we 
start by defining the variables z(t), k(t) and v(t) such 
that 
 

ˆ ˆz(t) x(t) x(t), k(t) u(t) u(t)= − = −  (5) 
 

1ˆ ˆv(t) u(t) y(t) t x(t)γ−= − − ηγ  (6) 
 
 By adding and subtracting the last term 1ˆt x(t)γ−ηγ  
from the right hand side of Eq. 6 and rearranging the 
terms we have: 
 

1 1ˆ ˆdz(t) [ t (x(t) x(t)) u(t) y(t) t x(t)]dtγ− γ−= −ηγ − + − − ηγ  
 
 Hence: 
 

1 1 ˆdz(t) [ t z(t) u(t) y(t) t x(t)]dtγ− γ−= −ηγ + − − ηγ  (7) 
 
 Now substituting (5) and (6) in (7) yields: 
 

1dz(t) [ t z(t) k(t) v(t)]dt.γ−= −ηγ + +  (8) 

 The optimal control model becomes: 
 

T
2 2

0

minimize J {h[z(t) ] C[k(t) ]}dt= +∫  (9) 

 
 subject to an ordinary differential equation: 
 

1dz(t) [ t z(t) k(t) v(t)]dt z(0) z, z 0γ−= −ηγ + + = >   (10) 
 
 This form is a standard Linear Quadratic Regulator 
(LQR) problem with known disturbance v(t) defined in 
(6). The general form of this LQR optimal control 
problem for a finite time horizon [0,T] is the following: 
 

T
T T

0

1minimize J {z (t)Q(t)z(t) k (t)R(t)k(t)}dt
2

= +∫  (11) 

 
subject to an ordinary differential equation: 
 

1 1dz(t) [A (t)z(t) B (t)k(t) v(t)]dt z(0) z, z 0= + + = >  (12) 
 
Where: 
Q(t) and R(t) = Real symmetric positive semi-

definite matrices of appropriate 
dimension  

A1(t) and B1(t) = The system dynamics matrices 
T>0 = fixed 
 
Solution to the optimal control problem: 
Solution by pontryagin maximum principle: In order 
to find extremals for this optimal control problem (11) 
and (12), we apply Pontryagin maximum principle to 
form the Hamiltonian as: 
 

T T

T
1 1

{z (t)Q(t)z(t) k (t)R(t)k(t)}1H(x, ,k, t) .
2 (t){A (t)z(t) B (t)k(t) v(t)}

 +
φ =  

+φ + +  
 

 
 Then the necessary conditions of optimality give 
the co-states equations as: 
 

T T T
z 1

T
1

d (t) H dt z (t)Q(t) A (t) (t) dt;

d (t) Q(t)z(t) A (t) (t) dt.

 φ = − = − − φ 
 φ = − − φ 

 (13) 

 
 The extremal control vector is given by: 
 

T
k 1H R(t)k(t) B (t) (t) 0= + φ =  

 
from which we have: 
 
 1 T

1k(t) R (t)B (t) (t)−= − φ  (14) 
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because R is nonsingular. Then from (12), the extremal 
state vector satisfies: 
 

1 T
1 1 1dz(t) [A (t)z(t) B (t)R (t)B (t) (t)]dt−= − φ  (15) 

 
 Now by combining (13) and (15), the state-costate 
equations can be written in matrix as follows: 
 

1 T
1 1 1

T
1

dz(t) z(t)A (t) B (t)R (t)B (t)
d (t) (t)Q(t) A (t)

− −   
=     φ φ− −    

 

 
 The solution to this system of linear differential 
equation is of the form: 
 

z(T) z(t)
(T, t)

(T) (t)
   

= ϕ   φ φ   
 

 
Where: 
 

1 T
1 1 1

T
1

A (t) B (t)R (t)B (t)
(T, t) :

Q(t) A (t)

− −
ϕ =  

− − 
 

 
is the state transition matrix. Now by the transversality 
condition (T) 0φ =  for LQR problem, we obtain: 
 

1 T
1 1 1z(T) A (t)z(t) B (t)R (t)B (t) (t)−= − φ  

 
and 
 

T
1(T) Q(t)z(t) A (t) (t) 0φ = − − φ =  (16) 

 
 If T

1A (t)−  is nonsingular for all t in [0,T] then from 
(16), we have: 
 

T 1
1(t) A (t) Q(t)z(t)−φ = −  

 
which establish a linear relationship between (t)φ  and 
z(t): 
 

(t) M(t)z(t)φ =  (17) 
 
Where: 
 

T 1
1M(t) A (t) Q(t).−= −  (18) 

 
 Then substituting (17) in (14), we obtain the 
optimal control which is given by a linear feedback 
law: 
 

1 T
1k(t) R (t)B (t)M(t)z(t)−= −  (19) 

 That minimizes (12). Now differentiating both 
sides of (17) and, then by (12) and (19), we have: 
 

1 1
1

1 1 1
T

d (t) dM(t)z(t) M(t)dz(t)
dM(t)z(t) M(t)[A (t)z(t) B (t)k(t) v(t)]
dM(t)z(t) M(t)A (t)z(t) M(t)B (t)R (t)B

(t)M(t)z(t) M(t)v(t)

−

φ = +
= + + +

= + −

+

(20) 

 
 Substituting (17) to (13) we have: 
 

T
1d (t) Q(t)z(t) A (t)M(t)z(t)φ = − −  (21) 

 
 Combining (20) and (21), we obtain: 
 

T
1 1

1 T
1 1

[dM(t) M(t)A (t) A (t)M(t)
M(t)B (t)R (t)B (t)M(t) Q(t)]z(t) M(t)v(t) 0−

+ +

− + + =
 (22) 

 
 Since (22) must hold for any value of z(t) and for 
all t in [0,T] we must have: 
 

1 T
1 1 1

T
1

dM(t) [M(t)B (t)R (t)B (t)M(t) M(t){A (t)
A (t)} Q(t)]dt

−= −

+ −
 (23) 

 
is called a Riccati equation and M(t) is the Riccati 
matrix. The boundary conditions are:  
 

z(0) 0, (0) 0 and M(0) 0= φ = =  
 
 By comparing Eq. 9-12, we have: 
 

1
1 1A (t) t , B 1, Q h and R Cγ−= −ηγ = = =  

 
 Then from (18) we obtain: 
 

1 1M(t) h( t )γ− −= ηγ  
 
 and the optimal control policy (20) becomes: 
 

1 1 1k(t) hC ( t ) z(t)− γ− −= − ηγ  
 
Example 1: If we choose: 
 

1A 1 (by 1, 1),= − η = γ =  1B 1, Q h 1 and R C 1= = = = =  
 
then the optimal control model (11) and (12) becomes 
over an finite time horizon [0,T]: 
 

 
T

2 2

0

1minimize J(k(t)) {z (t) k (t)}dt
2

= +∫  (24) 
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subject to the control system: 
 
dz(t) [ z(t) k(t) v(t)]dt z(0) z, z 0= − + + = >  (25) 
 
 So the optimal (state) feedback control is given by: 
 
k(t) M(t)z(t)= −  (26) 
 
 The Riccati Eq. 23 becomes with the scalar values 
(chosen above): 
 

2dM(t) M (t) 2M(t) 1 0− − + =  (27) 
 
 Now by the method of separation of variables to 
(26): 
 

2dM(t) [M (t) 2M(t) 1]dt= + −  
 
then: 
 

1
1 1 1 dM(t) t C

2 2 M(t) 1 2 M(t) 1 2
 

− = + 
+ − + + 

∫  

 
from which we have: 
 

1
M(t) 1 2ln 2 2 t C
M(t) 1 2

+ −
= +

+ +
 (28) 

 
where, C1 is a constant. 
 
 Setting q(t) M(t) 1= +  and substituting to (28) then 
we have: 
 

2 2 tq(t) 2 Ne
q(t) 2

−
=

+
 

 
where, N is a integration constant. Now by using the 
boundary condition for M (T) = 0 we have: 
 

( )2 2 t

2 2 t

2 1 Ne
q(t) M(T) 1 1

1 Ne

+
= + = =

−
 

 

 from which 2 2 T2 1N e
2 1

−−
=

+
 therefore we obtain: 

 
2 2 (t T)

2 2 ( t T)

2 11 e
2 1q(t) 2
2 11 e
2 1

−

−

−
−

+=
−

+
+

 

and 
 

2 2 (t T)

2 2 ( t T)

2 1 ( 2 1)eM(T) 2 1
2 1 ( 2 1)e

−

−

+ − −
= −

+ + −
 (29) 

 
 Substituting (29) into (26) we have the optimal 
(state) feedback control policy: 
 

2 2 (t T)

2 2 ( t T)

2 1 ( 2 1)ek(t) 1 2 z(t)
2 1 ( 2 1)e

−

−

 + − −
= − 

+ + −  
 

 
Riccati solution by dynamic programming principle: 
Suppose n nw(z, t) : R R R× →  is a value function whose 
value is the minimum value of the objective function 
obtained earlier (24) and (25) (choosing the same 
values: 
 

1 1A 1 (by 1, 1), B 1, Q h 1 and R C 1= − η = γ = = = = = =  
 
for the inventory system given that we start it at time t 
in state z. That is: 
 

w(z, t) inf J(k(t))=  
 
where, the value function w(z, t)  is finite valued and 
twice continuous differentiable on (0, ) [0,T)∞ ×  By the 
Principle of Optimality[3], it is natural that w(z, t)  
solves the following Hamilton Jacobi-Bellman (in 
short, HJB) equation: 
  

2
t zk

2
z

w (z, t) min[k (t) k(t)w(z, t)] z(t)w (z, t)

v(t)w (z, t) z (t) 0, 0 t T

+ + −

+ + = ≤ <
 (30) 

 
with the terminal boundary condition w(z,0) 0=  and 
where zw (z, t)  and tw (z, t)  are the partial derivatives of 
w(z, t)  with respect to z and t respectively. 
 In order to solve the HJB Eq. 30 we minimize the 
expression inside the bracket of (30) and taking 
derivative with respect to k(t) setting it to zero. Thus 
the procedure yields: 
 

* 1k (t) w(z, t)
2

= −   (31) 

 
 Substituting (31) into (30) yields the equation: 
 

 
2

z
t z

2
z

w (z, t)w (z, t) z(t)w (z, t)
4

v(t)w (z, t) z (t) 0

− −

+ + =
 (32) 
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known as the HJB equation. This is a partial differential 
equation which has a solution form: 
 

2w(z, t) a(t)z (t)=  (33) 
 
 Then: 
 

2
z t

a(t)w (z, t) 2a(t)z(t), w (z, t) z (t)
t

∂
= =

∂
 (34) 

 
 Substituting (33) and (34) into (32) yields: 
 

2 a(t)[1 a (t) 2a(t)(v(t) 1) ]z(t) 0
t

∂
− + − + =

∂
 (35) 

 
 Since (35) must hold for any value of z, we must 
have: 
 

2a(t) 2a(t)(v(t) 1) a (t) 1 0
t

∂
+ − − + =

∂
 

 
is called a Riccati equation where: 
 

( ) ( )( )
t

t v( t ) 1 t v( t ) 1 2

0

a(t) a(0)e e {a ( ) 1}d .− − τ− −= + τ − τ∫    

 
 Therefore, (33) is a solution form of (32). Since 
(33) is a solution of the HJB Eq. 32, then the optimal 
control k*(t) can be written as k*(t) = -a(t)z(t), where 
a(t) is known constant. 
 
An application to quadratic control theory: We 
study the optimal control problem (25) to minimize the 
production cost over all M subject to an ordinary 
differential state equation: 
 

* * * *
1dz (t) [A (t)z (t) k (t) v(t)]dt z (0) z= + + =  (36) 

 
where, 1

1A (t) t γ−= −ηγ  and M denotes the class of all 
progressively measurable F(t) adaptive processes k(t) 
such that: 
 

m 1

T

1lim E z(t) 0 for the response z(t) to k(t).
T

+

→∞
  =   (37) 

 
 By the same line as (30) we consider the Bellman 
equation associated with the problem (24): 
 

2
t z 1 zk

2
z

w (z, t) min[k (t) k(t)w (z, t)] A (t)z(t)w (z, t)

v(t)w (z, t) z (t) 0,if Q : (0, ) [0,T)
w(z,T) 0, z 0

+ + +

+ + = = ∞ ×
= >

 (38) 

 We assume w(z, t) R∈  is a continuous, non-
negative, convex function satisfying the polynomial 
growth condition such that: 
 

( )m 10 w(z) P 1 z , z R, m N

for some constant P 0

+
+≤ ≤ + ∈ ∈

>
 (39) 

 
 Let us choose the parameters of Weibull 
distribution in such way so that this distribution can be 
used to model decreasing rate of deterioration and then 
we can assume that: 
 
A(t) v(t) 0 for sufficiently large demand rate y(t)+ <  (40) 
 
Lemma 1: Under (39), the differential equation: 
 

* * * *
1 zdz (t) [A (t)z (t) (w (z (t))) v(t)]dt z (0) z= + ρ + =  (41) 

 
admits a unique solution z*(t), where: 
 

k if z 2k,
z(z) if 2k z 0,
2

0 if 0 z

≤ −
ρ = − − < ≤

 <

 (42) 

 
 Further, for any m N+∈ , there exists P1>0 such 
that: 
 

( )2m*
1E z (t) P 1 t  ≤ +  

 (43) 

 
Proof: Since z(w (z))ρ  is bounded, Eq. 41 admits a 
unique strong solution z*(t) with: 
 

2n*E z (t)  < ∞  
 (44) 

 
 Using It /ô s  formula we have: 
 

{ }

{ }

t
2n 2n2n* *

1
0

t
2n 1* * *

z
0

t
2n2n *

0

t
2n 1* * *

z
0

z (t) z 2n A (t) v(t) z (t) dt

2n (w (z (t))) z (t) sgn(z (t))dt

z 2n A(t) v(t) z (t) dt

2n (w (z (t))) z (t) sgn(z (t))dt,

−

−

= + +

+ ρ

≤ + +

+ ρ

∫

∫

∫

∫
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where, 1A(t) t γ−= ηγ  is the instantaneous rate of 
deterioration of the on-hand inventory followed by the 
two-parameter Weibull distribution. 
 Now by (40) and taking expectation on both sides: 
 

2n 2n*

t
2n 1* * *

z
0

t
2n (n)

0

E z (t) z

2nE (w (z (t))) z (t) sgn(z (t))dt

z E S (t)dt

−

  ≤  
 

+ ρ 
 

 
= +  

 

∫

∫

 (45) 

 
Where: 
 

2n 1(n) * * *
zS (t) 2n (w (z (t))) z (t) sgn(z (t))

−
= ρ  

 
 By (42) it is easily seen that 

*
zz (w (z (t))) k | z | if | z | bρ ≤ ≥  for sufficiently large b>0. 

Clearly : 
 

*
(n)

(|z (t )| b)
t
supE S (t)1

<
→∞

  < ∞   

 
Also: 
 

* *
(n)

(|z ( t )| b) (z (t )| b)
E S (t)1 E k | z |1 .

≥ ≥
   ≤     

 
 In addition, by (44) we see that the right-hand side 
of equation (45) is bounded from above. This completes 
the proof. 
 
Theorem 2: We assume (39). Then the optimal control 
k*(t) is given by: 
 

* *
zk (t) (w (z (t)))= ρ  (46) 

 
Proof: Let us note that 

2
2

k

z min{k zk}
4

− = +  and the 

minimum is attained by (z)ρ . We apply It /ô s formula 
for convex functions[17] to obtain: 
 

{ }
T

* * * *
1 z

0
*

t

w(z (T)) w(z) [ A (t)z (t) k (t) v(t) w (z (t))

w (z (t))]dt

= + + +

+

∫  

 
 By virtue of (38) 
 

{ }
nT

* * 2 * 2
n

0

E[w(z (T ))] w(z) E[ z (t) k (t) dt]
∧τ

∧ τ = − +∫  (47) 

where, n{ }τ  is a sequence of localizing stopping times 
for the local martingale. 
 By (39) and (43) of Lemma 1, we have: 
 

( )

( )( )

m 1* *

1
2(m 1) 2*

1
2

1

E[w(z (t))] P 1 E z (t)

P 1 E z (t)

P 1 P 1 t .

+

+

 ≤ +   

 
  ≤ +    

 
 

≤ + + < ∞ 
 

 (48) 

 
 Dividing both sides by T and letting T →∞  we 
get: 
 

1 *liminf E[w(z (t))] 0
TT

=
→∞

 (49) 

 
 Hence z*(t) satisfies (37). Letting n →∞  to (47) 
and using (49) we obtain: 
 

{ }
T

* 2 * 2

0

E[ z (t) k (t) dt] w(z)+ ≤∫  

 
from which *J(k ) w(z)≤ . Now by (48) we have 

*J(k ) w(z)≤ < ∞  hence, * *k (k (t))= ∈M.  
 Let k∈  M be arbitrary. By the same line as above, 
we have: 
 

{ }
T

2 2

0

E[w(z(t))] w(z) E[ z(t) k(t) dt], k M≥ − + ∈∫  

 
 By (39) and (37): 
 

T

1liminf E[w(z(t))] 0
T→∞

=  

 
 Thus we can obtain the desired result. 
 

CONCLUSION 
 
 This study has described the solution of an 
inventory-production system with Weibull distribution 
deteriorating items using both Pontryagin maximum 
principle and Dynamic programming principle. The 
resulting production control policy has minimized the 
objective function of the total cost with the application 
to quadratic control theory. These models can be 
extended in many ways. For example, if other costs 
such as the storage cost are included; or instead of 
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minimizing the total cost, one may want to maximize 
the total profit where the unit revenue rate is both 
function of time and of the inventory level. However, 
we need to give numerical illustrative examples for this 
optimal control of a production-inventory system with 
Weibull distribution deteriorating items. 
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