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Abstract: Problem statement: In this research the researchers studied and made an analysis to the heat 
and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated 
porous medium with surface temperature distribution proportional to xλ by taking into account the 
diffusion-thermo (Dufour) and thermal-diffusion (Soret) effects. Approach: The governing partial 
differential equations were transformed into a set of coupled non-linear ordinary differential equations, 
which were solved numerically using the modified fourth order Runge-Kutta method along with 
Nachtsheim-Swigert shooting technique. Results: Numerical results were presented for the distribution 
of velocity, temperature and concentration profiles within the boundary layer. Conclusion: The effects 
of varying the parameter λ, the sustentation parameter, N, the Lewis number, Le, the Dufour number, 
Df and Soret number, Sc on the velocity, temperature and concentration profiles of thermally assisting 
flows and thermally opposing flows were examined.  
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INTRODUCTION 

 
 Coupled heat and mass transfer by natural 
convection in a fluid-saturated porous medium has 
received great attention during the last decades due to 
the importance of this process which occurs in many 
engineering, geophysical and natural systems of practical 
interest such geothermal energy utilization, thermal 
energy storage and recoverable systems, petroleum 
reservoirs, industrial and agricultural water distribution 
to name just a few applications. Recent books by Nield 
and Bejan[1] and Ingham and Pop[2,3] present a 
comprehensive account of the available information in 
the area of convective flow in porous media.  
 The effect of diffusion-thermo and thermal-
diffusion of heat and mass has been developed from the 
kinetic theory of gases by Chapman and Cowling[4] and 
Hirshfelder et al.[5], explained the phenomena and 
derived the necessary formulae to calculate the thermal-
diffusion coefficient and the thermal-diffusion factor 
for monatomic gases or for polyatomic gas mixtures, 
these effects have received rather little attention[6-13]. 
Kafoussias and Williams[14] studied the thermal-
diffusion and the diffusion-thermo effects on the mixed 
free-forced convective and mass transfer steady laminar 
boundary layer flow, over a vertical flat plate, with 
temperature dependent viscosity. Alam and Rahman[15] 
studied the Dufour and Soret effects on mixed 
convection flow past a vertical porous flat plate with 
variable suction.  

 The range of free-convective flows that can occur 
in nature and in engineering practice is very large and 
has been extensively considered by Jaluria[16]. On the 
other hand, many flows are subjected to a combination 
of free and forced convection and are known as 
combined free-forced convective flows. In the bulk of 
heat and mass transfer over plates by natural, forced or 
combined convection, many studies involving 
theoretical or experimental investigations have been 
published in the literature and most of these studies are 
based upon the boundary layer approach[17-21]. The 
mixed free-forced convective and mass transfer flow is 
a comparatively recent development in the field of fluid 
mechanics and the different mathematical models and 
correlations which have been developed can be applied 
to many industrial applications, such as chemical or 
drying processes. Recently, Alam et al.[22] studied the 
Dufour and Soret effects on steady MHD combined 
free-forced convective and mass transfer flow past a 
semi-infinite vertical plate. 
 Postelnicu[23] studied the influence of a magnetic 
field on heat and mass transfer by natural convection 
from vertical surface embedded in an electrically 
conducting fluid saturated porous media considering 
Soret and Dufour effects with constant surface 
temperature and concentration.  
 In all of the above mentioned studies the surface 
temperature was assumed to be constant. The objective 
of this study is to investigate the heat and mass transfer 
by natural convection from vertical surface embedded 



J. Math. & Stat., 5 (3):190-198, 2009 
 

191 

in a fluid saturated porous media considering Soret and 
Dufour effects with variable surface temperature and 
constant concentration. Numerical calculations were out 
for different values of the various dimensionless 
parameters by using function programmed by a 
symbolic and computational computer language 
(Mathematica 7). 
 
Mathematical formulation: Consider the problem of 
steady natural convection boundary layer from a heated 
vertical surface embedded in a porous medium of 
uniform ambient temperature T∞ and uniform ambient 
concentration C∞. The x-coordinate is measured along 
the plate from its leading edge and y-coordinate normal 
to it. We assume that Darcy-Boussinesq approximation 
holds, the temperature distribution of the heat varies as 
xλ and constant wall concentration Cw. 
 The boundary layer equations governing the 
natural convection over a vertical surface embedded in 
a porous medium are, Nield and Bejan[1]: 
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Here: 
u, v = The velocity components along x, y 

coordinates respectively 
ν = The apparent kinematics viscosity 
K = Darcy permeability 
g  = Gravitational acceleration 
βΤ  = The coefficient of thermal expansion 
βC = The coefficient of expansion with 

concentration 
T = The temperature inside the boundary layer 
αm = The thermal diffusivity 
Cp and Cs = The specific heat at constant pressure and 

concentration susceptibility 
kT   = The thermal diffusion ratio, C 

concentration of the fluid Dm mass 
diffusivity 

 The boundary conditions are given by: 
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 The suitable similarity variables, for the problem 
under consideration, are: 
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where the stream function Ψ is defined in the usual 
way: 
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y x
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and x T w mRa gK (T T )x ( )∞= β − να is the local Rayleigh 
number. The governing system of equations become: 
 
f ( ) ( ) N ( ) 0′ η − θ η − φ η =  (8) 
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2
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1 1''( ) f ( ) '( ) Sr ( ) 0

Le 2
+ λ ′′φ η + η φ η + θ η =  (10) 

 
where, Df, Le and Sr are Dufour, Lewis and Soret 
numbers, respectively: 
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 While N is the sustentation parameter: 
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 This measures the relative importance of mass and 
thermal diffusion in the buoyancy-driven flow. We 
notice that it is positive for thermally assisting flows, 
negative for thermally opposing flows and zero for 
thermal-driven flows. Primes denote differentiation 
with respect to η. 
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 The transformed boundary conditions are: 
 
f (0) 0,       (0) 1,     (0) 1
f 0,       0,     0 as   

= θ = φ = 
′ → θ → φ → η → ∞

 (13) 

 
 We notice that the problem reduces to that 
formulated by Bejan and Khair[24] when λ = 0, Df = 0 
and Sr = 0. On the other hand, for λ = 0 our Eq. 8-10 
subjected  to  the boundary conditions (13) reduce to 
Eq. 7-10 of Anghel et al.[25]. 
 The parameters of engineering interest for the 
pressent problem are the local Nusselt number and local 
Sherwood number, which are given by the expressions: 
 

1 2 1 2
x x x xNu Ra (0),       Sh Ra '(0)′= −θ = −φ  (14) 

 
MATERIALS AND METHODS 

 
Numerical solution: The nonlinear ordinary 
differential Eq. 9 can be rewrite as: 
 

1( ) f ( ) ( ) ( ( ) N ( )) ( )
2

Df ''( ) 0

+ λ′′ ′θ η + η θ η − λ θ η + φ η θ η

+ φ η =
 (15) 

 
 The set of nonlinear ordinary differential Eq. 8, 10 
and 15 with boundary conditions (13) have been solved 
by using the modified fourth order Runge-Kutta method 
along with Nachtsheim-Swigert shooting technique[26]. 
The parameters involved in the present problem are λ, 
Df, Le, N and Sr. The computations were done by a 
program which uses a symbolic and computational 
computer language (Mathematica 7) on a Pentium 4 PC 
machine. A step size of ∆η = 0.001 was selected to be 
satisfactory for a convergence criterion of 10−7 in nearly 
all cases. The value of η∞ was found to each iteration 
loop by the assignment statement η∞ = η∞+∆η. The 
maximum value of η∞, to each group of parameters λ, 
Df, Le, N and Sr determined when the values of 
unknown boundary conditions at η = 0 not change to 
successful loop with error less than 10−7.  
 To assess the accuracy of the present method, 
comparisons between the present results and previously 
published data[25], Table 1 shows the comparison 
between values of Nusselt number of 1 2

x xNu Ra ,  also 
Table 2 shows the comparison between values of 
Sherwood number 1 2

x xSh Ra .  In fact, this results show a 
close agreement, hence an encouragement for further 
study of the effects of other varies of parameters on the 
continuous moving surface. 

Table 1: Comparison between values of Nusselt number Nux/Rax
1/2 

     Postelnich[26] Present results 
     ---------------------- ---------------------------- 
λ Le N Df Sr Nux/Rax

1/2 Shx/Rax
1/2 

 0 1 1.0 0.050 1.2 0.67678 0.18354 0.676775 0.1835530 
 1 1.0 0.075 0.8 0.65108 0.34150 0.651080 0.3415100 
 1 1.0 0.030 2.0 0.71444 -0.13597 0.714438 -0.1395500 
 1 1.0 0.037 1.6 0.69686 0.02339 0.696857 0.0234089 
 1 1.0 0.600 0.1 0.42002 0.63313 0.420029 0.6331360 
 1 0.2 0.150 0.4 0.46331 0.38100 0.463312 0.3810000 
 1 0.5 0.075 0.8 0.55508 0.28764 0.555082 0.2876380 
 1 0.8 0.030 2.0 0.67028 -0.13736 0.670281 -0.1373450 
 1 -0.5 0.150 0.4 0.28512 0.23211 0.285118 0.2321040 

 
Table 2: Comparison between values of Sherwood number Shx/Rax

1/2 

λ Le N Df Sr Postelnich[26] Present results 
0 1 1.0 0.050 1.2 0.18354 0.1835530 
 1 1.0 0.075 0.8 0.34150 0.3415100 
 1 1.0 0.030 2.0 -0.13597 -0.1395500 
 1 1.0 0.037 1.6 0.02339 0.0234089 
 1 1.0 0.600 0.1 0.63313 0.6331360 
 1 0.2 0.150 0.4 0.38100 0.3810000 
 1 0.5 0.075 0.8 0.28764 0.2876380 
 1 0.8 0.030 2.0 -0.13736 -0.1373450 
 1 -0.5 0.150 0.4 0.23211 0.2321040 
 

RESULTS  
 
 The group of parameters involved in the present 
problem is λ, Df, Le, N and Sr. Eq. 8, 10 and 15 with 
boundary conditions (13) are solved numerically for a 

range values of λ between 1
3

−  and 1, see Cheng and 

Mynkowycz[27], with considered three cases for the 
parameters Df, Le, N and Sr according to Anghel et al.[25]. 
 
Case 1: Le = 1, N = 1, (Df, Sr) = ((0.05, 1.2), (0.075, 

0.8), (0.03, 2.0), (0.037, 1.6), (0.6, 0.1))  
Case 2: Le = 1, (N, Df, Sr) = ((0.2, 0.15, 0.4), (0.5, 

0.07, 0.8) (0.8, 0.03, 2.0))  
Case 3: Le = 1, (N, Df, Sr) = (-0.5, 0.15, 0.4) 
 
 Table 3-5 show local Nusselt and Sherwood 
numbers calculated for each set of parameters with 
different values of λ. Table 6 and 7 show local Nusselt 
and Sherwood numbers calculated for each set of 
parameters with different values of Le. Firstly, Fig. 1a-
3a shows the velocity profiles of thermally assisting 
flows (N>0) and thermally opposing flows (N<0) 
showing the effect of parameter λ. Figure 1b-3b shows 
the temperature profiles of thermally assisting flows 
and thermally opposing flows showing the effect of 
parameter λ. Figure 1c-3c shows the concentration 
profiles of thermally assisting flows and thermally 
opposing flows showing the effect of parameter λ. 
Secondly, Fig. 4-6, show  the velocity, temperature 
and concentration  profiles of thermally assisting 
flows  (N>0)  for different  values of Lewis number Le. 
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 (a)  (b)  (c) 
 

Fig. 1: Variation of (a): Velocity; (b): Temperature; (c): Concentration across the boundary layer of 
thermally assisting flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 

 

     
 (a)  (b)  (c) 
 

Fig. 2: Variation of (a): Velocity; (b): Temperature; (c): Concentration across the boundary layer of 
thermally assisting flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 

 

   
 (a)  (b) 
 

 
(c) 

 
Fig. 3: Variation of (a): Velocity; (b): Temperature; (c): Concentration across the boundary layer of 

thermally opposing flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 
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Table 3: Values of Nusselt and Sherwood numbers of thermally 
assisting flows with different λ, case 1 

Le N Df Sr λ Nux/Rax
1/2  Shx/Rax

1/2 
1 1 0.050 1.2 -1/3 0.0387267 0.7745530 
    -1/4 0.2131900 0.5557090 
    0 0.6767750 0.1835530 
    1/4 0.9841660 -0.0403589 
    1/3 1.0702700 -0.1000990 
    1/2 1.2265300 -0.2055350 
    3/4 1.4319100 -0.3388940 
    1 1.6129100 -0.4521800 
1 1 0.075 0.8 -1/3 -0.0528302 0.7044130 
    -1/4 0.1961330 0.5652780 
    0 0.6510800 0.3415100 
    1/4 0.9512780 0.2160260 
    1/3 1.0352500 0.1837670 
    1/2 1.1875200 0.1280660 
    3/4 1.3875200 0.0597950 
    1 1.5636800 0.0036080 
1 1 0.030 2.0 -1/3 -0.0277762 0.9259020 
    -1/4 0.2320570 0.5421450 
    0 0.7144380 -0.1395500 
    3/4 1.0360300 -0.5696930 
1 1 0.037 1.6 -1/3 -0.0313778 0.8480720 
    -1/4 0.2242060 0.5478600 
    0 0.6968570 0.0234089 
    1/4 1.0112600 -0.3018430 
    1/3 1.0994000 -0.3898940 
    1/2 1.2594200 -0.5465790 
    3/4 1.4698400 -0.7470210 
1 1 0.600 0.1 --1/3 -0.3717910 0.6196530 
    -1/4 -0.0713946 0.6111160 
    0 0.4200290 0.6331360 
    1/4 0.7191560 0.6719060 
    1/3 0.8006040 0.6856360 
    1/2 0.9464710 0.7132920 
    3/4 1.1351900 0.7543340 
    1 1.2993600 0.7942170 
 
Table 4: Values of Nusselt and Sherwood numbers of thermally 

assisting flows with different λ, case 2 
Le N Df Sr λ Nux/Rax

1/2  Shx/Rax
1/2 

1 0.2 0.150 0.4 -1/3 -0.0775537 0.5170330 
    -1/4 0.1226320 0.4571880 
    0 0.4633120 0.3810000 
    1/4 0.6801390 0.3508810 
    1/3 0.7402940 0.3448040 
    1/2 0.8490630 0.3360200 
    3/4 0.9915070 0.3283020 
    1 1.1167400 0.3245250 
1 0.5 0.075 0.8 -1/3 -0.0463039 0.6174000 
    -1/4 0.1698060 0.4891100 
    0 0.5550820 0.2876380 
    1/4 0.8067000 0.1760140 
    1/3 0.8769600 0.1473790 
    1/2 1.0043200 0.0979616 
    3/4 1.1715600 0.0373954 
    1 1.3188600 -0.0124785 
1 0.8 0.030 2.0 -1/3 -0.0263140 0.8771640 
    -1/4 0.2188500 0.5095610 
    0 0.6702810 -0.1373450 
    1/4 0.9703050 -0.5436770 
 
Thirdly, Fig. 7-9, show the velocity, temperature and 
concentration profiles of thermally opposing flows 
(N>0) for the different values of Lewis number Le. 

 
(a) 

 

   
(b) 

 

 
(c) 

 
Fig. 4: Variation of (a): Velocity; (b): Temperature; 

(c): Concentration across the boundary layer of 
thermally  assisting  flows  N = 1, Df = 0.075, 
Sr = 0.8 and Le = 1 

 
Table 5: Values of Nusselt and Sherwood numbers of thermally 

opposing flows with different λ, case 3 
Le N Df Sr λ Nux/Rax

1/2 Shx/Rax
1/2 

1 -0.5 0.15 0.4 -1/3 -0.0567801 0.378547 
    -1/4 0.0852667 0.313748 
    0 0.2851181 0.232104 
    1/4 0.3991220 0.196525 
    1/3 0.4300250 0.188493 
    1/2 0.4855180 0.175699 
    3/4 0.5578240 0.161866 
    1 0.6213190 0.151995 
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  (a)  (b) (c) 
 

Fig. 5: Variation of (a) velocity, (b) temperature, (c) concentration across the boundary layer of 
thermally assisting flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 

 

   
 (a)  (b)   (c) 
 

Fig. 6: Variation of (a): Velocity; (b): Temperature; (c): concentration across the boundary layer of 
thermally assisting flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 

 

   
 (a)  (b) (c) 
 

Fig. 7: Variation of (a) velocity, (b) temperature, (c) concentration across the boundary layer of 
thermally opposing flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 

 

   
 (a) (b)  (c) 
 

Fig. 8: Variation of (a) velocity, (b) temperature, (c) concentration across the boundary layer of 
thermally opposing flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 
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 (a) (b)  (c) 
 

Fig. 9: Variation of; (a): Velocity; (b): Temperature; (c): Concentration across the boundary layer of 
thermally opposing flows N = 1, Df = 0.075, Sr = 0.8 and Le = 1 

 
Table 6: Values of Nusselt and Sherwood numbers of thermally 

assisting flows with different Le number 
Le N Df Sr λ Nux/Rax

1/2  Shx/Rax
1/2 

1 1 0 0 -1/4 0.219543 0.563420 
2     0.204821 0.829150 
4     0.192031 1.202460 
6     0.186000 1.486920 
8     0.182385 1.725870 
10     0.179935 1.935930 
100     0.166819 6.213210 
1 1 0 0 0 0.627556 0.627556 
2     0.592601 0.929544 
4     0.558504 1.357470 
6     0.540770 1.684710 
8     0.529445 1.959950 
10     0.521401 2.202080 
100     0.470035 7.139130 
1 1 0 0 1/4 0.899681 0.690194 
2     0.854011 1.024960 
4     0.807143 1.501490 
6     0.781763 1.866630 
8     0.761763 2.173980 
10     0.753159 2.444450 
100     0.671904 7.963470 
 
Table 7: Values of Nusselt and Sherwood numbers of thermally 

opposing flows with different Le number 
Le N Df Sr λ Nux/Rax

1/2 Shx/Rax
1/2 

1 -0.5 0 0 -1/4 0.124145 0.311507 
2     0.135541 0.491798 
4     1436920 0.736505 
6     0.147301 0.921330 
8     0.149436 1.076180 
10     0.150879 1.212150 
100     0.158813 3.974150 
1 -0.5 0 0 0 0.313779 0.313779 
2     0.342967 0.515377 
4     0.366566 0.792139 
6     0.378243 1.002740 
8     0.385638 1.179790 
10     0.390891 1.335560 
100     0.425197 4.517090 
1 -0.5 0 0 1/4 0.429340 0.327759 
2     0.469188 0.550290 
4     0.502777 0.856957 
6     0.519998 1.091000 
8     0.531142 1.288040 
10     0.539176 1.461550 
100     0.594393 5.014220 

DISCUSSION 
 
 Now, we discuss the result. In Table 3-5, One can 
readily remark that for fixed Df, Le, N and Sr, Nusselt 
number increases as λ increase while Sherwood number 
decreases as λ increase. 
 Table 6 shows the effect of Lewis number on 
Nusselt and Sherwood numbers for thermally assisting 
flows while keeping the others parameters constant. 
Note that, the Nusselt number decreases with increases 
of Lewis number whereas the Sherwood number 
increases monotonically with Lewis number.  
 Also, Table 7 shows the effect of Lewis number on 
Nusselt and Sherwood numbers for thermally opposing 
flows while keeping the other parameters constant. Note 
that, the Nusselt number and Sherwood number increase 
monotonically with Lewis number. 
 In Postelnicu[23], there exists a written mistake in Eq. 
8 implies to an error in the plot of Fig. 1a-3a of variations 
of velocity. The error takes place in sign not in value. 
 Firstly, in Fig. 1a-3a can be seen that the velocity 
increases monotonically with absolute values of λ<0 and 
decreases with increase in λ>0. The velocity at the plate 
increases monotonically with N. As for absolute values of 
λ<0 the thermally opposing flows, the velocity reaches a 
maximum and then decays to zero. As the absolute values 
of λ<0 increase, the location of the maximum value of the 
velocity moves away from the surface. 
 In Fig. 1b-3b can be seen that the temperature 
increases monotonically with absolute values of λ<0 and 
decreases with increase in λ>0. The thickness of the 
thermal boundary layer increases with thermally opposing 
flows than with thermally assisting flows.  
 In Fig. 1c-3c can be seen that concentration of 
thermally opposing flows increases monotonically with 
λ>0 and decreases with increase in absolute values of λ<0. 
As for thermally assisting flows, there exist two points of 
accumulation of concentration curves. The first takes place 
in λ>0 and the second takes place in λ<0. The thickness of 
the concentration boundary Layer increases with thermally 
opposing flows than with thermally assisting flows. 
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 Secondly, in Fig. 4-6 is remarked that the thickness of 
the hydrodynamic/ thermal/concentration increases with 
λ<0 than the thickness with λ>0. 
 Thirdly, in Fig. 7-9, the velocity of the thermally 
opposing flows reaches a maximum and then decays to 
zero. Increasing values of Le move the location of the 
maximum value of the velocity away from the surface. 
 

CONCLUSION 
 
 The heat and mass transfer by natural convection 
from vertical surface embedded in a fluid saturated 
porous media considering Soret and Dufour effects with 
variable surface temperature and constant concentration 
is studied. The variable surface temperature serves to 
introduce one extra parameter into the problem, namely 
λ. The effects of the parameter λ, the sustentation 
parameter, N, the Lewis number, Le, the Dufour 
number, Df and Soret number, Sc on the velocity, 
temperature and concentration profiles of thermally 
assisting flows and thermally opposing flows are 
examined. In general, the effects of the parameter λ are 
clear on the velocity, temperature and concentration 
profiles of thermally assisting flows and thermally 
opposing flows in Table 3-7 and Fig. 1-9. 
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