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Abstract: Problem statement: Algebraic K-theory of projective modules over commutative rings 
were introduced by Bass and central simple superalgebras, supercommutative super-rings were 
introduced by many researchers such as Knus, Racine and Zelmanov. In this research, we classified the 
projective supermodules over (torsion free) supercommutative super-rings and through out this study 
we forced our selves to generalize the algebraic K-theory of projective supermodules over (torsion 
free) supercommutative super-rings. Approach: We generalized the algebraic K-theory of projective 
modules to the super-case over (torsion free) supercommutative super-rings. Results: we extended two 
results proved by Saltman to the supercase. Conclusion: The extending two results, which were proved 
by Saltman, to the supercase and the algebraic K-theory of projective supermodules over (torsion free) 
supercommutative super-rings would help any researcher to classify further properties about projective 
supermodules. 
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INTRODUCTION 

 
 An associative super-ring R = R0 + R1 is nothing 
but a 2Z -graded  associative  ring.   A  2Z -graded ideal 
I = I0+I1 of an associative super-ring is called a 
superideal of R. An associative super-ring R is simple if 
it has no non-trivial superideals. Let R be an associative 
super-ring with 1 0R∈  then R is said to be a division 
super-ring if all nonzero homogeneous elements are 
invertible, i.e., every 0 ≠ r Rα α∈ has an inverse 1r−

α , 
necessarily in Ra. If R = R0 + R1 is an associative super-
ring, a (right) R-supermodule M is a right R-module 
with a grading M = M0 + M1 as R0-modules such that 
mαrβ ∈ Mα+β for any m Mα α∈ , r Rβ β∈ , 2,α β∈Z . An R-
supermodule M is simple if MR {0}≠  and M has no 
proper subsupermodule. Following[4] we have the 
following definition of R-supermodule homomorphism. 
Suppose M and N are R -supermodules. An R-
supermodule homomorphism from M into N is an R0-
module homomorphism h : M Nγ → , 2γ ∈Z , such that 
M h Nα γ α+ γ⊆ . Let K be a field of characteristic not 2. 
An associative superalgebra is a 2Z -graded associative 
K-algebra A = A0 +A1. A superalgebra A is central 
simple over K, if lZ(A) = K, where ( lZ(A) )α = {αα ∈ 
Aα :  ααbβ = (-1)αβ bβαα∀ββ ∈Aβ} and the only 
superideals of A are (0) and A. Through out this study 
we let R be a supercommutative super-ring ( lZ(A) = R) 

with 1 ∈R0. An R-superalgebra A = A0 + A1 is called 
projective R-supermodule if it is projective as a module 
over R. Define the superalgebra Ae = Ao l

R⊗ A, then A 
is right Ae -supermodule. There is a natural map π from 
Ae to A given by deleting o,s and multiplying. 
 In[2], Childs, Garfinkel and Orzech proved some 
results about finitely generated projective supermodules 
over R, where R is a commutative ring. In[1], we 
generalized the same results about finitely generated 
projective supermodules over R, where R is a 
supercommutative super-ring. Here are the results:  
 
Proposition 1: Let M be an R-supermodule and A an 
R-superalgebra then there exist isomorphisms of R-
superalgebras:  
 

A lR⊗ EndR(M) ≅ EndR (M) lR⊗ A 
 
Corollary 1: Let P and Q be a finitely generated 
projective supermodules over R, then: 
 
EndR(P) lR⊗ EndR ( Q ) ≅ EndR ( Q ) lR⊗ EndR (P) ≅ 
EndR(P lR⊗ Q )  
 
Theorem 1: Let A be an R-superalgebra. The following 
conditions are equivalent: 
 
• A is projective right Ae -supermodule 
• e0  ker( ) A  A 0ππ → →6 6 splits as a sequence 

of right Ae -supermodules 
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• (Ae)0 contains an element ε such that ( ) 1π ε =  
and (1 a ) (a 1)α αε ⊗ = ε ⊗  for all a Aα α∈  

 
Definition 1: We say that A is R-separable if 
conditions (1-3) above hold. 
 
Remarks: 
 
• Condition (3) states that A is R-separable if and 

only if it is R-separable of the sense of ungraded 
algebras 

• It is easy to see that ε defined above is idempotent. 
A is a central separable R-superalgebra if it is 
separable as an R-algebra, thus our Azumaya R-
algebras A are those separable R-algebras which 
are superalgebras over R and whose supercenter is 
R 

 
 For any R-superalgebra A we have seen that A is 
naturally a right Ae -supermodule. This induces an R-
superalgebra homomorphism µ from Ae to EndR (A) by 
associating to any element x yα β⊗ of Ae the element 
x yα β where for any a Aγ γ∈ : 
 

a (x y ) a .(x y ) ( 1) x a yαγ
γ α β γ α β α γ βµ ⊗ = = −  

 
Theorem 2: Let A be an R-superalgebra. The following 
conditions are equivalent: 
 
• A is an Azumaya R-superalgebra 
• A is finitely generated faithful projective R-

supermodule and µ is an isomorphism  
 

MATERIALS AND METHODS 
 
 Suppose C is any category and obj(C) the class of 
all objects of C and let C(A,B) be the set of all 
morphisms A→B, where A,B ∈obj(C). A groupoid is a 
category in which all morphisms are isomorphisms. 
 
Definition 2: A category with product is a groupoid C, 
together with a product functor ⊥ : C×C→C which is 
assumed to be associative and commutative. 
 A functor F : (C, ) (C', ')⊥ → ⊥  of categories with 
product is a functor F : C C'→ which preserves the 
product. 
 
Examples: 
 
• Let R be any supercommutative super-ring and let 

P(R) denote the category of finitely generated 
projective supermodules over Rwith isomorphisms 

as morphisms. It is a category with product if we 
set ⊥ = ⊕ 

• The subcategory FP(R) of P(R) with finitely 
generated faithful projective supermodules as 
objects. Her we set ⊥ = lR⊗  

• The category Az(R) of Azumaya superalgebras 
over R. Her we take ⊥ = lR⊗  

 
 If C(R) denotes one of the categories mentioned 
above and if R→R′ is a homomorphism of super-rings. 
Then R′ lR⊗  induces a functor C(R) C'(R ')→  
preserving product. 
 
Definition 3: Let C be a category with product. The 
Grothendieck group of C is defined to be an abelian 
group K0 C, together with the map ( )C: obj(C) →K0C, 
which is universal for maps into abelian groups 
satisfying: 
 
• if A ≅ B, then (A)C = (B)C  
• (A ⊥ B)C = (A)C + (B)C 
 
Definition 4: A composition on a category (C, ⊥ ) is a 
composition of objects of C, which satisfies the 
following condition: if A A'D  and B B'D  are defined 
then so also is (A B) (A ' B')⊥ ⊥D  and: 
 

(A B) (A ' B') (A A') (B B')⊥ ⊥ = ⊥D D D  
 
Definition 5: If (C, , )⊥ D  is a category with product and 
composition. Then the Grothendieck group of C is 
defined to be an abelian group K0 C, together with a 
map: 
 

( )C : obj(C) →K0C 
 
which is universal for maps into abelian groups 
satisfying the two conditions in Definition 3 and: 
 

If A BD is defined, then C(A B)D = C(A) +(B)C 
 
 An easy computation gives us the following result. 
 
Proposition 2: Let (C, , )⊥ D  be a category with product 
and composition. Then: 
 
• Every element of K0 C has the form (A)C-(B)C for 

some A, B in obj(C) 
• (A)C = (B)C if and only if C∃ ,D0,D1, E0, E1∈ 

obj(C), such that D0°D1 and E0°E1 are defined and 
0 1 0 1 0 1 0 1A C (D D ) E E B C D D (E E )⊥ ⊥ ⊥ ⊥ ≅ ⊥ ⊥ ⊥ ⊥D D  
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• If F: C→C′ is a functor of categories with product 
and composition, then F preserves the composition. 
Moreover, the map K0F: K0C→K0C′ given by (A)C 

→ (FA)C' is well-defined and makes K0F a functor 
into abelian groups  

 
 Now let (C, )⊥  be a groupoid. For A ∈  obj(C), we 
write G (A) = C(A,A), the group of automorphisms of 
A. If f: A → B is an isomorphism, then we have a 
homomorphism   G(f): F(A) → G(B),  given    by 
G(f)(α) = fαf−1. 
 We shall construct, out of C, a new category CΩ . 
we take obj( CΩ ) to be the collection of all 
automorphisms of C. If α ∈ obj( CΩ ) is an 
automorphism of A ∈C, we write (A,α) instead of α. A 
morphism (A,α) → (B,β) in CΩ  is a morphism 
f : A B→ in C such that the diagram in Fig. 1 is 
commutative, that is G(f) (α) = β. The product in CΩ  
is defined by setting (A, α) ⊥  (β, β) = (A ⊥ B,α ⊥  β). 
The natural composition D  is defined in CΩ  as 
follows: if α, β∈obj( CΩ ) are automorphisms of the 
same object in C, then αD β = α  β and: 
 

(α ⊥  β) D (α ′ ⊥  β′) = α α′ ⊥  β β′ 
 
Definition 6: If (C, ⊥ ) is a category with product, we 
define: 
 

K1C = K0 CΩ  
 
 If F: C→C′ is a functor, then FΩ : CΩ → CΩ ′, 
preserving product and composition, so we obtain 
homomorphisms KiF: KiC → KiC′, i = 0,1. 
 If P(R) is the category of finitely generated 
projective R-supermodules, where R is a 
supercommutative super-ring and their isomorphisms 
with ⊕ . Then the tensor product lR⊗  is additive with 
respect to ⊕  so that it induces on K0 P(R) a structure 
of commutative ring. 
 The next following results are just the generalizing 
of the results proved by H. Bass to the supercase. 
 

 
 

Fig. 1: Set of  morphisms 

 If Z ∈ spec(R) (i.e., Z R⊆ is a prime superideal) 
and P∈ P(R), then PZ is a free RZ -supermodule and its 
rank is denoted by rkP (Z). The map: 
 

rkP: spec(R) → Z  
 
given by Z→ rkP (Z) is continuous and is called the 
rank of P. As R is a supercommutative super-ring, K0 
P(R) and Q l

R⊗ K0P(R) = QK0P(R) are rings with 
multiplication induced by lR⊗ . Since:  
 

P Q P Qrk rk rk⊕ = +  
 
and 
 

RP Q P Qrk rk rk⊕ =  
 
 We have a rank homomorphism: 
 

rkP: K0P(R)→C 
 
where C is the ring of continuous functions 
spec(R) → Z . 
 The rank homomorphism rk is splitting by the ring 
homomorphism C→ K0 P(R), so that: 
 

K0 P(R) ≅  C j
0K P(R)⊕  

 
where, j0K P(R) = ker(rk) So: 
 

 Q ⊗Z  K0P(R) ≅ ( C)⊗Q Z ⊕ (Q ⊗Z  j0K P(R) ) 
 
 The next results generalize the results proved by H. 
Bass. 
 
Theorem 3: Suppose max(R), the space of maximal 
superideals of R, is noetherian space of dimension d, 
then: 
 
• If x ∈ K0P(R) and rk(x) d≥ , then P(R)x (p)=  for 

some P ∈ P(R) 
• If P(R)rk((P) ) d> and if P(R P(R) )(P ) (Q )= , then P Q≈  

• j d 1
0(K P(R)) 0+ =  

 
Proposition 3: The following conditions on R-
supermodule P are equivalent: 
 
• P is a finitely generated projective supermodule 

over R and has zero ahnihlator 
• P∈P(R) and has every where positive rank 
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• ∃  a supermodule Q and a positive integer n such 
that l n

RP Q R⊗ ≈  
 

RESULTS AND DISCUSSION 
 
 Let P(R) be the category of finitely generated 
projective supermodules over R, Az(R) the category of 
Azumaya superalgebras over R and Prog(R) the 
category of finitely generated faithful projective R-
supermodules. 
 A useful fact to be remember is that since R is 
supercommutative super-ring, P∈Prog(R) if and only if 
P∈Prog(R) and P is faithful. If A,B∈Az(R) are 
equivalent in BW(R) (the Brauer-Wall group of R), we 
will write A ∼ B. If M is a supermodule over R, then 
nM is the n-fold direct sum of M. If P∈P(R) let (P) be 
the image of P in K0 P(R) and {P} in ⊗ZQ  K0 P(R) =Q  
K0 P(R). The next results generalize the results proved 
by[6]. 
 
Theorem 4: Let P,P ',Q ∈ P(R). Then: 
 
• P∈Prog(R) if and only if there is a Q  in P(R) such 

that l
RP Q⊗  is free 

• If x∈Q K0P(R) and rk(x) > 0 then 1x {Q}
m

 =  
 

 for 

some Q∈  Prog(R), m 0>  an integer 
• If {P} {Q}= , P∈Prog(R), then there is an integer 

n 0>  such that nP nQ≈  
• If Q∈ Prog(R) and ((P) (P '))(Q) 0− =  then there is 

an integer n > 0 such that nP nP '≈  
• If P∈Prog(R) and rkP is a square then there is an 

integer n > 0 and Q∈ Prog(R) such that 
l

R
2n P Q Q≈ ⊗  

 
 Let R/S be Galois extension of supercommutative 
super-rings with finite Galois Group G. M = M0 + M1, 
an R-supermodule, has a G-action if there is a group 
injection : Gϕ → Aut(M) such that ( )ϕ σ  is σ-linear for 
all σ∈G. That is, ( )(m r ) ( )(m ) (r )α β α βϕ σ = ϕ σ σ . Let 

GM {m M : ( )(m) m= ∈ ϕ σ =  for all G}σ∈ . The following 
fact was proved in[1], if M∈ Prog(R), MG Prog(S) then: 
 

l G
SR M M⊗ ≅  

 
 Again let R/S be a Galois extension of super-
commutative super-rings with Galois group G {1, }= σ . 
Let A be any central separable R-superalgebra, we 
define Aσ as follows, set Aσ = A as a super-ring, but the 

product by a scalar. on Aσ is defined by λa = σ(λ)a for 
all λ∈R. Then one easily check that Aσ is a central 
separable R- superalgebra. 
 Now let l lR R: A A A Aσ στ ⊗ → ⊗ , be defined by 

(a b ) ( 1) b aα
αβ

α β βτ ⊗ = − ⊗ , then τ  is a σ-linear 
automorphism. In particular τ is S-linear. Define the 
Corestriction: 
 

Tr(A) = { l
Rx A Aσ∈ ⊗  | (x) xτ = } 

 
 Obviously, Tr(A) is an S-superalgebra. But 
by[3]Tr(A) is an S-progenerator as an S-supermodule, if 
A is an R-progenerator as an R-supermodule. Moreover 
if A is central separable over R then by[3] Tr(A) is 
central separable over S. 
 
Lemma 1: Let R/S be a Galois extension of super-
commutative super-rings with Galois group G {1, }= σ . 
Let A, B be R-supermodules (superalgebras), P∈ 
Prog(R): 
 
• If A and B have G-action, so does lRM A B= ⊗  and 

G G G
RM A B= ⊗  

• Tr( lRA B⊗ ) ≅  Tr(A) lS⊗ Tr(B) 
• If E = REnd (P) , Tr(E) SEnd (≅ Tr(P)) 
 
Theorem 5: Let A ∈Az(R) and P,Q ∈  Prog(A) such 
that P Q≈  as R-supermodules. Then there is an integer 
n > 0 such that nP nQ≈  as A-supermodules. 
 
Proof: l

RA⊗ AEnd (P) ≅ EndR(P) ≅  EndR(Q) ≅ l
RA⊗  

EndA(Q). Tensoring by A° yields that: 
 

REnd (A) ⊗R AEnd (P) ≅ REnd (A) ⊗R AEnd (Q)  
 
or 
 

A REnd (A P)⊗ ≅ A REnd (A Q)⊗  
 
where, A acts on l

RA P⊗  ( l
RA Q⊗ ) by acting on P ( Q ). 

Using[3], There is a rank one projective R-supermodule 
I, such that l

RA P⊗ ≅ l
RA Q⊗ lR⊗ I as A-supermodules. 

Theorem 4(a) implies that lRmR P⊗ ≅ lRmR Q⊗ lRI⊗  as 

A-supermodules, for some m > 0 and lRm'R m'R I≅ ⊗  
as   R-supermodules,  for  some  different   m′.  Finally, 
n = mm′ will satisfy the theorem.  
 On a superalgebra A, a map J : A A→  is called a 
superinvolution if J2 is the identity and J is an 



J. Math. & Stat., 5 (3):171-177, 2009 
 

175 

antiautomorphism. More explicitly, 2J(a ) aα α= , 
J J J(a b ) a bα β α β+ = +  and J J J(a b ) ( 1) b aαβ

α αβ β= −  for all 

a ,b Aα β ∈ . Let C = lZ(A)  (the super-center of A) then J 
must preserve C. If J is the identity on C, J is a 
superinvolution of the first kind. If not, J induces an 
automorphism of C of order 2 and J is said to be of the 
second kind. Two superinvolutions J, J′ which agree on 
C are said to be of the same kind. 
 The following theorem generalizes of[6]. 
 
Theorem 6: If A∈ Az(R) and l

RA A 1⊗ ∼ , then there is a 
B∈ Az(R), such that B A∼ and B B≅ D .  
 Another way of viewing an isomorphism B B≅ D  is 
that B has an antiautomorphism, J, of the first kind. 
Now, we are ready to prove the following result. 
 
Theorem 7: Suppose A is a super-ring with 
antiautomorphism J such that J2 is inner, induced by a 

0 0w A∈  such that J J
0 0 0 0w (w ) (w ) w 1= = . Then M2(A) 

has a superinvolution of the same kind. 
 Proof Let L be the inverse map to J. Since: 
 

2

0
1 J

0w a w (a )−
α α=  

 
 We have J J J L

0 0(a ) (w ) (w ) (a )α α=  and 
L J

0 0(a ) w w (a )α α=  , so the map: 
 

J J L
0

J L
0

a b (d ) (w ) (b )
c d w (c ) (a )

α α α α

α α α α

   
      
   

6  

 
 Is a superinvolution on M2A of the same kind of J. 
 Next we try to find the conditions on a central 
separable R-superalgebra A to have a superinvolution 
of the  second kind, if R is a connected super-ring. In 
the   next  theorem  we try to  find  the conditions on 
A= EndR(P) to have a superinvolution of any kind, 
where P is an R-progenerator as a supermodule over R, 
if R is a connected super-ring. 
 The following theorem involves assuming that R, 
the base super-ring, is semilocal. We will use the fact, 
from[5], that if A, B are central separable R-algebras, 
A B∼ and the rank of A equals rank of B, then A B≅ , 
which is also true in the superalgebra case (i.e., if A, B 
are central separable R-superalgebras, A B∼  and the 
rank of A equals rank of B, then A B≅ ). Let M be the 
Jacobson radical of R. Then A A / MA=  is a finite 
direct sum of simple superalgebras. We call A  is 

perfect if every simple subsuperalgebra of A  admits a 
superinvolution of the second kind. 
 
Theorem 8: Suppose R is a connected semilocal super-
ring and A is a central separable R-superalgebra. 
Suppose R/S is a Galois extension with Galois group 
{1, σ}. Then A has a superinvolution of the second 
kind extending σ if and only if Tr(A) ∼ 1 and A  is 
perfect. 
 
Proof: Suppose A has a superinvolution, *, extending 
σ. Then it is easy to Check that A  is perfect. Also * 
induces an isomorphism A Aσ ≅ D , so there is an 
isomorphism: 
 

l
R R: A A End (A)σϕ ⊗ →  

 
given by x (a b ) ( 1) a x bϕ αγ ∗

γ α α γβ β⊗ = − . Set 0 1A' A' A'= + , 

where A ' {a A : a a }∗
α α α α α= ∈ = . 

 Since ∗  is σ-linear R-supermodule automorphism 
of A, the S-supermodule A '  is an S progenerator as a 
module over S. ϕ induces an isomorphism 
Tr(A) SEnd (A')≅ , hence Tr(A) ∼ 1. 
 Conversely, since R is a connected semilocal 
super-ring, one easily sees that S is a connected 
semilocal super-ring also. Let Tr(A) SEnd (P)≅ . In other 

words let l l
RR: A A A Aσ σ⊗τ → ⊗  given by 

a(a b ) ( 1) bτ αβ
α αβ β⊗ = − ⊗ , be a σ-linear automorphism. 

Then Tr(A) is the fixed super-ring of lRA Aσ⊗ under τ . 
Say Tr(A) SEnd (P)≅ , where Pis an S-progenerator as a 
supermodule over S. Then 

l l lR SR RSA A R End (P) End (R P)σ ⊗ ≅ ⊗ ≅ ⊗  and if 
l l

S S1: R P R Pϕ = σ ⊗ ⊗ → ⊗ ,  then 
(x (a b )) x (a b )ϕ ϕ τ

γ α γ αβ β⊗ = ⊗ , for all lSx R Pγ ∈ ⊗ and 
l

Ra b A Aσ
α β⊗ ∈ ⊗ . Since R is connected, 

R Rrank (A) rank (A )σ= , but: 
 

l lR SRA A End (R P)σ ⊗ ≅ ⊗  
 
Therefore: 
 

l l l l l
R S RR R R RA (A A ) A End (A) End (R P) Aσ σ⊗ ⊗⊗ ≅ ≅ ⊗ ⊗D D  

 
 So by[5], A Aσ ≅ D , which implies that 

l
SR REnd (A) End (R P)≅ ⊗ , but the R-rank of A equals the 
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R-rank of lSR P⊗ . So again by[5], l
SA R P≅ ⊗ . In other 

words, A has a σ -linear antiautomorphism J such that 
for all a ,x ,bα γ β in A, setting Jx (a b ) ( 1) a x bαλ

γ α β α γ β⊗ = −  
yields the isomorphism R RA A End (A)σ ⊗ ≅  and the 

map lS: 1: A( R P) Aϕ σ ⊗ ≅ ⊗ → satisfies 2 1ϕ =  and 
.(x (a b )) x .(a b )ϕ ϕ τ

α β γ α βγ ⊗ = ⊗ . Therefore: 
 

αλ J αβ β(α+γ) J
α γ β γ β β γ(-1) (a x b ) = (-1) x .(b a ) = (-1) b x aϕ ϕ ϕ

α α⊗  
 
 (ϕ respects the grading). For 0w = 1 Aϕ ∈ we have 

J Jww = w w = 1  and 21 Jwa w = a−
α α  and: 

 
2 1,ϕ = J αλ β(α+γ) J

α γ β β γ α(a x b ) = (-1) (-1) b x aϕ ϕ   (1) 
 
Lemma 2: Let A be a central separable R-superalgebra, 
with J and ϕ satisfying (1). Then A has a 
superinvolution agreeing with J on R if ϕ fixes a unit of 
Aa. 
 
Proof: If ua is a unit in Aa such that u = uϕ

α α  then 
Ju (1.u ) u wϕ

α α α= = , so J 1(u ) u = w−
α α , but 

J -1 1 J(u ) ( 1) (u )α −
α α= − , therefore 1 Jw ( 1) (u ) uα −

α α= − , implying 

that 'J 1 Jx u x u−
γ α γ α=  is a superinvolution since 'J  is an 

antiautomorphism on A and: 
 

' ' 2J J -1 1 J J 1 J J 1 J

1 J 1

1 J 1

(x ) = u (u x u ) u = (-1) u (u x (u ) )u

= u u (wx w )w

= x , sin ce u u = w

− α − −
γ α α γ α α α α γ α α

− −
α α γ

− −
γ α α

 

 
Continuing proof of the theorem: Let M be the 
jacobson radical of R. Then A A / MA=  is a finite 
direct sum of simple superalgebras. On A , ϕ  and J 
induce maps ϕ  and J  satisfying (1). Every preimage of 
a unit uα of A  is a unit ua of Aa. Thus we can change J 
by conjugation with a unit ua, to make J  any desired 
antiautomorphism of A  of the same kind. In fact, if 'J  
is defined by 'J 1 Jx = u x u−

γ α γ α , we can find a corresponding 
'ϕ  so that ' 'J ,ϕ  satisfy (1). Specifically if L is the 

inverse map to J, we can set ' 1 Lx = u x uϕ − ϕ
γ α γ α , to show that 

we have: 
 

' ' 1 1 L L

1 LJ L

(x ) = u (u x u ) u

= (-1) u (u x z )u

ϕ ϕ − − ϕ ϕ
γ α α γ α α

α −
α α γ α α

 

where J 1z u−
α α=  and hence JL 1 Lz z (u )−

α α α= = , so that 
' ' 1 L L(x ) = (-1) x (u ) u xϕ ϕ α −

γ γ α α γ=  since L 1 1 L( 1) (u ) (u )− −− =α
α α . It 

suffices to find uα of A  such that (u ) uϕ
α α+  is a unit, 

for if uα  is a preimage of uα , then (u ) uϕ
α α+  will be a 

ϕ fixed unit of Aa. Since A  is perfect, it suffices to 
prove. 
 
 Lemma 3: Let A  be a finite dimensional central 
simple superalgebra over a field F with a 
superinvolution J of the second kind and any associated 
ϕ to J then there is an element aα  in Aα  such that 
(a ) aϕ

α α+ is a unit. 
 
Proof: The element w = 1ϕ  is central since J is a 
superinvolution.  If  w 1≠ − ,  then  0a 1=   will  do.   If 
w = −1, then J J(a ) (a ) w = -(a )ϕ

α α α=  . Since J is of order 
2 on F, there is f in F such that Jf - f 0≠ , so again take 

J
0a = f - f .  

 
Lemma 4: Suppose Q is a right le

RA = A A⊗D  -
supermodule, then: 
 

Q = M I⊕  
 
where, M is the R-subsupermodule of Q generated by 
all elements of the form (a 1-1 a )qα α β⊗ ⊗ , where 
a Aα α∈  and q Qβ β∈ . If Q is R-projective as a 
supermodule over R then: 
  

R R Rrank (A).rank (I) = rank (Q) . 
 
Proof: Consider the well-known split exact sequence of 

eA -supermodules: 
 

e0 J A A 0µ→ → → →  
 
where, (a b ) = a bα β α βµ ⊗  and J is a right super-ideal of 

eA  generated by all elements of the form a 1-1 aα α⊗ ⊗  
where a Aα α∈ . Suppose Q is a right eA -supermodule. 
Tensoring by Q over eA  yields a split exact sequence 
of R-supermodules: 
 

l l le e ee 1
A A A0 Q J Q A Q A 0⊗µ→ ⊗ → ⊗ → ⊗ →  

 
of course, l e e

AQ A Q⊗ ≅  under the map a z a zα β α β⊗ 6 . 

Under this isomorphism l eAQ J⊗  is mapped onto M 
defined above. Thus Q M I≅ ⊕ , where l eAI Q A≅ ⊗ . But: 
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l l l l le eR A R A RI A Q (A A) Q (A A)⊗ ≅ ⊗ ⊗ ≅ ⊗ ⊗D  
 
as an R-supermodules, therefore, l l e e

R AI A Q A Q⊗ ≅ ⊗ ≅ . 
 Suppose R is a local supercommutative super-ring, 
σ an automorphism of R of order 2, P is an R-
progenerator as a supermodule over R and I a rank one 
R-projective supermodule. A morphism l

Re : P P I⊗ →  is 
called a bilinear I form on P, a morphism l

Re : P P Iσ⊗ →  
is called a σ bilinear I form on P. The image e(p q )α β⊗  
is often written as e(p ,q )α β  and in either case, e can be 
thought of as a map e : P P I× → . Such a form induces a 
map Re : P Hom (P,I)∗ →  R(P Hom (P,I))σ → given by 
e (p )(q ) = e(p ,q )∗

α β α β . In a similar manner, we define 

Re : P Hom (P,I)∗ →  R(P Hom (P ,I))σ→  given by 
e (p )(q ) = e(p ,q )∗ α β α β . If e∗  and e∗  are isomorphisms 
then we say e is nondegenerate. The next final result 
shows that the existence of superinvolutions on 

REnd (p) , where REnd (p)  is an R-progenerator as a 
supermodule over R, is equivalent to the existence of 
forms on P and this result was proved in[1]. 
 
Theorem  9:  Let  R  be a connected   super-ring   and 
A = REnd (p)  be a central separable R-superalgebra 
such that A is an R-progenerator as a supermodule over 
R, then: 
 
• A has a superinvolution of the first kind if and only 

if there is a rank one R-projective I, a 
nondegenerate bilinear I form e on P and a 0Rδ∈  
such that 2 1δ =  and e(x , y ) = (-1) e(y ,x )αβ

α β β αδ  for 
all x , yα β  in P 

• Let σ be an automorphism of R of order 2. Then A 
has a superinvolution of the second kind extending 
σ if and only if there is a rank one R-projective I 
with a σ-linear automorphism of order 2 (also 
called σ) a σ-bilinear I form e on P and an element 
δ in R0 such that ( ) 1σ δ δ =  and 

(e(x , y )) = (-1) e(y ,x )αβ
α β β ασ δ  for all x , yα β  in P 

 
 
 
 
 
 
 
 
 

CONCLUSION 
 
 The extended two results proved by Saltman[6] to 
the supercase and the algebraic K-theory of projective 
supermodules over (torsion free) supercommutative 
super-rings would help any researcher to classify 
further properties about projective supermodules. 
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