Journal of Mathematics and Statistics 5 (2):136; 24009
ISSN 1549-3644
© 2009 Science Publications

On the Pseudo-Spectral Method of Solving Linear Ordinary
Differential Equations

B.S. Ogundare
Department of Pure and Applied Mathematics,
University of Fort Hare, Alice 5700 RSA

Abstract: Problem statement: Not all differential equations can be solved atiealy, to overcome
this problem, there is need to search for an ateaggproximate solutiompproach: The objective of
this study was to find an accurate approximatiarhiégque (scheme) for solving linear differential
equations. By exploiting the Trigonometric identiproperty of the Chebyshev polynomial, we
developed a numerical scheme referred to as thedpgeseudo-spectral methddesults: With the
scheme developed, we were able to obtain approginsatution for certain linear differential
equations.Conclusion: The numerical scheme developed in this study coespéavorably with
solutions obtained with standard and well knowncsé methods. We presented numerical examples
to validate our results and claim.

Key words: Chebyshev polynomial, linear ordinary differentéjuations, Spectral method, Pseudo-
spectral method, pseudo-pseudo-spectral method.

INTRODUCTION Tau method are implemented in terms of the expansio
coefficient§!, whereas collocation methods are
The fundamental problem of approximation of aimplemented in terms of physical space values of
function by interpolation on an interval paved way  unknown function. Over the past two decades, splectr
the spectral methods which are found to be suagessfmethods with their current forms appeared as aivmac
for the numerical solution of ordinary and partial ways in most applications. Some more details on
differential equations. Spectral representations ofpectral methods could be seef’h®!
analytic studies of differential equations haverbéae The basic idea of spectral methods to solve
used since the days of Fourier. Their application t differential equations is to expand the solutionction
Numerical solution of ordinary differential equat®o as a finite series of very smooth basis functicass,
refers, at least to the time of Lanc28s Summary of given below:
survey of some applications is giveffinSome present

spectral methods can also be traced back to the = N
"method of weighted residuals™ of Finlayson and V(X)—;)ak(ﬂx(x) (1)
Scriver?!.

d Slpectral mfetnodsl can 1??1 viewed as anh eXtrep\%here ¢ represents Chebyshev or Legendre
evelopment of the class of discretization scheare T 4] :
differential equations known as the Method Ofpolynomlalz{f‘ (for more on Chebyshev polynomials).

Weighted Residuals (MW, In MWR, the use of If yOc*a,b], the error produced by the approximation
approximating functions (called trial functions) is approaches zero with exponential Fatas N becomes
central. These functions are used as basis furkcfam too large (tends to infinity). This phenomenon is
a truncated series expansion of the solution. Aetoth referred to as 'spectral accurdtyThe accuracy of the
function called the test functions (also known ke t derivative obtained by direct term-by-term
weight functions) are used to ensure that the difféal  differentiation of such truncated expansion natyral
equation is satisfied as close as possible by theeteriorated, but for low-order derivatives and
truncated series expansion. Among the spectradufficiently high-order truncations this deteridgoat is
schemes the three most commonly used are the Tanegligible, compared to the restrictions in accyrac
Galerkin and collocation (also called pseudo-spéctr introduced by typical difference approximations.
methods. What distinguishes between these metisods i In® and”, the researchers focused on differential
the choice of the test functions employed. Galedgnd  equations in which one of the coefficient function
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solution function is not analytic on the interval 0 Tau and the pseudo-spectral methods for numerical
definition. Weak aspect of spectral methods inisglv  solution of second order linear differential eqoas to
this kind of problems were studied®nand® and the compare the result with pseudo-pseudo-spectral
researchers came up with modifications to the splect method.
method which proved to be more efficient when We need to state here that this discussion can be
compared with existing ones. extended to the general problem of the form (2) @d

In this article, we present a variation of the Consider the following differential equation:
collocation (pseudo-spectral) method to solve the
problems of! and”. The pseudo-pseudo-spectral p(x)y (x)+ Q(x)y ()+ R(X)y(x)= S(X), X | L1
method (the method introduced in this article)dsrsto v =a,y)=p (6)
be efficient and competes favorable with other well
known standard methods like the Tau method, Galerki

Method and the Pseudo-spectral (collocation) method Wwith the pseudo-pseudo-spectral method, we

suppose that the approximate solution of the Ets 6

MATERIALSAND METHODS given by:
Psudo-pscudo-spectral _ method: - Consider  the y*(9=3: a7, () (7)
following differential equation: &

m i instead of (4) for an arbitrary natural number Neve
Ly = ;fm-i(x)D y =f(x), x0[a,b] @ a=(a.3...a)00"is the constant coefficients
vector and {T,(x)}'is the sequence of Chebyshev

polynomials of the first kind. The prime denotesitth
where, f i = 0,1,...m f, are known functions of x' @  the first term in the expansion is halved.

Ty=K (3)

the order of differentiation with respect to the  In this method, as against the use of a function
independent variable x, T is a linear functionaraik  V(x) as in the standard Tau method and the Pseudo-
N andKOo™ spectral methdd®”, we instead of using the

Here (3) can either be initial, boundary or mixed Chebyshev polynomial as a polynomial we exploit the
conditions. To solve the above class of equatimisqu  tigonometric property of Chebyshev function.

the spectral method is to expand the solution fanat, Let:
in (2) and (3) as a finite series of very smoothcfions
in the form below: y(x) = i a T, (X) (8)
k=0
N
N _
y (%) -;‘;aka ) @) pe the approximate solution for the Eq. 6, as atti

it must satisfy the equation.

where{Tk(x)}: is the sequence of Chebyshev Recall the definition of a Chebyshev polynomial:

polynomials of the first kind. Replacing y by jn (3) T, (x) = cos(kcos" (x)
the residual is defined as:

Let:
N (x) = Ly" -f (5)
0 =cos® x, = x= co®
The main target and objective in spectral metisod i
to minimize M as much as possible with regard to (3). Then:
The implementation of the spectral methods leads to
system of linear equations with N+1 equations inLN+ Te(x) =T, (6) = cos o

unknowns gay,...,ay

Here we present a variation (pseudo) of one of the
three spectral methods called collocation (alsowimo
as pseudo-spectral) method. We call this method @(X):i'ak cos e 9)
pseudo-pseudo-spectral method. Also, we use beth th k=0
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The first and second derivatives of (9) are Relation (15) form a system with two equations

respectively given as: and N+1 unknowns, to construct the remaining N-1
equations we Collocate (13) at the zeros qfi(X),
N which are the interior points between -1 and 1 arel
y00=3 a E300) a " ket o
k=0 sin given as8, = IR k=1,...,N- 1, which is in great
— N ksinkdco®- R cosR sif variance to the Tau Method, the Galerkin method and
y'(x) =2 8 ) (11)  the Pseudo-spectral method.
= sin*@ .
The system obtained here solves for the
coefficients.

Substituting (9-11) into the equation (6) with the
functions P, Q, R and S expressed in term$ ofe

have: RESULTS
N , @ , Here we consider some ordinary differential

B(e)Z'q(ks'nkecoga__g cos@ S'ﬁ] equations with Tau Method, Pseudo-spectral method
= sin"@ and the Pseudo-pseudo-spectral method and prasent o
0 ksm ko results in Table-7.

+Q )Z & ino 12) As notations, we represent the approximations with

_ ‘ B the Tau method, Pseudo-spectral method and the

+R(9)k§ 3 co9= ¢ )6r[-mx] Pseudo-pseudo-spectral method  yag,.. Y,

ym=a, ym=p respectively.

N B Numerical experiments. We shall consider the

D a (0)=SP) (13) following problems:

k=0

o Problem 1:
Simplifying Eq. 11, we have:

y'(X)+xy'(x)+y=xcosx, yc 1= sint 1), y@¥ sin(

%(e)zﬁ(e)zvq[ksinkecose— K cosR siﬂ}

in , . .
sin8 with the exact solution y(x) = sin x.
(14)
ksinko o
+Q(G)Z ( ino j+ R@)kz_;) g co8 Table 1: Maximum error of approximation of problém
N Iyo) -y, (), V0 =Y
If we impose the associated conditions on (14), we > 1105 19510°
have: 8 5.7x10° 4.56<10°®
16 1.1x107 5.55¢10"
— N N
-)=a = a T ED=>" 1 =a
ye=1) kZ::‘; at el k; 3ty Table 2: Maximum error of approximation of problém
— N N
YO=B = > aT®=) a@=p N el fyeo-ye [y60=y5s)
K= = 5 5<10° 2.0%10°
) 15 x10° 3.3%10°
So: 16 8107 1.6%107%
18 410"
30 5107
% 95 810®
1 a
5 11 ... 6% (q} (15) Table 3: Maximum error of approximation of probl&8m
[ L s N ooy, o0y V0= ve).
2 8 3.1%10° 3.24x10°® 3.20x10°®
11 6.46x10°® 251072 5.14x10™2
ay 16 3.9x10° 3.50x10°% 6.66:107
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Table 4: Maximum error of approximation of probldm

N yoo-vl, ooyt VOO -,
8 8.9%1072 1.21x10* 1.20<10*
15 1.54107 1.76x1072 1.381072
20 1.6%1072 1.9107? 1.50<1072

Table 5: Maximum error of approximation of problém

N IOyl o=yt [0yt [ye0 -y,
5 2.2x10™ 9.09x10°%°
8 1.6310™%

9 2.5%107°
12 1.3%107%°

17 1.2510%

Table 6: Maximum error of approximation of problém

NN /O RS IR TCS BvANCY) IR ITES RN (S}

5 8.31x10°° 7.64x107 1.0%10™"
8.7510™" 8.86x10° 8.7%10™"

11 154107 3.9%10 4.86<10°

17 lixi10? 2.05¢10°? 217107

Table 7: Maximum error of approximation of probl&@m

TR [ ECO VA CS) I e RS IR SRV
5 3.26x107" 5.99%10™" 1.84<107
8 2410 9.5%10™ 2.10x10
16  2.05<10™ 52710 7.15¢107
Problem 2:
2
" 1, 8
v+ 2y0=(52s | koo,
X 8-x
y@) =0,
y'(0) =0

with the exact squtioriZIn(8 ! ZJ.
- X

Problem 3:

Y00 +Xy' () + 3 (x* -%)Zy(X) = [1+X +0¢ -‘11)2] exp(x),

x0[-1,1], y(-1) = expf- 1),
y@ =exp(L.)

with the exact solution y(x) = exp(x).

Problem 4:
y"(x) +|x]y'(x) + y(x) =|6X +|x3| +3%¢,x0[11),
y(=1) =y®=1

with the exact solutiory(x) = exp(x)| x3| .

Problem 5:

y"(x)+expé)y'(x): 6x+ X + 3X exp§ )
X D[_Ll]' y(_l) =-1
y@® =1

with the exact solution y(x) =°x

Problem 6:

V) =2y )+ S y(x) =X,
X X

y(-1) =-1,
y(@) =1

with the exact solutiory(x) = x|x| .

Problem 7:

Y0+ 2y () +y0) == +X],
X X
y(-1) =y@=1

with the exact solutiory(x) =|x| .

DISCUSSION

Problem 1 was taken fréth This problem was
solved with Runge-Kutta of different orders and a
maximum error of 3.810" were recorded. It was also
solved with Tau method and the method described in
this study with N = 5, 8, 16. The maximum error
produced for these two methods for the various N is
shown in the Table 1. Table 1 shows the power of
spectral methods over Runge-Kutta.

Problem 2 was taken fréth It was solved by
extrapolation method with maximum error of 40t was
solved i) by Tau method for different values of N.
Here we solved it by the pseudo-pseudo-spectraiagdet
for different values of N as in the Tau methot ofhe
maximum error for the two methods is shown in Téble

From Table 2 it could be seen that as N increases,
the rate of improvement is very low with the Tau
method. Pseudo-spectral method which was the subjec
of¥ produced a maximum error ok#0*° with N = 18
as against 1.6410'%f the pseudo-pseudo-spectral
method. This shows that both the pseudo-specticl an
the pseudo-pseudo-spectral methods are more
successful than the Tau method.
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Problem 3 was chosen fré It was solved with 2.
the method described in this article and the error
produced for various N is shown in the Table 3 wlité
maximum error produced when the problem was solved
by the Tau method and Pseudo-spectral metHdld of

Problem 4 was taken frdth The problem has a 3
non analytic solution function which makes acconypan
error indispensable.

We applied our method to the problem, the error
produced by the method as well as the error pratiuce
when it was solved with the Tau method and PseudoA—f
spectral method 6t is shown in Table 4. '

Problem 5 was chosen fr&m When the problem
is solved using the Tau method and the pseudo+spect
method i, the methods failed and a modified pseudo->-
spectral (mps) method which was the subject of the
article was used to solve the problem and the maxim
error produced il for the problem is shown in the
Table 5 with the error produced by the method &f th ©-
article. This method performs better than the medif
method of’.

Problem 6 was also frdth We tested our method
on this problem with different values of $N$, tlesults 7.
are shown in Table 6.

From the Table 6 it could be seen that the pseudo-
pseudo-spectral method is performing considerably
well in the class of spectral methods. 8.
Problem was 7 chosen fréfn The results for various
values of N are shown in Table 7.

The results displayed in the Table 7 show the
power of the pseudo-pseudo-spectral method over thg
Tau and the pseudo-spectral methods.

CONCLUSION

10.

The pseudo-pseudo-spectral method of this article
is seen to be efficient and competes favorable with

other well-known standard methods like the Taull.

method, Galerkin Method and the Pseudo-spectral
(collocation) methods.

One major advantage with this method is that it12.

does not require a tedious means of evaluating the
unknown coefficients of the approximating functias
in other spectral methods.

The method is easy to program and require
moderately less of computer time to evaluate. 3
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