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Abstract: Problem statement: This research provided rigorous proof for the imeatr study of the
problem in section VI in “matched subspace detsttokbout 14 years ago an important research
entitled “matched subspace detectors” was publishdBEE transactions on signal processing, Vol.
42, No. 8, August 1994. Since its publication, shedy has been widely cited in many areas. The main
contribution of the research is to use invariandagiple to study the Generalized Likelihood Ratio
Test (GLRT) for four kinds of signal detection pledms. While the conclusions are all correct, the
largest invariant transformation group provided Hye geometrical method is questionable.
Furthermore the geometrical method in proving tleimal invariants is not helpful. The researchers
themselves also frankly acknowledged “a rigorousoprequires an algebraic proof” (page 2152 in
above research)Approach: Hence, this correspondence exactly gave rigorowmfpbased on
algebraic method regarding one problem in the abuoeationed researctiResults: The algebraic
method in this correspondence can be readily appt@® other cases in the same research.
Conclusion/RecommendationsThrough this concrete example, we advocated thebaddc, rigorous
method in the invariant study of signal detectiooltems, while abandoning the geometrical method.

Key words: Invariant test, invariant transformation group, maa invariant, signal detection, matrix
equation

INTRODUCTION In invariance study of hypothesis testing problem,
the first step is to find the invariant transforioat
The invariance principle in dealing with hypott®esi group under which the problem is invariant and tus
testing problem (or signal detecting problem) wasis very important. 16, the transformation groups are
described in several nice tex3. Invariance study is @ given by some geometrical reasoning without solid
way impose constraints on detectors so that ousm&s proof, While the geometrical is illustrative of the

not dependent on convention choices such as unit§,yariant transformation group and invariant quinti

coordinate systems and secondly so that the ingfact %after they are found) and thus it is helpful for

nderstanding and intuition, is defective in some

nuisance parameters is minimized. The second i
helpful for systematically obtaining potential pesfies aspects. It is not rigorous, s itself frankly

such as constant false alarm rate. - o .
C ) . - : acknowledged that “a rigorous proof requires an

Application of invariance principle to signal laebrai P oIt i | either. Wherpi
detection problem can be traced back as early gagenraic proot. fLis not general either. 4 éﬁirp.“’“?'d
1971%, or even earlier. About fourteen years ago anl© many cqmplex, real-world problems, like it is
important papé? appeared in IEEE Transaction on not productive. ,
signal processing. Since its publication, the stbegn ~ Furthermore, the proof of maximal part of the
widely cited in many are€). The main contribution invariance quantity is usually difficult and the
of the research is to use invariance principle ttmys geometrical method is not helpful either in thipex.
the Generalized Likelihood Ratio Tests (GLRT) for One can appreciate this point by reattintp see how
four kinds signal detection problem. While the painstakingly the author was in proving the maximal
conclusion is all correct, the geometrical metheecu part of the invariance quantity in many examplethat
in this study is questionable as detailed in thet heo ~ book. Because of these flaws, the geometrical ndetho

paragraphs. may mislead a novice just coming to this area.
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Hence, the following section in this paper exactly These two equations can be combined into one:
gives a rigorous proof based on algebraic method
regarding the problem in section VI%f Another note  Q,[x yS]=[x SD| (6)
should be mentioned here tHatimplicitly finds
subgroups of transformation and then builds up the
larger transformation group by composition. Coriads
tof®), present approach is a direct procedure based
solution to matrix equation. Contrasted®th our
method is more rigorous and more general.

At this stage we need exploit an important lemma.

Qbmma 1 [1, Theorem A 9.5]:Suppose K™and B*"
are real matrices with sn. A necessary and sufficient
condition for AA' = BB' is that there exists another

MATERIALS AND METHODS quasi-orthogonal matrix X", which means XX= I™",
such that AX = B. IF m = n, then X is orthogonal.
Problem statement: The detection problem in section A direct consequence of applying this lemma to
VI oft! is briefly restated here, for sake of self- EQ. (6) is SD %S which simply implies D 1.
contained-ness. That is, given observation model: Under this condition, Eq. 6 is simplified to:
Y M= ux Mg e 1) Qu[x s|=[x § (7)

where, n is Gaussian distributed™N{0,07).
We need decide between two hypotheses:

{Ho:u=0 2)

H,:u>0 Lemma 2%: Let A" and B be pseudo-inverses of A
and B, the linear matrix equation AZB = E, for maiz
Derivation of the invariant transformation group  is consistent if and only if AAEB™ B = E. Further, if
based on algebraic methodThe following derivation the consistent condition is satisfied. The general
and proofs all follow some relevant definition and solution is given by Z = AAEB*R" — A* AR" BB*
theorems in chapter 6 Bf In order to keep the family with R"an arbitrary matrix.

What is then the solution of\fXo this equation in
terms of x and S? We need invoke another important
lemma.

of probability density function (pdf) of y invarign It is an easy matter to check that the consistent
obviously we need choose a linear transformatioy,on condition for Eq. (7) to have a solution is always
i.e. satisfied and therefore from Lemma 2 the general
s solution to Eq. (7) is:
YQmY = YHQuX +YQu~@ + YQun ()
Where. Q=[x SI[x §'R-R[x §[x § ®)
= A scal
¢ cquar =R +R-RR=F+ R p ©

Qu™™N = A square matrix, which to be determined

_In order to keep the structure of pdf ofy invatia where, M {x s], T means transposé,means pseudo-
obviously we need make sure that the followingsihol inverse and R is the projection matrix as defined?ifl,

thatis R= MM*= M(M'™M)* M.

QuXx =X (4) Do not forget we need make sure thaj @
YQuSP= 3p orthogonal. Let us first chec®,,Q, =1, which leads
to:
With ¢, = D and D is a matrix to be determined;
in order to keep vy still Gaussian distributed, ologly R'P/R= P (10)

Qu needs to be an orthogonal matrix.
Summing up, we need solve for an orthogonal
matrix Qu which satisfies:

_ Nx(t+1) T
QMX =X Ru = Uz Unz (11)
_ (5) pPi=uy Nx(N—t—l)U T
VQMS =SD M T MMl M1

We decompose:
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where, U, is a quasi- orthogonal matrix which means Q2 of[u.’

UrU,,=l. So is the case for . These Qu =[ U UG:||: 0 J u,’ (18)
decompositions follow from page 48%n Furthermore

we define: The last equality results from the following

uolu U reasoning. Denote all columns in U agsléxcept for
[ M MZJ the last one which was already shown as the same as

o ] Ug. Therefore:
which is an orthogonal matrix.

Based on above decomposition, Eq. 10 becomes: | _ U, U,," +U U =UUT+U U] (19)

R'U, U, R=R'U, (R U,J = T (12)
v bt (R Ui )= M B This is tantamount to saying that:

Therefore, from Lemma 1, there exists an

orthogonal matrix @such that: UpsUys' =ULUET =1-UU T =Py (20)
R"=U,, U Q (13) BecauseP? is fixed, this decomposition is unique,
. . . T - T T that iS, LJ/|3 = U|:.
which implies R™R; = R" U, U," = U, Q Y, - And Eq. 18 is exactly the rotation matrix in
Substitution of this result into Eq. (9) yields: subspace<P x> = <F>. For the definition of a

(14) rotation matrix in subspace, please refé.to
So we proved rigorously (algebraically) the
; conclusion i’ that the detection problem is invariant
~[U,U,] {% pg}LLJJWT} (15)  to set of rotation in< R/x>" and scaling>0.
M2 It is not hard to check that the pdf of y remains
invariant under the group of transformatiorny@j,.

Qu=Ri+RE= U QU+ W, W'

Qu is obviously an orthogonal matrix, actually a
rotation matri¥! in subspace <M>, where, following RESULTS AND DISCUSSION
the notation i}, < M > denotes the subspace spanned
by columns of M. This justifies our notation whiishin ~ Algebraic proof of the invariance of L, (Y) in section
agreement with that used?n VI of ! It is clamed iff! that, for the detection problem
To match the result M, we need show that yJs  considered in this correspondence, a maximal ianari
the rotation matrix in subspaeeP'x >".we first define is:

GV = F'x, correspondingly Y = G/||G|| and define
another matrix P M such that <F> =<P/x>". As
usual, we decompose = U_U; . According to Eq. (3.2)

_YRRRY
LZ( ) yTPSDFgFg y (21)

in®: However, Scharf and Friedlanférdid not give
any proof and, as stated in the introduction of thi
P,=R+R=UU"'=Uy,U, (16)  correspondence, the geometrical method used iotis n
helpful in proving the maximal invariant.
The beauty of this decomposition is tRafl P,, We will see that the algebraic method employed in
explicitly written asPP, = 0. this study is fruitful in this regard. We first atleon the

invariance. The transformation by a constant sgalin

If the order of columns in Jis not taken into 0 obviously leaves 4y) changed. Therefore we

account, this decomposition is uni¢fieSo one column

in Uy, say, the last one, isdland all the other columns consider
in Uy correspond to those insU
Therefore: y" (VU + U, QI Uy )
L _ UGUI? (UMZUI/IZ +UM1Q1UTMl)y 22

QL 0 O Ut Z(QMY)_ T(U UT.+U QTUT) ( )

Q :[U U ] o ™™ of M (17) y M2 M2 mi<1 Yme

M M1 M2 U T . . )

o o 1|tYw UpaUl (UpoUl, + U@ UL, )y

109



J. Math. & Stat., 5 (2):107-111, 2009

Paying attention to the fact thatydJO Uy, and Which is equivalent to:
that U; is the last column in §J we can see the above
equation is simplified to: Y, _( ‘UmULl) U, QUL Vi A 32)
Iy, Il Iy I Iy |
L y (UMZUMZUG)(UtGUMZUI/IZ )y (23)
Z(QMY) ( M1Q1|-|-Q1UIA1Y) Left multiplying the above equation hy;,
result in:
_ yT(UMZUIMUG)(UIGUG )(UEU w2 iz )y (24) yl vl 33
Y UnaUiny 10 = ||>5 K 53)
(Y PM <3)(F—T B)Y By lemma 1, a necessary and sufficient condition
= y (25)  for the above equation to have an orthogonal matrix
s solution of Q] is:
Because ffP; = (P5+PG)PG = 0+Rs: T
yl Ml Ll yl = y2 Ml LIl y2 (34)
Y'P.PLY Iy, Il Ny I Iy I Il
LZ(QMY): T (26) !

YRy
ol By some algebra, the above equation is equivalent
to:
Y'PIP,R Y
=——=—=—=| (Y 27
ey ) N

IRt __ 1IR, 1l (35)

The second equality follows from Eq. 3.6%in IRRRYfl 1IPEP Y
Therefore we complete the proof tha(Y) is invariant
under the group of transformation prescribed in the  From Ed. 28
previous subsection.

yl GY1 - y‘ZPGYZ (36)
Algebraic proof of the maximal invariant part of ylF’ RR'Y, YRR Ry
L,(Y) in section VI of®: As stated in the introduction
of this correspondence, the geometrical method used Adding 1 to both sides of Eq. 36:
in® is helpless in proving the maximal invariant. Here

we give a rigorous proof based on algebraic method. P’y YoPays 37
Suppose we are given, ¥ ; such that: yRRRy, YRR Py 37
La(Y2) = L2 (Y1) (28)

which can be shown to lead to Eq. 29.
We need show there exists a constardnd an

orthogonal matrix @such that: CONCLUSION
; In this short correspondence, we consider one
Y2 =W Q Uln (29) signal detection problem 'th by invariance principle.
' Contrasted to the geometrical methot jrour method
; : . is rigorous, algebraic (solution to matrix equatiare
Obviously we need pick up: often used), thereby completfflg Our method is also
i more general, because the same methodology can be
T yz T (30)  readily applied to other case&’if.
1
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