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Abstract: Problem statement: In the presence of multicollinearity, the estimation of parameters in 
multiple linear regression models by means of Ordinary Least Squares (OLS) is known to suffer severe 
distortion. An alternative approach was to use the modified OLS which was based on the latent roots 
and latent vectors of the correlation matrix of the independent and dependent variables. This procedure 
is called the Latent Root Regression (LRR) which serves the purpose to improve the stability of the 
estimates for data plagued by multicollinearity. However, there was evidence that the LRR estimators 
were easily affected by a few atypical observations that we call outliers. It is now evident that the 
robust method alone cannot rectify the combined problems of multicollinearity and outliers. 
Approach: In this study, we proposed a robust procedure for the estimation of the regression parameters 
in the presence of multicollinearity and outliers. We called this method Latent Root-M based Regression 
(LRMB) because here we employed the weight of the M-estimator in the weighted correlation matrix. 
Numerical examples and some simulation studies were presented to illustrate the performance of the 
newly proposed method. Results: Results of the study showed that the LRMB method is more efficient 
than the existing methods. Conclusion/Recommendations: In order to get a reliable estimate, we 
recommend using the LRMB when both multicollinearity and outliers are present in the data. 
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INTRODUCTION 

 
 Consider a multiple linear regression model: 
 
Y = Xβ + ε (1) 
 
Where:  
Y = The n×1 vector of standardized dependent 

variables 
X = The nxk full rank matrix of standardized known 

constants 
Xβ = The k×1 vector of model parameters 
ε = The n×1 vector of random disturbances with 

ε~NID (0, σ2) 
p = The number of independent variables 
n = The number of observations. 
 
 Using the least squares criterion, the estimator of β 
are found by minimizing the sum of squares residuals: 
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where, ( )ir β Y Xβ= − . This gives the OLS estimator for 

β: 
 

( ) 1
β̂ X'X X'Y

−=  (2) 

 
 According to the Gauss- Markov Theorem, the 
OLS estimators, in the class of unbiased linear 
estimators, have minimum variance that is they are Best 
Linear Unbiased Estimator (BLUE). Nonetheless, the 
presence of multicollinearity will produce inflated 
standard errors that will lead to misleading parameter 
inferences. To remedy this problem, Hawkins[1], Gunst 
and Mason[2], Gunst et al.[3] and Lawrence and Arthur[4] 
have introduced a new biased estimation procedures 
known as Latent Root Regression (LRR) to improve the 
precision of the regression estimates. The major 
advantage of LRR is that it is not only identifies the 
multicollinearities present in the independent variables, 
but also allows the researcher to distinguish between 
predictive and non predictive multicollinearity, hence 
appropriately adjust the OLS estimates for the non 
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predictive multicollinearities. However, this technique 
is inefficient if the underlying disturbances are not 
normal, which may arise as a result of outliers. As an 
alternative, we may turn to robust methods which are 
not sensitive to the presence of outliers[5-8]. 
Nevertheless, robust method alone cannot overcome the 
combined problem of multicollinearity and outliers. In 
this study, we propose a Robust Latent Root Regression 
to rectify these two problems simultaneously by using 
Latent Root Regression based on robust weighted 
correlation matrix.  
 

MATERIALS AND METHODS 
 
The Latent Root Regression (LRR): The latent root 
regression utilizes the latent roots and latent vectors of 
the correlation matrix of the dependent and independent 
variables, denoted as A. The latent roots, λj and latent 
vectors, γj of A’A are defined by: 
 

jA'A I 0− λ =  and ( )j jA'A I γ 0− λ =   j = 0, 1, …, k 

 
Analysis of these latent roots and latent vectors enables 
one to: 
 
• Identify near singularities in X 
• Determine whether the near singularities have 

predictive value 
• Obtain the modified least squares estimates of 

parameters which adjust for non-predictive near 
singularities 

 
 The OLS estimator in (2) can also be expressed in 
terms of these latent roots and latent vectors: 
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given by: 
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 Gunst et al.[3] and Lawrence and Arthur[4] 
suggested small latent roots and latent vectors in which 
λj ≤ 0.3 and |γ0j| ≤ 0.1 which indicates the presence of 
non predictive singularities. But later, they discovered 
that a tighter cut-off value of λj ≤ 0.2 and |γ0j| ≤ 0.1 
could improve the analysis.  
 Suppose now that the latent vectors γ0, γ1,…, γp-1 

correspond to non predictive near singularities. The non 
predictive multicollinearities are eliminated and only 
the predictive are retained. The above OLS estimator 
can be adjusted by setting 0 1 p 1... 0−α = α = = α = . Then 

the modified least squares coefficients are: 
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 If all of the principal components for the 
correlation matrix of the dependent and independent 
variables are predictive, then none of the j 'sα equal 

zero, the latent root estimator and the OLS estimator 
will be identical. 
 It is well-known that the variance covariance 

matrix for the OLS estimator is given by( ) 12 X'X
−σ  and 

its trace (sum of diagonals) represents its un weighted 
mean squared error: 
 

( ) 12ˆMSE( ) tr X 'X
−β = σ  (5) 

 
or in terms of latent roots of X’X 
 

p
2 1

j
j 1

ˆMSE( ) −

=

β = σ ∑l  (6) 

 
 jl  are the latent root of X’X and are ordered such 

that 1l  ≤ 2l  ≤….≤ kl  

 For a near multicollinearity situation, 1l  

approaches 0 and (6) implies that ˆMSE( )β  approaches 

infinity, that is β̂  is subjected to very large variance. 
This inflation cause the estimation becomes less 
accurate and less precise, thus unstable. 
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Robust M-estimator: The OLS estimation method 
optimizes the fit of the model by minimizing the sum of 
the squared deviations between the actual and predicted 

Y values, ( )2
ˆy y−∑ . The OLS method can be 

represented as:  
 

n
2
i

i 1

min e
=
∑   (7) 

 
 Huber[5] developed a group of estimators called M-
estimators, which are based on the idea of replacing the 
squared residuals, 2ie , with another function of the 

residuals, given by:  
 

 ( )
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ρ∑  (8) 

 
where, ρ is a symmetric function with a unique 
minimum at zero. The robust M-estimates (ROBM) are 
calculated using Iteratively Re Weighted Least Squares 
(IRLS). In IRLS, the initial fit is calculated and then a 
new set of weights is calculated based on the results of 
the initial fit. The iterations are continued until a 
convergence criterion is met. 
 
Robust latent root regression: Robust latent root 
regression incorporates resistance in the ordinary latent 
root regression. This is done by imposing weight to the 
correlation matrix of the dependent and independent 
variables, A’A. 
 The pair wise Pearson correlation coefficient for 
the two variables is defined as: 
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 The correlation coefficient, r in (9) is based on 

sample means x  andy , respectively, which are known 
to be very sensitive to the presence of outliers. As an 
alternative, a robust location estimates which are less 

affected by outliers are proposed to replace x  and y  in 
(9). Following the idea of Mokhtar[9], we propose using 

the weighted correlation coefficient between the 
dependent and the independent variables. We may use 
the weight from the final step of any robust estimators, 
but in this study the weight is confined to the final step 
of the robust M-estimation. The pair wise correlation 
coefficient in Eq. 9 is modified to obtain a weighted 
pair wise correlation coefficient, as follows; 
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 In this study, we have chosen the Tukey’s Biweight 
function in the M estimation technique[7,8]. By using 
(10) a robust weighted correlation matrix for dependent 
and independent variables, which originally denoted as 
A can be formulated. Based on this weighted 
correlation matrix, the latent roots and the latent vectors 
are computed and the latent root routines are then 
incorporated to estimate the parameters of the model. 
We call this method the Latent Root- M based 
Regression (LRMB) because here we have employed 
the weight of the M-estimator in the weighted 
correlation matrix. We would expect the modified 
method to be more robust than the OLS, ROBM and 
LRR. 
 

RESULTS  
 
Numerical example: In order to compare the 
performance of the LRMB with the other existing 
methods such as the OLS, LRR and ROBM, two real 
data sets are considered. The first data set presents the 
Palm Oil data which is taken from the Malaysian Palm 
Oil Board[10]. The dependent variable is the palm oil 
annual export (tonnes) while the independent variables 
are oil palm planted area (hectares) and crude palm oil 
production (tonnes). By incorporating the weight 
obtained from the final step of the ROBM estimator, 
yields the robust-weighted correlation matrix with the 
corresponding latent roots and latent vectors which are 
displayed in Table 1 and 2, respectively.  The presence 
of outlier in the data was detected by using Robust 
Mahalanobis Distance (RMD)[7,11] The standard error, 
confidence interval length and the R2 of the four 
methods are shown in Table 3. 
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Table 1: The robust-weighted correlation matrix 
Y X1 X2 
1.0000 0.9918 0.9923 
0.9918 1.0000 0.9898 
0.9923 0.9898 1.0000 

 
Table 2: The latent roots and latent vectors of the robust-weighted 

correlation matrix 
 1 2 3 

λj 2.9826 0.0102 0.0072 
γj 0.5776 0.0864   0.8117 
 0.5772 -0.7464 -0.3313 
 0.5773 0.6598 -0.4810 

 
Table 3: The standard error, confidence interval length and the R2 for 

oil-palm data 

  β1  β2 R2 
OLS Est. 7.204 -1.5403  
 S.E 3.2113 0.9187 0.5104 
 t 2.2433 -1.6765  
 C.I (0.482,13.925) [13.443] (-3.463,0.383)[3.846]  
ROBM Est. 1.3212 0.4346  
 S.E 0.5261 0.1505 0.9824 
 t 2.5111 2.8872  
 C.I (0.220,2 .422 ) [2.202] (0.119,0.749) [(0.63]  
LRR Est. 0.7771 0.2979  
 S.E 0.295 0.0979 0.4067 
 t 2.634 3.043  
 C.I (0.160,1.395) [1.235] (0.093,0.503) [0.410]  
LRMB Est. 1.1402 0.4873  
 S.E 0.2305 0.0956 0.9891 
 t 4.9466 5.0973  
 C.I (0.658,1.623)[0.965] (0.287,0.687) [0.400]  

 
Table 4: The standard error, confidence interval length and the R2 for 

Gujarati data 
  β1  β2 R2  
OLS Est. 0.9415 -0.0424  
 S.E 0.8229 0.0807 0.9635 
 t 1.1442 -0.5261  
 C.I (-1.004, 2.887) [3.891] (-0.233,0.148) [0.381]  
ROBM Est. 1.0132 -0.0503  
 S.E 0.8900 0.0872 0.9631 
 t 1.1384 -0.5762  
 C.I (-1.091, 3.118 ) [4.209] (-0.257,0.156) [0.413]   
LRR Est. 0.2271 0.0276 
 S.E 0.0822 0.0099 0.9595 
 t 2.7613 2.7778  
 C.I (0.033,0.422) [0.389] (0.004,0.051) [0.047]  
LRMB Est. 0.2177 0.0278  
 S.E 0.075 0.0095  
 t 2.9017 2.9246 0.9605 
 C.I (0.040,0.395) [0.355] (0.005,0.050) [0.045] 

 
The performances of these four estimators are further 
examined by applying these estimators to another data 
set which is taken from Gujarati (12)where consumption 
expenditure being the dependent variable while the 
independent variables are income and wealth.   
 Table 4 exemplified the standard error, confidence 

interval length and the R2 of the Gujarati’s data. The 
confidence interval lengths for Table 3 and 4 are in 
square bracket. 

Simulation study: A simulation study similar to that of 
Lawrence and Arthur[4] has been  performed in order to 
compare the performance of the four estimators.  The 
model used was i 0 1 i1 2 i2 iy x x .= β + β + β + ε  

 The parameter values β0, β1 and β2 were set equal 
to one. The explanatory variables xi1 and xi2 were 
generated as follows: 
 

( )2
ij ij ijx 1 z z= − ρ + ρ   i = 1,2,…, n; j = 1, 2 

 
where, zij are independent standard normal random 
variables.  The value of ρ2 were chosen as 0.0, 0.5 and 
0.95 and they represent the correlation between the two 
independent variables.  Sample sizes, n of 25 and 50 
(each corresponding to small and large sample) were 
examined. Four error disturbances were employed as 
follows: 
 
• Standard normal distribution 
• Cauchy distribution with median zero and scale 

parameter one 
• t-Student distribution with three degrees of 

freedom 
• Contaminated normal distribution where the 

underlying distribution is standard normal with 
probability 0.85 and normal with mean zero and 
standard deviation five with probability 0.15 

 
 The non-normal distribution, such as the Cauchy 
and student-t with 3 degrees of freedom are 
symmetrical bell-shaped with heavy tailed distribution 
which prone to produce considerable amount of 
outliers. These distributions were generated to 
investigate the effect of combined problems of 
multicollinearity and outliers on different estimators. 
 All the four methods were then applied to each of 
the sets of the generated data.  In each simulation run, 
there were 1000 replications.  Some summary statistics 
such as the bias, Standard Errors (SE) and Root Mean 
Squared Errors (RMSE) over 1,000 runs were 
computed and the results are exemplified in Table 5, 7, 
9 and 11. Table 6, 8, 10 and 12 show the efficiency of 
the estimators by observing at the MSE ratios of two 
estimators.  Values less than one indicate that the first 
estimator is more efficient than the second, values equal 
to one imply that both estimators are equally good, 
while values more than one indicate that the second 
estimator is more efficient than the first estimator.  
 The values in all Table 1-12 are for sample size 25 
while values for n = 50 are shown in bold. 
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Table 5: Bias, RMSE and SE of 1β̂ and 2β̂  with disturbance distribution normal (0,1) 

Values of ρ2 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  0.0   0.5   0.95 
 ------------------------------------------------ ------------------------------------------------ ----------------------------------------------  
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE 

ˆ
1β

 

OLS -0.0157 0.2174 0.2169 -0.0088 0.3327 0.3326 -0.09730 3.1103 3.1088 
 0.0017 0.1451 0.1451 -0.0026 0.2284 0.2284 -0.05070 2.0939 2.0933 
ROBM -0.0158 0.2292 0.2287 -0.0098 0.3491 0.3489 -0.13180 3.2573 3.2547 
 0.0016 0.1514 0.1514 -0.0003 0.2347 0.2347 -0.03330 2.1418 2.1415 
LRR -0.0157 0.2174 0.2169 -0.0097 0.3328 0.3327 0.01240 0.2090 0.2087 
 0.0017 0.1451 0.1451 -0.0023 0.2287 0.2287 0.00280 0.0808 0.0808 
LRMB -0.0158 0.2292 0.2287 -0.0102 0.3492 0.3491 -0.00260 0.4283 0.4282 
 0.0016 0.1514 0.1514 -0.0003 0.2349 0.2349 0.00360 0.0889 0.0888 
ˆ

2β  

OLS -0.0051 0.2258 0.2258 0.0091 0.3496 0.3495 0.10400 3.1226 3.1209 
 0.0069 0.1484 0.1482 0.0094 0.2303 0.2301 0.05550 2.0927 2.0920 
ROBM -0.0041 0.2361 0.2361 0.0133 0.3629 0.3626 0.13940 3.2668 3.2638 
 0.0054 0.1526 0.1525 0.0083 0.2361 0.2359 0.03953 2.1414 2.1410 
LRR -0.0051 0.2258 0.2258 0.0099 0.3499 0.3498 -0.00350 0.2013 0.2013 
 0.0069 0.1484 0.1482 0.0091 0.2303 0.2302 0.00130 0.0836 0.0836 
LRMB -0.0041 0.2361 0.2361 0.0137 0.3631 0.3628 0.01240 0.4277 0.4275 
 0.0054 0.1526 0.1525 0.0083 0.2363 0.2362 0.00180 0.0895 0.0895 

 
Table 6: MSE ratios of 6 pair wise estimators of 1β̂ and 2β̂  with disturbance distribution normal (0,1) 

    Values of ρ2 
  --------------------------------------------------------------------------------------------------------------------------------- 

  1β̂    2β̂  

  -------------------------------------------------------- ------------------------------------------------------ 
Estimator1 vs Estimator 2 0.0 0.5 0.95 0 0.5 0.95 
LRMB OLS 1.11 1.10 0.02 1.09 1.08 0.02 
  1.09 1.06 0.00 1.06 1.05 0.00 
 ROBM 1.00 1.00 0.02 1.00 0.02 0.02 
  1.00 1.00 0.00 1.00 1.00 0.00 
 LRR 1.11 1.10 4.20 1.09 1.08 4.51 
  1.09 1.06 1.21 1.06 1.05 1.15 
LRR OLS 1.00 1.00 0.00 1.00 1.00 0.00 
  1.00 1.00 0.00 1.00 1.00 0.00 
 ROBM 0.90 0.91 0.00 0.91 0.93 0.00 
  0.92 0.95 0.00 0.95 0.95 0.00 
ROBM OLS 1.11 1.10 1.10 1.09 1.08 1.09 
  1.09 1.06 1.05 1.06 1.05 1.05 
 

DISCUSSION 
 
 Here we discuss the results that we have acquired 
from the previous section.  The result of Table 1 
suggests that the oil palm planted areas and oil 
production are highly correlated. The presence of two 
outliers in this data were detected based on RMD.  By 
the application of LRR techniques, the vector deletion 
criteria in which latent vectors are deleted if λϕ ≤0.2 and 
|γ0j|≤0.1, leads to the deletion of the second latent vector 
from the robust-weighted correlation matrix of Table 2.  
By this deletion, the LRMB has substantially reduced 
the standard error of the estimates.  It can be observed 

from Table 3 that the OLS estimates have been strongly 
affected by outliers and multicollinearity. This is 
indicated by its largest standard error among the four 
estimates, smaller R2 value and negative coefficient of 

2β̂ . Moreover, it possesses confidence interval length 

which is remarkably larger than the other intervals. The 
performance of the ROBM and the LRR are also not 
encouraging since their standard errors and confidence 
interval lengths are still relatively large. However, the 
RLMB can be considered the best method because it 
has the smallest standard errors and confidence interval 
length and the highest R2 value than the other three 
estimators. 
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Table 7: Bias, RMSE and SE of 1β̂ and 2β̂  with disturbance distribution Cauchy  

Values of ρ2 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  0.0   0.5   0.95 
 ------------------------------------------------- ---------------------------------------------- ---------------------------------------------  
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE 

ˆ
1β  

OLS 2.9485 126.3610 126.3270 1.1476 47.5185 47.5047 6.2723 263.8537 263.7791 
 0.1949 18.5650 18.5639 0.3225 32.0980 32.0964 5.1771 340.4129 340.3735 
ROBM 0.0259 0.4512 0.4505 0.0449 0.6850 0.6835 0.3998 6.0744 6.0612 
 -0.0024 0.2681 0.2681 -0.0151 0.4207 0.4204 -0.2165 3.8499 3.8439 
LRR 2.9485 126.3610 126.3270 1.5514 45.5053 45.4789 0.4533 12.7839 12.7759 
 0.1949 18.5650 18.5639 0.2991 32.0867 32.0853 -0.1244 5.6074 5.6060 
LRMB 0.0259 0.4512 0.4505 0.0425 0.6849 0.6836 0.0075 0.2950 0.2949 
 -0.0024 0.2681 0.2681 -0.0152 0.4209 0.4207 0.0053 0.1471 0.1471 
ˆ

2β  

OLS 3.9460 144.0250 143.9716 1.7290 58.1426 58.1169 -5.3485 245.9591 245.9009 
 -0.2085 17.3463 17.3450 -0.6186 36.8859 36.8807 -5.5099 344.5208 344.4767 
ROBM -0.0175 0.4663 0.4660 -0.0345 0.6916 0.6907 -0.3904 6.0919 6.0793 
 0.0144 0.2810 0.2806 0.0253 0.4285 0.4278 0.2229 3.8610 3.8546 
LRR 3.9360 144.0250 143.9716 1.2933 58.2196 58.2052 0.5077 14.0675 14.0584 
 -0.2085 17.3463 17.3450 -0.5975 36.8847 36.8800 -0.1184 5.6021 5.6008 
LRMB -0.0175 0.4663 0.4660 -0.0319 0.6899 0.6892 -0.0015 0.2847 0.2847 
 0.0144 0.2810 0.2806 0.0254 0.4283 0.4275 0.0017 0.1469 0.1469 

 
Table 8: MSE ratios of 6 pairwise estimators of 1β̂  and 2β̂ with disturbance distribution Cauchy  

Values of ρ2 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

  1β̂    2β̂  

  -------------------------------------------------------- ---------------------------------------------------- 
Estimator1 vs Estimator 2 0.0 0.5 0.95 0.0 0.5 0.95 
LRMB OLS 0.00 0.00 0.00 0.00 0.00 0.00 
  0.00 0.00 0.00 0.00 0.00 0.00 
 ROBM 1.00 1.00 0.00 1.00 1.00 0.00 
  1.00 1.00 0.00 1.00 1.00 0.00 
 LRR 0.00 0.00 0.00 0.00 0.00 0.00 
  0.00 0.00 0.00 0.00 0.00 0.00 
LRR OLS 1.00 0.92 0.00 1.00 1.00 0.00 
  1.00 1.00 0.00 1.00 1.00 0.00 
 ROBM 78431.53 4413.09 4.43 95399.80 7086.45 5.33 
  4795.08 5817.08 2.12 3810.67 7409.53 2.11 
ROBM OLS 0.00 0.00 0.00 0.00 0.00 0.00 
  0.00 0.00 0.00 0.00 0.00 0.00 

 
 Let us now focus to the Gujerati’s data.  There is 
evidence that income and wealth for the Gujarati’s data 
are highly correlated.  This data has no outlier but has 
multicollinearity problem.  Since this data has only 
multicollinearity problem, we expect that the 
performance of the LRMB is closed to the LRR. It is 
interesting to note that the results of Table 4 are 
consistent with the earlier findings except that the LRR 
and LRMB are equally good as expected because when 
there is no outlier and only multicollinearity exist, the 
LRMB become closer to LRR.   We have not 
scrutinized the analysis of the example to the final 
conclusion, but a reasonable explanation up to this 

point is that the LRMB is not easily affected by the 
presence of both multicollinearity and outliers. 
 Next, we will discuss the simulation results 
obtained from the standard normal and heavy tail 
distributions whether they confirm the conclusion of the 
numerical examples. 
 
Standard  normal  distribution  of disturbances: 
Table 5 shows that for standard normal disturbances with 
ρ = 0, all four methods are virtually indistinguishable 
with respect to the values of the bias, SE and RMSE.  
The  performance  of  the  OLS  and  the LRR are 
slightly better than ROBM and LRMB for small ρ-value. 
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Table 9:   Bias, RMSE and SE of 1β̂ and 2β̂  with disturbance distribution t-student (3) 

Values of ρ2 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  0.0   0.5   0.95 
 ------------------------------------------------- ------------------------------------------ --------------------------------------------  
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE 

ˆ
1β  

OLS 0.01480 0.3630 0.3627 0.03150 0.5736 0.5727 0.2231 5.1562 5.1514 
 -0.00960 0.2435 0.2433 -0.01530 0.3815 0.3812 -0.1524 3.4542 3.4508 
ROBM 0.01030 0.2850 0.2848 0.02660 0.4618 0.4610 0.1859 4.1788 4.1746 
 -0.00780 0.1876 0.1875 -0.00920 0.2919 0.2918 -0.0877 2.6684 2.6670 
LRR 0.01480 0.3630 0.3627 0.03910 0.5738 0.5725 0.0031 0.1980 0.1980 
 -0.00960 0.2435 0.2433 -0.01690 0.3817 0.3813 0.0028 0.1346 0.1345 
LRMB 0.01030 0.2850 0.2848 0.02685 0.4620 0.4612 -0.0118 0.4162 0.4160 
 -0.00780 0.1876 0.1875 -0.00970 0.2923 0.2921 0.0025 0.1091 0.1091 
ˆ

2β  

OLS -0.00300 0.3613 0.3613 -0.01790 0.5636 0.5633 -0.2139 5.1522 5.1480 
 0.00140 0.2573 0.2573 0.01540 0.3811 0.3808 0.1560 3.4463 3.4428 
ROBM -0.00890 0.2942 0.2941 -0.01340 0.4533 0.4531 -0.1710 4.1738 4.1703 
 0.00150 0.1896 0.1896 0.00930 0.2925 0.2924 0.0895 2.6698 2.6683 
LRR -0.00300 0.3613 0.3613 -0.02420 0.5588 0.5582 0.0088 0.2043 0.2041 
 0.00140 0.2573 0.2573 0.01690 0.3806 0.3802 0.0002 0.1340 0.1340 
LRMB -0.00890 0.2942 0.2941 -0.01360 0.4535 0.4533 0.0265 0.4271 0.4262 
 0.00150 0.1896 0.1896 0.00980 0.2926 0.2925 -0.0007 0.1075 0.1075 

 
Table 10: MSE ratios of 6 pairwise estimators of 1β̂ and 2β̂  with 

disturbance distribution t-student (3) 

  Values of ρ2 

  ------------------------------------------------- 

  1β̂   2β̂  

  ------------------------ ---------------------- 
Estimator1 vs Estimator 2 0.0 0.5 0.95 0.0 0.5 0.95 
LRMB OLS 0.62 0.65 0.01 0.66 0.65 0.01 
  0.59 0.59 0.00 0.54 0.59 0.00 
 ROBM 1.00 1.00 0.01 1.00 1.00 0.01 
  1.00 1.00 0.00 1.00 1.00 0.00 
 LRR 0.62 0.65 4.42 0.66 0.66 4.37 
  0.59 0.59 0.66 0.54 0.59 0.64 
LRR OLS 1.00 1.00 0.00 1.00 0.98 0.00 
  1.00 1.00 0.00 1.00 1.00 0.00 
 ROBM 1.62 1.54 0.00 1.51 1.52 0.00 
  1.68 1.71 0.00 1.84 1.69 0.00 
ROBM OLS 0.62 0.65 0.66 0.66 0.65 0.66 
  0.59 0.59 0.60 0.54 0.59 0.60 

 
When the multicollinearity is high (ρ = 0.95) as to be 
expected, the LRR give the best results followed by the 
LRMB, OLS and ROBM. This result is supported by 
Table 6, where for high correlation; the LRR is more 
efficient than LRMB indicated by the value of the MSE 
ratios which is greater than one. Similarly, the MSE 
ratios signify that the LRR is better than the OLS and 
ROBM for high value of ρ. Evidently, in this situation, 
the OLS is better than the ROBM. The LRR estimates 
emerge to be conspicuously more efficient in the 
presence of high multicollinearity with no 
contamination in the model. 
 
Heavy tails distribution of the Disturbances; Here 
we discuss the results of Cauchy, t with 3 degrees of 

freedom and contaminated normal. Let us first focus 
our attention to Table 7 and 8, for cauchy distribution. 
The results in Table 7 show that when there is no 
multicollinearity (ρ = 0.0) for this type of data with 
only the presence of outliers, as can be expected the 
performance of the ROBM is similar to that of RLMB. 
The OLS is as good as the LRR and their performance 
are less efficient than the LRMB and ROBM. For small 
correlation (ρ = 0.5), the LRMB is slightly better than 
the ROBM estimates and they are more efficient than 
the OLS and LRR. The presence of both outlier and 
high multicollinearity changes the situation 
dramatically. The biases and the RMSE of the OLS, 
LRR and ROBM estimates increase significantly. On 
the other hand, the LRMB is not affected by the outliers 
and multicollinearity, as shown by the biases and the 
RMSE which were decreasing and consistently the 
smallest among the four estimators. It is evident that the 
LRMB is the best estimator followed by the ROBM, 
LRR and OLS. The MSE ratios in Table 8 supported 
the results obtained from Table 7 where for skewed 
data with small and no multicollinearity, the ROBM is 
fairly close to LRMB and their performances are much 
better than the LRR and OLS. The results of Table 8 
signify that the LRMB seems to perform extremely well 
compared to ROBM, LRR and OLS for high 
multicollinearity, evidenced by the values of the MSE 
ratios which are less than one. The LRMB and ROBM 
are equally efficient when ρ is zero or low indicated by 
the MSE ratios which are equal to one. 
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Table 11: Bias, RMSE and SE of 1β̂ and 2β̂  with disturbance distribution contaminated normal  

Values of ρ2 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  0   0.5   0.95 
 ----------------------------------------------- ------------------------------------------------- ----------------------------------------------- 
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE 

ˆ
1β  

OLS -0.0169 0.4436 0.4433 -0.0299 0.6932 0.6925 -0.3728 6.2794 6.2683 
 -0.0015 0.3281 0.3281 -0.0042 0.5041 0.5040 0.0679 4.5923 4.5918 
ROBM -0.0035 0.2879 0.2879 -0.0138 0.4350 0.4348 -0.1844 4.0224 4.0182 
 0.0002 0.1867 0.1867 -0.0113 0.2839 0.2867 -0.0573 2.6140 2.6134 
LRR -0.0169 0.4436 0.4433 -0.0314 0.6896 0.6889 0.0126 0.2353 0.2350 
 -0.0015 0.3281 0.3281 -0.0040 0.5039 0.5038 -0.0099 0.1632 0.1629 
LRMB -0.0035 0.2879 0.2879 -0.0149 0.4346 0.4343 -0.0012 0.4716 0.4716 
 0.0002 0.1867 0.1867 -0.0112 0.2836 0.2834 -0.0055 0.1024 0.1022 
ˆ

2β  

OLS 0.0205 0.4820 0.4816 0.0473 0.6992 0.6976 0.3911 6.2654 6.2533 
 -0.0087 0.3159 0.3157 -0.0238 0.4986 0.4981 -0.0872 4.5926 4.5918 
ROBM 0.0127 0.3016 0.3013 0.0252 0.4482 0.4475 0.1940 4.0289 4.0242 
 0.0027 0.1846 0.1846 -0.0046 0.2895 0.2895 0.0437 2.6205 2.6202 
LRR 0.0205 0.4820 0.4816 0.0489 0.6957 0.6940 0.0099 0.2379 0.2377 
 -0.0087 0.3159 0.3157 -0.0240 0.4970 0.4964 -0.0098 0.1632 0.1629 
LRMB 0.0127 0.3016 0.3013 0.0262 0.4491 0.4483 0.0111 0.4742 0.4740 
 0.0027 0.1846 0.1846 -0.0048 0.2897 0.2897 -0.0076 0.0990 0.0987 

 
Table 12: MSE ratios of 6 pair wise estimators of 1β̂ and 2β̂  with 

disturbance distribution contaminated Normal 

  Values of ρ2 
  -------------------------------------------------- 

  1β̂    2β̂  

  ----------------------- ------------------------ 
Estimator1 vs Estimator 2 0.0 0.5 0.95 0.0 0.5 0.95 
LRMB OLS 0.42 0.39 0.01 0.39 0.41 0.01 
  0.32 0.32 0.00 0.34 0.34 0.00 
 ROBM 1.00 1.00 0.01 1.00 1.00 0.01 
  1.00 1.00 0.00 1.00 1.00 0.00 
 LRR 0.42 0.40 4.02 0.39 0.42 3.97 
  0.32 0.32 0.39 0.34 0.34 0.37 
LRR OLS 1.00 1.00 0.00 1.00 0.99 0.00 
  1.00 1.00 0.00 1.00 0.99 0.00 
 ROBM 2.37 2.51 0.00 2.55 2.41 0.00 
  3.09 3.15 0.00 2.93 2.95 0.00 
ROBM OLS 0.42 0.39 0.41 0.39 0.41 0.41 
  0.32 0.32 0.32 0.34 0.34 0.33 
 
 The results of Table 9 and 10 illustrate the 
summary statistics for the t distribution with 3 degrees 
of freedom. Like the Cauchy distribution, the 
performances of the ROBM and LRMB estimator are 
equally good for small and no multicollinearity. 
Similarly, the RLMB and ROBM are slightly better 
than the OLS and RLL in such a situation. 
Nevertheless, when ρ = 0.95 and n = 25, the 
performance of the RLL is slightly better than the 
RLMB. It is interesting to note that when the size of the 
sample is increased to 50, the RLMB is better than the 
RLL. These are indicated by its bias and RMSE which 
are smaller than the RLL in this situation. Similar 

results are obtained by observing the MSE ratios in 
Table 10. The results of Table 11 and 12 for 
contaminated data are consistent with the finding 
obtained from the t distribution. 
 

CONCLUSION 
 
 The OLS performs poorly in the presence of 
outliers and multicollinearity. The ROBM is not 
sufficiently robust compared with LRR and LRMB 
when the degree of multicollinearity is high. The LRR 
estimator is a better choice than the other estimators in 
eliminating the problem of multicollinearity. However, 
its performance was inferior to ROBM and LRMB 
when contamination occurs in the data. The empirical 
study shows that the LRMB has improved the accuracy 
of the estimates in the situation when both 
multicollinearity and non-normal disturbances are 
present. The results seem to suggest that the RLMB 
estimator may provide a robust alternative to the LRR.  
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