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Abstract: Inferences on the parameter estimates of Ordinary Least Square (OLS) estimator in 
regression model when regressors exhibit multicollinearity is a problem in that large standard errors of 
the regression coefficients which cause low t-statistic value often result into the acceptance of the null 
hypothesis. This paper, therefore, makes efforts to investigate the effect of multicollinearity on the 
power rates of the OLS estimator. A regression model with constant term (β0) and two independent 
variables (with (β1 and (β2 as their respective regression coefficients) that exhibit multicollinearity was 
considered. A Monte Carlo study of 1000 trials was conducted at eight levels of multicollinearity (0, 
0.25, 0.5, 0.7, 0.75, 0.8, 0.9 and 0.99) and sample sizes (10, 20, 40, 80, 100, 150, 250 and 500). At 
each specification, the true regression coefficients were set at unity while 1.5, 2.0 and 2.5 were taken 
as their hypothesized values. Results show that at each hypothesized value of β0 the power rate is the 
same at all the levels of multicollinearity at a specified sample size and that the error rate decreases 
asymptotically. Furthermore as the hypothesized value increases, results do not only show that the 
power rate increases but tends faster to one asymptotically. The pattern of effect of power rate of β1 
and β2 is the same as that of β0 except that at each hypothesized value the power rate decreases as level 
of multicollinearity increases at a specified sample size. Consequently, increasing the sample size 
increase the power rate of the OLS estimator in all the levels of multicollinearity.  
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INRODUCTION 

 
 In classical linear regression model, regressors are 
assumed to be independent. When this assumption fails, 
the problem of multicollinearity arises. 
Multicollinearity is found in business and economics. 
For instance, the independent variables such as family 
income and assets or store sales and number of 
employees or age and years of experience would tend to 
be highly correlated. With strongly interrelated 
regressors, interpretation given to the regression 
coefficients may no longer be valid because the 
assumption under which the regression model is built 
has been violated[4]. Although the estimates of the 
regression coefficients provided by the OLS estimator 
is still unbiased as long as multicollinearity is not 
perfect[5], the regression coefficients may have large 
sampling errors which affect both the inference and 
forecasting   that  is  based  on  the model[4].  Oduntan[6] 

pointed out that multicollinearity is less serious when 
attention is on prediction or forecasting of values for 
the dependent variable than when interest is on 
estimates of the parameters of the model. With high 
standard errors of the regression coefficients, the value 
of the t-statistic of each of the regression coefficients is 
low causing the null hypothesis to be often accepted. 
Consequently with generated collinear data, this paper 
attempts to investigate the power rate (1-β) of the OLS 
estimators at different levels of multicollinearity and 
sample size through Monte Carlo studies. 
 

MATERIALS AND METHODS 
 
Consider the regression model of the form: 
 
   i 0 1 1i 2 2i iy x x e= β + β + β +   (1) 
where, 
   ( )2

i ~ N 0, i 1,2,...,nε σ =  
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y is the dependent variable, x1 and x2 are regressors 
which exhibit correlation (multicollinearity) and β0, β1 
and β2 are the regression coefficient (parameters) of the 
model.  

 Now, suppose ( )2
i i iX ~ N , i 1,2.µ σ =  If these 

variables are correlated, then X1 and X2 can be 
generated with the equations 
 

   
1 1 1 1

2
2 2 2 1 2 2

X z

X z z 1

= µ + σ

= µ + ρσ + σ − ρ
  (2)  

 
where iZ ~ N(0,1) i 1,2=  and |ρ|<1 is the value of 
correlation between the two variables[2,3]. 
 Monte Carlo experiments were performed 1000 
times for eight sample sizes (n =10, 20, 40, 80, 100, 
150, 250 and 500) and eight levels of multicollinearity. 
(ρ = 0, 0.25, 0.5, 0.7, 0.75, 0.8, 0.9 and 0.99) with 
stochastic regressors that are normally distributed. At a 
particular specification of n and ρ (a scenario), the first 
replication was obtained by 
generating ie ~ N(0,1),i 1,2,...,n= . Next, 1iX ~ N(0,1)  and 

2iX ~ N(0,1) were generated using equation (2) such that 
they exhibit correlation ρ. The values yi in equation (1) 
were obtained by taking the true regression coefficient 
as unity. This process continued until all the 1000 
replications had been done. Another scenario then 
started until all the scenarios were completed. For each 
replication in the scenario, the OLS method of 
parameter estimation was used to obtain estimates of 
the regression coefficients and the hypothesis about the 
hypothesized values of the regression coefficient was 
tested at 0.05 level of significance using the t-statistic to 
examine the type 11 error (β) of each of the regression 
coefficients. These values were taken as 1.5, 2.0 and 
2.5. All these were accomplished by a computer 
programme using Time Series Processor (TSP version 
5.0) software.Then, the power rates was obtained by 
taken the values of type 11 error rates away from one. 
These was done for every multicollinearity level at 
every selected sample sizes. 

 To facilitate a good understanding of the 
behaviours of the estimates as the true value is being 
changed to the hypothesized values, the following 
subdivisions are considered. 
 
Case 1: True values of β1 and β2 are maintained while 

that of β0 is allowed to change. 
 
Case 2:  True values of β0 and β2 are maintained while 

that of β1 is allowed to change. 
 
Case 3: True values of β0 and β1 are maintained while 

that of β2 is allowed to change. 
 
Case 4: The true value of β0 is maintained while those 

of β1 and β2 are allowed to change. 
 
Case 5: All the values of β0, β1 and β2 are allowed to 

change. 
 

RESULTS AND DISCUSSION 
 
Case 1: True value of β1 and β2 are maintained while 

that of β0 is allowed to change. 
 The summary of the power rate of β0 when the true 
value β1 and β2 is maintained and that of β0 is allowed 
to change at different levels of multicollinearity and 
sample size are respectively shown in Tables 1, 2 and 3.
 From the tables, it can be observed that at each 
changed value of β0 the power rate is the same for all 
levels of multicollinearity at a specified sample size; 
and that the power rate increases asymptotically. 
Furthermore, as the value of β0 increases, the power 
rate increases and tends faster to one asymptotically. 
Alabi, (2007) show that type 1 error rate of β1 and β2 
are still the same when β0 changes Thus, the type 11 
error rate of β0 does not affect the type 1 error rate of β1 
and β2. Consequently, the type 11 error rate of β0 
depends on the departure of the hypothesized value 
from the true value and sample size. 

 
Table 1: Power rates of β0 when β0 = 1.5 at different levels of multicollinearity and sample sizes 
Sample size ρ 10 20 40 80 100 150 250 500 
0 0.268 0.502 0.846 0.985 0.998 0.998 1.000 1.000 
0.25 0.266 0.501 0.846 0.985 0.995 0.998 1.000 1.000 
0.5 0.266 0.502 0.844 0.983 0.996 0.998 1.000 1.000 
0.7 0.266 0.502 0.843 0.982 0.996 0.997 1.000 1.000 
0.75 0.266 0.502 0.843 0.982 0.996 0.996 1.000 1.000 
0.8 0.266 0.502 0.843 0.982 0.996 0.996 1.000 1.000 
0.9 0.266 0.502 0.843 0.982 0.995 0.996 1.000 1.000 
0.99 0.267 0.503 0.844 0.982 0.994 0.997 1.000 1.000 
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Table 2: Power rates of β0 when β0 = 20. at different levels of multicollinearity and sample sizes 
Sample size ρ 10 20 40 80 100 150 250 500 
0 0.697 0.973 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.696 0.973 1.000 0.999 1.000 1.000 1.000 1.000 
0.5 0.695 0.973 1.000 0.999 1.000 1.000 1.000 1.000 
0.7 0.694 0.973 1.000 0.999 1.000 1.000 1.000 1.000 
0.75 0.694 0.973 1.000 0.999 1.000 1.000 1.000 1.000 
0.8 0.693 0.027 1.000 1.000 1.000 1.000 1.000 1.000 
0.9 0.694 0.973 1.000 1.000 1.000 1.000 1.000 1.000 
0.99 0.693 0.973 1.000 1.000 1.000 1.000 1.000 1.000 
 
Table 3: Power rates of β0 when β0 = 2.5 at different levels of multicollinearity and sample sizes 
Sample size ρ 10 20 40 80 100 150 250 500 
0 0.945 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.945 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.7 0.942 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.75 0.940 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
0.8 0.940 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
0.9 0.940 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.99 0.940 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

 
Table 4: The Power rates of β1 when β1 = 1.5 at different levels of multicollinearity and sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.249 0.530 0.834 0.987 0.995 1.000 1.000 1.000 
0.25 0.245 0.498 0.805 0.982 0.995 1.000 1.000 1.000 
0.5 0.200 0.410 0.744 0.954 0.984 1.000 1.000 1.000 
0.7 0.167 0.291 0.569 0.866 0.936 0.984 1.000 1.000 
0.75 0.146 0.256 0.502 0.814 0.912 0.971 1.000 1.000 
0.8 0.131 0.224 0.436 0.753 0.843 0.950 1.000 1.000 
0.9 0.097 0.140 0.266 0.476 0.594 0.737 0.919 1.000 
0.99 0.069 0.062 0.088 0.094 0.122 0.144 0.217 0.354 

 
Table 5: The Power rates of β1 when β1 = 2.0 at different levels of multicollinearity and sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.671 0.954 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.651 0.945 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.568 0.821 0.999 1.000 1.000 1.000 1.000 1.000 
0.7 0.454 0.790 0.985 1.000 1.000 1.000 1.000 1.000 
0.75 0.399 0.790 0.967 1.000 1.000 1.000 1.000 1.000 
0.8 0.344 0.642 0.934 0.997 1.000 1.000 1.000 1.000 
0.9 0.213 0.403 0.739 0.958 0.985 0.998 1.000 1.000 
0.99 0.176 0.088 0.16 0.225 0.313 0.411 0.578 0.891 

 
Table 6: The Power rates of β1 when β1 = 2.5 at different levels of multicollinearity and sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.999 0.995 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.886 0.997 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.827 0.992 1.000 1.000 1.000 1.000 1.000 1.000 
0.7 0.719 0.963 1.000 1.000 1.000 1.000 1.000 1.000 
0.75 0.666 0.947 1.000 1.000 1.000 1.000 1.000 1.000 
0.8 0.594 0.917 0.999 1.000 1.000 1.000 1.000 1.000 
0.9 0.389 0.708 1.000 1.000 1.000 1.000 1.000 1.000 
0.99 0.104 0.132 0.274 0.458 0.570 0.711 0.911 0.994 

 
Case 2:  True values of β0 and β2 are maintained while 

that of β1 is allowed to change. 
 The summary of the power rates of β1 at different 
levels of multicollinearity and sample size are shown in 
Tables 4, 5 and 6. From these tables, it can be observed 
that at each value of β1 the power rate decreases as the 

level of multicollinearity increases at a specified sample 
size and that the power rate increases asymptotically at 
each level of multicollinearity. This is more rapid as the 
hypothesized value increases for all levels of 
multicollinearity. Furthermore, as hypothesized value 
of β1 increases, the type 11 error rate decreases and 
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Table 7:The Power rates of β2 when β2 = 1.5 at different levels of multicollinearity and Sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.253 0.548 0.836 0.989 0.997 1.000 1.000 1.000 
0.25 0.242 0.521 0.810 0.984 0.996 1.000 1.000 1.000 
0.5 0.200 0.398 0.721 0.961 0.985 0.002 1.000 1.000 
0.7 0.148 0.301 0.543 0.888 0.929 0.982 1.000 1.000 
0.75 0.063 0.372 0.534 0.827 0.892 0.974 1.000 1.000 
0.8 0.116 0.236 0.460 0.744 0.823 0.949 1.000 1.000 
0.9 0.079 0.140 0.279 0.503 0.567 0.750 0.934 1.000 
0.99 0.058 0.062 0.073 0.102 0.123 0.146 0.208 0.374 

 
Table 8: The Power rates of β2 when β2 = 2.0 at different levels of multicollinearity and Sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.650 0.949 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.626 0.942 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.560 0.904 0.996 1.000 1.000 1.000 1.000 1.000 
0.7 0.423 0.795 0.985 1.000 1.000 1.000 1.000 1.000 
0.75 0.376 0.731 0.962 1.000 1.000 1.000 1.000 1.000 
0.8 0.329 0.676 0.930 0.997 0.001 1.000 1.000 1.000 
0.9 0.204 0.448 0.725 0.962 0.985 0.998 1.000 1.000 
0.99 0.063 0.098 0.151 0.260 0.288 0.399 0.595 0.878 

 
Table 9: The Power rates of β2 when β2 = 2.5 at different levels of multicollinearity and Sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.894 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.880 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.824 0.994 1.000 1.000 1.000 1.000 1.000 1.000 
0.7 0.704 0.968 1.000 1.000 1.000 1.000 1.000 1.000 
0.75 0.646 0.948 1.000 1.000 1.000 1.000 1.000 1.000 
0.8 0.582 0.917 0.997 1.000 1.000 1.000 1.000 1.000 
0.9 0.367 0.718 0.957 1.000 1.000 0.998 1.000 1.000 
0.99 0.082 0.149 0.263 0.468 0.543 0.712 0.913 0.991 

 
power rate increases and tends faster to one 
asymptotically. 
 
Case 3:  True values of  β0 and β1 are maintained while 

that of β2 is allowed to change. 
 When the true value β0 and β1 are maintained and 
that of β2 is allowed to change, the power rate of β2 at 
different levels of multicollinearity and sample size are 
shown in Tables 7, 8 and 9.  
 A comparative examination of these tables reveals 
that the pattern of the results of the power rate of β2 are 
essentially the same with that of β1 already discussed in 
case 1. 
 Consequently, the power rates of the OLS 
estimator on the basis of β1 and β2 are affected by the 
levels of multicollinearity, sample size and the 
hypothesized value. Moreover with increasing sample 
size, the power rate of the OLS estimator increases at 
all levels of multicollinearity.  
 
Case 4: The true value of β0 is maintained while those 

of β1 and β2 are allowed to change. 
 When the true value of β0 is maintained while that 
of β1 and β2 are allowed to change, the following 
combinations are possible: 

• 0 1 21, 1.5, 1.5β = β = β =  

• 0 1 21, 1.5, 2.0β = β = β =  

• 0 1 21, 1.5, 2.5β = β = β =  

• 0 1 21, 2.0, 1.5β = β = β =  
• 0 1 21, 2.0, 2.0β = β = β =  

• 0 1 21, 1.5, 2.5β = β = β =  

• 0 1 21, 2.5, 1.5β = β = β =  
• 0 1 21, 1.5, 2.0β = β = β =  

• 0 1 21, 1.5, 2.5β = β = β =  

 
 However, the results of these two combinations are 
considered: 
 
Case 4.1: 0 1 21, 1.5, 2.5β = β = β =   

 
Case 4.2: 0 1 21, 2.0, 2.0β = β = β =   

 
Case 4.1: 0 1 21, 1.5, 2.5aβ = β = β = . The type 11 error 

rates of β1 and β2 are given in Tables 10 and 
11. 
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Table 10: The Power rates of β1 when β1 = 2.0 at different levels of multicollinearity and Sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.671 0.954 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.651 0.945 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.568 0.821 0.999 1.000 1.000 1.000 1.000 1.000 
0.7 0.464 0.790 0.985 1.000 1.000 1.000 1.000 1.000 
0.75 0.399 0.726 0.977 1.000 1.000 1.000 1.000 1.000 
0.8 0.344 0.642 0.944 0.997 1.000 1.000 1.000 1.000 
0.9 0.213 0.403 0.739 0.958 1.000 1.000 1.000 1.000 
0.99 0.176 0.088 0.160 0.225 0.313 0.411 0.578 0.891 

 
Table 11: The Power rates of β2 when β2 = 2.0 at different levels of multicollinearity and Sample sizes 
Sample Size ρ 10 20 40 80 100 150 250 500 
0 0.650 0.949 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.626 0.942 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.560 0.904 0996 1.000 1.000 1.000 1.000 1.000 
0.7 0.423 0.795 0.985 1.000 1.000 1.000 1.000 1.000 
0.75 0.376 0.731 0.962 1.000 1.000 1.000 1.000 1.000 
0.8 0.329 0.676 0.930 0.997 0.999 1.000 1.000 1.000 
0.9 0.204 0.448 0.725 0.962 0.985 0.998 1.000 1.000 
0.99 0.063 0.098 0.151 0.260 0.288 0.389 0.595 0.878 

 
 It can be observed that the results from Tables 10 
and 11 are identical to those of Tables 4 and 9. Thus, 
the explanations given earlier about the power rates of 
the parameters still hold. 
 Alabi (2007) also show that type1 error rate of β1 is 
the same at different hypothesized values. Thus, the 
effect of the presence of multicollinearity on the type 1 
and type 11 error rate of a particular regression 
coefficient does not affect the value of the other 
parameters.likewise for the power rates of the 
parameters.  
 
Case 4.2: 0 1 21, 2.0, 2.0β = β = β = . The power rates of β1 

and β2 obtained are identical to the one given 
in Tables 5 and 8.Inferences based on Tables 
5 and 8 also apply. It was also observed that 
for all other different combinations similar 
results aree obtained though the results are 
not shown in this paper. 

 
Case 5: All the values of β0, β1 and β2 are allowed to 

change. 
 When all the values of β0, β1 and β2 are allowed to 
change, the following combinations are possible: 
 
• 0 1 21.5, 1.5, 1.5β = β = β =  
• 0 1 21.5, 1.5, 2.0β = β = β =  
• 0 1 21.5, 1.5, 2.5β = β = β =  

• 0 1 21.5, 2.0, 1.5β = β = β =  
• 0 1 21.5, 2.0, 2.0β = β = β =  

• 0 1 21.5, 2.0, 2.5β = β = β =  
• 0 1 21.5, 2.5, 1.5β = β = β =  

• 0 1 21.5, 2.5, 2.0β = β = β =  
• 0 1 21.5, 2.5, 2.5β = β = β =  
• 0 1 22.0, 1.5, 1.5β = β = β =  

• 0 1 22.0, 1.5, 2.0β = β = β =  
• 0 1 22.0, 1.5, 2.5β = β = β =  

• 0 1 22.0, 2.0, 1.5β = β = β =  
• 0 1 22.0, 2.0, 2.0β = β = β =  

• 0 1 22.0, 2.0, 2.5β = β = β =  
• 0 1 22.0, 2.5, 1.5β = β = β =  

• 0 1 22.0, 2.5, 2.0β = β = β =  
• 0 1 22.0, 2.5, 2.5β = β = β =  
• 0 1 22.5, 1.5, 1.5β = β = β =  

• 0 1 22.5, 1.5, 2.0β = β = β =  

• 0 1 22.5, 1.5, 2.5β = β = β =  

• 0 1 22.5, 2.0, 1.5β = β = β =  
• 0 1 22.5, 2.0, 2.0β = β = β =  

• 0 1 22.5, 2.0, 2.5β = β = β =  

• 0 1 22.5, 2.5, 1.5β = β = β =  

• 0 1 22.5, 2.5, 2.0β = β = β =  

• 0 1 22.5, 2.5, 2.5β = β = β =  
 
 However, Alabi (2007) considered the following 
among all the possible combinations. 
 
Case 5.1: 0 1 22.0, 1.5, 2.5β = β = β =  
 
Case 5.2: 0 1 21.5, 2.5, 2.0β = β = β =  
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CASE 5.3: 0 1 22.5, 2.5, 2.5β = β = β = . 
 
 The results for case 5 show that the same trend as 
for other cases.That is: 
 
• The power rates increases asymptotically. 
• Power rates decreases with increase in 

multicollinearity and 
• Power rate is unaffected by change in the values of 

other parameters. 
 

CONCLUSION 
 
 This study has revealed when multicollinearity is 
present in a data set to which regression analysis is to 
be applied, the power rate of the OLS estimator of β0 at 
a specified sample size is the same in all the levels of 
multicollinearity; and that the power rate increases 
asymptotically. Moreover as the hypothesized value 
increases, the power rate tends faster to one 
asymptotically. It further revealed that the pattern of 
effect of the power rate of the OLS estimator of β1 and 
β2 is the same with that of β0 except that at each 
hypothesized value the the power rate decreases as the 
levels of multicollinearity increases at a specified 
sample size. Consequently, increasing the sample size 
increases the power rate of the OLS estimator in all the 
levels of multicollinearity.Hence,the sample size with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the power rate value of one at each level of 
multicollinearity is the tolerable sample size . 
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