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Abstract: A variant of Weyl theorem for a class of quasi-class A acting on an infinite complex Hilbert 
space were discussed.  If the adjoint of T is a quasi-class A operator, then the generalized a-Weyl holds 
for f(T) , for every function that analytic on the spectrum of T. The generalized Weyl theorem holds 
for a quasi-class A was proved. Also, a characterization of the Hilbert space as a direct sum of range 
and kernel of a quasi-class A was given. Among other things, if the operator is a quasi-class A, then 
the B-Weyl spectrum satisfies the spectral theorem was characterized. 
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INTRODUCTION 

  
 Throughout this study let B(H) and K(H), denote, 
respectively, the algebra of bounded linear operators 
and the ideal of compact operators acting on an infinite 
dimensional separable Hilbert space H. If T∈B(H) we 
shall write ker(T) and ran(T) for the null space and 
range of T, respectively. Also, let α(T): = dim ker(T), 
β(T): = co dim ran (T) and let  σ(T),σa(T)σp(T) denote 
the spectrum, approximate point spectrum and point 
spectrum of T, respectively. An operator ( )T B H∈  
is called Fredholm if it has closed range, finite 
dimensional null space and its range has finite co 
dimension. The index of a Fredholm operator is given 
by 

i(T) : (T) (T)= α −β  
 
T is called Weyl if it is Fredholm of index 0 and 
Browder if it is Fredholm of finite ascent and descent. 
     The essential spectrum σe (T), the Weyl spectrum 
σW (T)   and    the   Browder spectrum σb (T) of  T are 
defined by 
 

e(T) { C : T I is not Fredholm},σ = λ∈ − λ  
 

W (T) { C : T I is not Weyl},σ = λ∈ − λ  
and 

b(T) { C: T I is not Browder},σ = λ∈ − λ  

respectively. Evidently 

 
e eW b(T) (T) (T) (T) acc (T)σ ⊆ σ ⊆ σ ⊆ σ ∪ σ , 

  
Where, we write accK for the accumulation points of  
K⊆C. If we write isoK = K - accK then we let  
 

0E (T) : { iso (T) :0 (T I) }= λ∈ σ < α − λ < ∞  
 
for the isolated eigenvalues of finite multiplicity and  

0 bp (T) : (T) (T)= σ − σ                  (1.1) 

 
for the Riesz  points of T. Then (1.1) with the help of 

“Punctured neighborhoods Theorem”  
 

e W 0 0iso (T) (T) iso (T) (T) p (T) E (T).σ − σ = σ − σ = ⊆  
 
Definition 1: [6] We say that Weyl’s theorem holds for  
T∈B(H) if  
 

W 0(T) (T) E (T),σ − σ =  
 
and we shall say that Browder’s theorem holds for 
T∈B(H)  if  

W 0(T) (T) p (T).σ − σ =  
Evidently Weyl’s theorem implies Browder’s theorem.  
Let us denote by: 
 

(H) {T B(H) : (T)  and ran(T) is closed}+Φ = ∈ α < ∞  
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the class of all upper semi-Fredholm operators and 
 

(H) {T B(H) : (T) }−Φ = ∈ β < ∞  
 
the class of all lower semi-Fredholm operators. The 
class of all semi-Fredholm operators is defined by 

(H) (H) (H)−+±Φ = Φ ∪ Φ , whilst the class of all 
Fredholm operators is defined by 

(H) (H) (H)−+Φ = Φ ∩ Φ . The ascent a: = a(T) of an 
operator T is the smallest non-negative integer s such 
that ker(Ts) = ker(Ts+1).  If such integer does not exist 
we put a(T) = ∞. 
 Analogously, the descent  d = d (T) of an operator 
T is the smallest non-negative integer t such that ran(Tt) 
= ran(Tt+1) and if such integer does not exist we put 
d(T) = ∞. It is well-known that if a(T) and d(T) are both 
finite then a(T) = d(T) [7,proposition 1.49]. Two other 
important classes of operators in Fredholm theory are 
the class of all upper semi-Browder operators 

B (H) : {T (H) :a(T) }= ∈Φ < ∞+ +  
 and the class of all lower semi-Browder operators 

B (H) : {T (H) : d(T) }= ∈Φ < ∞− − . 
 The class of all Browder operators is defined 
by Bro(H) : B (H) B (H)= ∩ −+ . Note that if 

T B (H)∈ + then the index is defined by 

i(T) (T) (T)= α −β is less than or equal to 0, whilst if 
T B (H)∈ − , then i(T) 0≥ ,[14].   The class of all Weyl 
Operators  W(H) is defined by 

W(H) {T (H) : i(T) 0}= ∈Φ = . 
 Note that Bro(H) W(H)⊆ , since every Fredholm 
operator with finite ascent and finite descent has 
necessary index 0,[1,9,10].  The classes of operators 
defined above motivate the definition of several spectra. 
The essential approximate point spectrum is 

ea a(T) : { (T K) : K K(H)}σ = σ + ∈� , 
and 

aba (T) : { (T K) :TK KT,K K(H)}σ = σ + = ∈� , 

is the Browder essential approximate point spectrum. It 
is well-known that    ea (T) { C: T I B (H)}.+σ = λ∈ − λ ∉  
 
Definition 2:[1]  We say that a-Browder’s holds for T if  

ea ba(T) (T)σ = σ . 

 It is known that if T∈B(H) then a-Browder’s 
theorem implies Browder's theorem. In [8] , the authors 
proved that Weyl’s theorem holds for quasi-classA, in 
this paper, we prove that generalized Weyl's holds for 
quasi-class A operators. 

RESULTS 
 
Definition 3: An operator T∈B(H)  is said to be quasi-
class A if  

22T T T T T T.∗ ∗≥  

 The class of quasi-class A introduced and studied 
by Jeon and Kim [15], for more interesting properties the 
reader should refer to [8,15]  . 
 
Lemma 4: Let T∈B(H)  be a quasi-class A. Then 
H ran(T) ker(T).= ⊕  MoreoverT1, the restriction of T 
to ran(T) is one-one and onto. 
 
Proof: Suppose that  
 

y ran(T) ker(T) then y Tx
 for some x H and Ty 0.

∈ ∩ =
∈ =

 

 
  It follows that T2x = 0 However, a(T) = 1 and so 

2x ker(T ) ker(T).∈ =  Hence y Tx 0= =  and so 
ran(T) ker(T) {0}.∩ =  Also, T(ran(T)) ran(T).=  If 
x∈H there is u∈ran(T) such that  
 Tu = Tx. Now if z = x-u then Tz = 0 Hence 
H ran(T) ker(T)= ⊕ .  Since  d(T) = 1, T maps ran(T) 
onto  itself. If  y ran(T)∈  and  Ty = 0 then  
y ran(T) ker(T) {0}.∈ ∩ =  Hence T1 is one-one and 
onto.                                     
 Recall that an operator S∈B(H) is said to be 
quasiaffine transform of T (abbreviate S T� ) if there is 
a quasiaffinity X such that XS = TX.  
 
Definition 5:[13] Let Hol( (T))σ be the space of all 
functions that analytic in an open neighborhoods of 

(T)σ .  We say that T∈B(H) has the single-valued 
extension property (SVEP) if for every open set 
U ⊆ � the only analytic function f : U H→ which 
satisfies the equation (T I)f ( ) 0− λ λ = is the constant 
function  f = 0. 
 It is well-known that T∈B(H) has SVEP at every 
point of the resolvent (T) : (T)ρ = − σ� . Moreover, from 
the identity theorem for analytic function it easily 
follows that T∈B(H) has SVEP at every point of the 
boundary (T)∂σ of the spectrum. In particular, T has 
SVEP at every isolated point of (T)σ  [16].  In [18,proposition 

1.8], Laursen proved that if T is of finite ascent, then T 
has SVEP. 
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Lemma 6: If T∈B (H) is a quasi-class A operator 
and S T� . Then S has SVEP. 
 
Proof: Since T is a quasi-class A operator and  it has a 
SVEP, then the result follows from [6]. 
For T∈B(H), it is known that the inclusion 

ea ea(f (T)) f ( (T))σ ⊆ σ holds for every f Hol( (T))∈ σ , 
with no restriction on T.  The next theorem shows that 
for quasi-class A operators the spectral mapping 
theorem holds for the essential approximate point 
spectrum. �  
 
Theorem 7: If T∈B(H) is a  quasi-class A operator.  
Then ea ea(f (T)) f ( (T))σ = σ  holds for 

every f Hol( (T))∈ σ . 
Proof.  Let f Hol( (T))∈ σ . It suffices to show that 

ea ea(f (T)) f ( (T))σ ⊇ σ . Suppose that ea (f (T))λ ∉σ  
then f (T) I (H)+− λ ∈Φ  and i(f (T) I) 0− λ ≤  and 

n1f (T) I c(T I) (T )g(T)− λ = − α − α� , Where, 

n1c, , ,α α ∈� �  and g(T) is invertible. If T is a quasi-

class A, then 
n

jj 1
i(T I) 0

=
− α ≤� and ji(T I) 0− α ≤  for 

each j 1, ,n.= �  Therefore eaf ( (T)).λ∉ σ  This 
completes the proof.  �  
 
Definition 8:[12] For T∈B(H) and closed subset F of �  
the  glocal spectral is 
 

(F) {x H :  analytic function f : F HT
 such that ( I T)f ( ) x,  x F}.

ℵ = ∈ ∃ − →

λ − λ = ∀ ∈ −

�

�
 

 
Definition 9:[12] The quasinilpotent part 0H (T I)− λ and 

the analytic core K(T I)− λ  are defined by 
1n n

0 n
H (T I) : {x H : lim (T I) x 0},

→∞
− λ = ∈ − λ =  and  

 

n 0 n 1

n
n n

K(T I) {x H :  there exists a sequence
 {x } H and 0for which x x ,  (T I)x

x  and x x  for all n 1,2, },

+

− λ = ∈
⊂ δ > = − λ

= ≤ δ = �

 

 
respectively. 
 Note that 0H (T I)− λ and K(T I)− λ are generally 

non-closed hyper-invariant subspaces of T I− λ such 
that 

p
0(T I) (0) H (T I)−− λ ⊆ − λ  for all p 0,1,2,= �  and 

(T I)K(T I) K(T I)− λ − λ = − λ . For more information 
about this subject the reader should refer  to [11,12]. 
 Recall that generalized Weyl's theorem (g-Weyl's) 
holds for T if   BW(T) (T) E(T)σ − σ = ,   Where, E(T) 

denotes the isolated points λ of σ(T), which are 
eigenvalues (no restriction on multiplicity) and 

BW (T)σ is the set of all complex numbers λfor which 

T I− λ is not B-Weyl's. Berkani [3,proposition 3.2] has called 
an operator T∈B(H) is B-Fredholm if there exists a 
natural number n for which the induced operator 

n n
nT : ran(T ) ran(T )→ is Fredholm in the usual sense 

and B-Weyl's" if in addition Tn has zero index. Berkani 
[3,corollary 3.3] has shown that, if g-Weyl's theorem holds 
for T then so does Weyl's theorem.  
  For the sake of simplicity of notation we introduce 
the abbreviations gaW,aW,gW  and W to signify that 
an operator T∈B(H) (which is usually understood) 
obeys generalized a-Weyl's theorem, a- Weyl's 
theorem, generalized Weyl's theorem and Weyl's 
theorem, respectively. 
 Analogous meaning is attached to the abbreviations 
gaB,aB,gB  and B with respect to Browder's theorem. 
In the following diagrams, arrows signify implications 
between various Weyl's and Browder's theorems [2,4,5,20]. 
 

gaB gaW gW gB

aB aW   W   B

← → →
↓ ↓

← → →
� �  

 
Theorem 10: If T∈B(H) is a quasi-classA operator. 
Then BW BW(f (T)) f ( (T))σ = σ  holds for 

every f Hol( (T))∈ σ . 
 
Proof: It is suffices to show BW BW(f (T)) f ( (T))σ ⊇ σ  

since the other inclusion holds for every f Hol( (T))∈ σ  
with no restriction on T.  Let BW (T),µ∈σ and 

f Hol( (T))∈ σ . Since (T)σ is a compact subset of � , 
the function f (z) f ( )− µ possesses at most a finite 
number of zeros in (T)σ . So 

n
jj 1

mf (T) f ( I) (T I) (T I)g(T)
=

− µ = − µ − λ∏ , 

 
Where, , , , n1µ λ λ ∈� � and g(T) is an  invertible 

operator. So 1g(T)−  is a B-Weyl's operator. If 
f (T) f ( I)− µ  is B-Weyl's operator, by [3] applied to 

f (T) f ( I)− µ  and 1g(T)− we have 
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n1
jj 1

m(f (T) f ( I))g(T) (T I) (T I)−
=

− µ = − µ − λ∏  

is a B-Weyl's operator. So from [3]  T I− µ  is B-Weyl's, 
a fact which contradicts our assumption. Hence 

BWf ( ) (f (T))µ ∈σ and  BW BWf ( (T)) (f (T)).σ ⊆ σ                               

 
Theorem 11: Let T be a quasi-class A operator. Then 
generalized Weyl's theorem holds for f(T) for all 
f Hol( (T))∈ σ . 

 
Proof: Since T is isoloid in (T)σ by[8,lemma 1.8] and has 
SVEP, then it suffices to prove that generalized Weyl's 
theorem holds for T. We shall show  
that BW(T) (T) E(T)σ − σ = . Let BW(T) (T)λ∈σ − σ , 

then T I− λ is B-Weyl's. Then by [3,theorem 2.7] there exists 
two closed subspaces N and M of H such 
that H M N= ⊕ , M1T (T I) |= − λ is Weyl's operator, 

N2T (T I) |= − λ is nilpotent and 1 2T I T T .− λ = ⊕  We 
have two possibilities: either 

M M(T | ) or (T | ).λ∈σ λ∉σ  

 
Case I: M(T | ).λ∈σ  Since  MT | is quasi-class A , then 

Weyl's theorem holds for MT |  and so if M(T | ),λ∈σ  

then M M0E (T | ) iso (T | ).λ∈ ⊂ σ  Since 

M M 2T I (T | I | ) T− λ = −λ ⊕  and T2 is nilpotent , 

1(T ) {0} (T I) {0}σ − = σ − λ −  and .iso (T)λ∈ σ  This 

implies that 0E (T) E(T).λ∈ ⊂  

 
Case II: M (T | ).λ∉σ  Then λ is a pole of T which 

implies that .E(T)λ∈  Conversely, let .E(T)λ∈ Let P 
be the spectral projection associated with λ, then 

0ran(P) H (T I),ker(P) K(T I)= − λ = − λ ,  
 

0 0H (T I) 0,H H (T I) K(T I),− λ ≠ = − λ ⊕ − λ  

K(T I)− λ is closed subspace[16,19], Since 

00 ker(T I) H (T I),≠ − λ ⊂ − λ  λ  is a pole of the 

resolvent 1(T) (T I)−ℜ = − λλ , then by [16] there is some 

q>0 such that the space  q(T I) (0)−− λ  is non-zero and  
complemented by a closed T-invariant subspace  

qran((T I) ) ran(T I).− λ ⊂ − λ  Hence T I− λ is B-Weyl's, 
i.e., BW .(T)λ∉σ      
 A bounded linear operator T is called a-isoloid if 

every isolated point of σa(T) is an eigenvalue of T . 
Note that every a -isoloid operator is isoloid and the 
converse is not true in general. 
 Theorem 2.4 of [21]affirms that if T* or T has the SVEP 
and if T is a-isoloid and generalized a-Weyl's holds for 
T then generalized a-Weyl's theorem holds for f(T), for 
every f Hol( (T))∈ σ . If T* is quasi-class A, then we 
have: 
 
Theorem 12:  Let T* be a quasi-class A operator. Then 
generalized a-Weyl’s theorem hold for T. 
 
Proof: Since T* has SVEP then a(T) (T)σ = σ   and 
consequently aE(T) E (T)= . Let  SBF (T)−+

λ∉σ  be 

given, then T I− λ is semi-B-Fredholm 
and i(T I) 0.− λ ≤  Then [17,proposition 1.2] implies that 
i(T I) 0− λ =  and consequently T I− λ is B-Weyl's.  
Hence BW (T)λ∉σ . So it follows from [21,theorem 3.1] that  

a .E(T) E (T)λ∈ =   For the converse, let aE (T)λ∈ . 
Then a .iso (T)λ∈ σ  Since T* has the SVEP, we 

have a(T) (T)σ = σ . Hence (T )∗λ∈σ .  Now we 

represent T* as the direct sum  1 2 ,T T T∗ = ⊕   Where, 

1(T ) { }σ = λ  and 2 1(T ) (T ) { }σ = σ − λ .   Since T is quasi-
class A then so does T1 and so we have two cases: 
 
Case I: ( 0λ = ): Then T1 is quasinilpotent. Hence it 
follows that T1 is nilpotent. Since T2 is invertible, then 
T* is a B -Weyl's. 
 
Case II: ( 0λ ≠ ): Since 1(T ) { }σ = λ , then 1T I− λ is 

nilpotent and 2T I− λ  is invertible. Hence it follows 

from [21,theorem 3.1] that T I∗ − λ is B-Weyl's. Thus in any 
case a SBF(T) (T)−+

λ∈σ − σ .  

 
Theorem 13: Let T B(H)∈  and T or T* is a quasi-
class A. Then the generalized a-Browder’s theorem 
holds for T. 
 
Proof: The proof is a consequence immediate of[8,2].    
 

CONCLUSION 
 
 It can be shown that if T* is a quasi-class A then 
the generalized a-Browder’s theorem holds for f(T) for 
every f Hol( (T))∈ σ . 
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