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Abstract: A new approach is presented to solve second order linear differential equations with 
variable coefficients and some illustrative examples are given. 
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INTRODUCTION 

 
 Consider the second order linear ordinary 
differential equation 
 
  y� +P(x) y� +Q(x) y = G(x)  (1) 
 
where, P, Q and G are continuous functions. It is known 
that the power series method is a powerful method for 
solving Eq.(1). However, this method needs a lot of 
time, space and high concentration during calculations. 
In this research, we present a new approach which can 
be used to a wide class of equations either to find a 
general solution to the associated homogeneous 
equation or to find a particular solution to Eq.(1) 
without requiring the general solution or any solution of 
the associated homogeneous equation as most methods 
require. For more details, see[1]. 
 

MAIN RESULTS 
 

 In this section we introduce our main results. 
 
Theorem 1: Consider the equation  
 
  y� +P(x) y� +Q(x) y = 0  (2) 
 
If v(x) = y�(x) + �(x)y(x), where �(x) is a solution of the 
Riccati equation ��(x) = Q(x) – P(x) �(x) + �²(x), 
then,                 
 

  (x)dx (2 (x ) P(x))dx
y(x) e e dx

− β β −� �= �   (3) 

 
is a solution of Eq.(2). 
 
Proof: It is easy to show that v′ = ( (x) P(x))β − v,  where 

Riccati equation has been used and v(x) = ( (x) P(x))dx
e

β −� , 
then the result is achieved. 

Note: It is known that the substitution v(x) = y
y

′−  

transfers Eq. (2) to a Riccati equation and v(x)dx
y e

−�=  is 
a solution of the equation. This result is included in the 
theorem (1) and the formula (3) really gives a second 
linearly independent solution to Eq. (2) and therefore 
the general solution is constructed. These facts are 
illustrated in the following example.  
 
Example 1: Find a general solution of the equation 
 
  x y� - (1+x) y�+ y = 0  (4) 
 

Solution: Here, P(x)= (1 x)
x

− + , 1
Q(x)

x
=  , so the 

Riccati equation is  
 

��(x) = 1
x

+ 1 x
x
+� �

� �
� �

 �(x) + � 2 (x)  

 
and �(x) = -1 is a solution of the equation, and then 

dx x
1y (x) e e�= = is a solution of the equation. Thus 

  

   
1 x

2 dxdx x
2y (x) e e dx

x 1.

+� �− +� �
� ���=

= − −
�  

 
Hence the general solution is  
 
  x

1 2y(x) c e c (x 1)= + + . 
  
 By using the same technique, naturally one can get 
the following result, which can be used to find a 
particular solution of Eq. (1). In particular, this 
procedure can be used easily to find a particular 
solution of second order ordinary differential equations 



J. Math. & Stat., 4 (1): 58-59, 2008 
 

 59 

with constants coefficients and for Cauchy- Euler 
equation because the associated Riccati equation is 
solvable.  
 
Theorem 2: Consider the equation  
 
  y�+P(x) y�+Q(x) y = G(x)  (5) 
 
 If  v(x) = y�(x)+ �(x)y(x), where �(x) is a solution 
of the Riccati equation 
 
  ��(x) = Q(x) – P(x) �(x) + �²(x), 
 
then 
 

 (x)dx (2 (x) P(x ))dx ( (x) P(x ))dx
y(x) e (e G(x)e dx)dx

− β β − − β −� � �= � �                  
 
is a solution of Eq. (5). 
 
Example 2: Find a particular solution of the equation 
 
  2 2x y 3xy y x ln x, x 0′′ ′+ + = >   (6) 
 

Solution: Here, 3
P(x)

x
=  and 2

1
Q(x)

x
= , so the Riccati 

equation is given by:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ��(x) = 2

1
x

- 3
x
�(x)+�2 (x), 

 

and �(x) = 1
x

 is a solution of the equation. Thus  

 

  

1 1 1
dx dx 2 dx

x x x
p

2

y (x) e (e ln(x)e dx)dx

1 2
x (ln(x) )

9 3

− −� � �=

= −

� �
 

                     
is a particular solution of the given equation.  
 

CONCLUSION 
 

In this research we introduce a new approach for 
solving second order ordinary differential equations, 
and it seems an easier way to teach these equations than 
the usual ones.  
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