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Abstract: Problem statement: The problem of heteroscedasticity occurs in regression analysis for 
many practical reasons. It is now evident that the heteroscedastic problem affects both the estimation 
and test procedure of regression analysis, so it is really important to be able to detect this problem for 
possible remedy. The existence of a few extreme or unusual observations that we often call outliers is a 
very common feature in data analysis. In this study we have shown how the existence of outliers makes 
the detection of heteroscedasticity cumbersome. Often outliers occurring in a homoscedastic model 
make the model heteroscedastic, on the other hand, outliers may distort the diagnostic tools in such a 
way that we cannot correctly diagnose the heteroscedastic problem in the presence of outliers. Neither 
of these situations is desirable. Approach: This article introduced a robust test procedure to detect the 
problem of heteroscedasticity which will be unaffected in the presence of outliers. We have modified 
one of the most popular and commonly used tests, the Goldfeld-Quandt, by replacing its nonrobust 
components by robust alternatives. Results: The performance of the newly proposed test is 
investigated extensively by real data sets and Monte Carlo simulations. The results suggest that the 
robust version of this test offers substantial improvements over the existing tests. 
Conclusion/Recommendations: The proposed robust Goldfeld-Quandt test should be employed 
instead of the existing tests in order to avoid misleading conclusion. 
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INTRODUCTION 
  
 It is a common practice over the years to use the 
Ordinary Least Squares (OLS) as the inferential 
technique in regression. Under the usual assumptions, 
the OLS possesses some nice and attractive properties. 
Among them homogeneity of error variances 
(homoscedasticity) is an important assumption for 
which the OLS estimators enjoy the minimum variance 
property. But there are many occasions[2] when the 
assumption of homoscedastic error variance is 
unreasonable. For example, if one is examining a cross 
section of firms in one industry, error terms associated 
with very large firms might have larger variance than 
those of error terms associated with smaller firms. If the 
error variance changes we call the error heteroscedastic. 
Heteroscedasticity often occurs when there is a large 
difference among the sizes of the observations. It is 
really important to detect this problem because if this 
problem is not eliminated the least squares estimators 

will still be unbiased, but they will no longer have the 
minimum variance property. This means that the 
regression coefficients will have larger standard errors 
than necessary. 
 A large number of diagnostic plots are now 
available in the literature[3,4,9,11,14] for detecting 
heteroscedasticity. But graphical methods are very 
subjective so we really need analytical methods to 
detect the problem of heteroscedasticity. Rigorous 
procedures for testing the homoscedasticity of data are 
available in the literature[1,5,15]. Most of these techniques 
are based on the least squares residuals but there is 
evidence that these residuals may not exhibit 
heteroscedastic pattern if outliers are present in the 
data. According to Hampel et al.[7] the existence of 1-
10% outliers in a routine data is rather rule than 
exceptions. We suspect that these analytical tests may 
suffer from possessing poor power in the presence of 
outliers. In this study we first investigate how the 
commonly used heteroscedastic tests perform in the 
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presence of outlier. We observe that all the tests 
considered in our study suffer in this situation and for 
this reason we robustify the Goldfeld-Quandt test. Real 
data sets and simulation experiments show that the 
proposed modified Goldfeld-Quandt test outperforms 
other tests in detecting heteroscedasticity in the 
presence of outliers. 
 An excellent review of different analytical tests for 
the detection of heteroscedasticity is available in 
Kutner, Nachtsheim and Neter[10] and in Chatterjee and 
Hadi[3]. In our study we consider the tests which are 
very popular and commonly used in econometrics. First 
we consider the Goldfeld-Quandt test. This test is 
applicable if one assumes that the heteroscedastic 
variance 2

tσ s is positively related to one of the 
explanatory variables in the model. For simplicity, let 
us consider the usual two-variable model: 
 
Yt = α + β Xt + ut (1) 
 
 Suppose 2

tσ  is positively related to Xt as: 
 

2
tσ  = 2 2

tXσ   (2)  
 
where, σ2is a constant. Such an assumption has been 
found quite useful in family budgets. If (2) is 
appropriate, it would mean 2

tσ  would be larger for the 
larger values of X. If that turns out to be the case, 
heteroscedasticity is most likely to be present in the 
model. To test this explicitly, Goldfeld and Quandt[9] 
suggest ordering the observations according to the 
values of X, beginning with the lowest X value. To 
possess better power they suggest omitting c central 
observations. OLS regressions are fitted separately to 
the first and last (n-c)/2 observations and the respective 
residual sum of squares RSS1 and RSS2 are obtained. 
Under normality of errors, each RSS follows a chi-
square distribution with (n-c-2k)/2 degrees of freedom, 
where k is the number of parameters to be estimated, 
including the intercept. Then the ratio: 
 

2 2 2

1 1 1

RSS / df RSS
RSS / df RSS

λ = =   (3) 

 
 Under the assumption of normality and 
homoscedasticity λ follows an F distribution with 
numerator and denominator d.f. each of (n-c-2k)/2. 
 The Goldfeld-Quandt test is a natural test to apply 
when one can order the observations in terms of the 
increasing variance of the error term (or one 
independent variable). An alternative test, which does 

not require such an ordering and is easy to apply, is the 
Breusch-Pagan test. To illustrate this test, consider the 
k-variable linear regression model: 
 
Yt = �1 + �2t 2t k ktX X+ + β� + ut  (4) 
 
 Assume that the error variance 2

tσ  is described as: 
 

2
tσ  = f (α1 + α2 Z2t+…+ αmZmt) (5) 

 
that is, 2

tσ  is some function of the nonstochastic 
variable Z’s; some or all of the X’s can serve as Z’s. 
We also assume that: 
 

2
tσ  = 1α + 2α Z2t+…+ αm Zmt  (6)  

 
that is, 2

tσ  is a linear function of the Z’s. If α2 = α2 = … 
= αm = 0, we get 2

tσ  = α1, which is a constant. 

Therefore, to test whether 2
tσ ’s are homoscedastic, one 

can test the hypothesis that α2 = α3 = … = αm 0. This is 
the basic idea behind the Breusch-Pagan test. In this test 
we Estimate the model (6) by the least squares method 
and obtain the residuals. Then the mean of squared least 
square residuals 2σ̂  = 2

tû� / n are computed and the 

variable 
2
t

t 2

û
p

ˆ
=

σ
 is constructed. Next we regress pt on 

the Z’s to Obtain the SSE (error sum of squares). 
Finally we compute the test statistic: 
 
T = SSE/2 (7) 
 
 Under the assumption of normality and 
homoscedasticity T ~ 2

m 1−χ  and if the value of T exceeds 
the critical value, we conclude that heteroscedasticity is 
present in the data. 
 Unlike the Goldfeld-Quandt test, which requires 
reordering the observations with respect to the X 
variable that supposed to cause heteroscedasticity, or 
the Breusch-pagan test, which is sensitive to the 
normality assumption, the general test of 
heteroscedasticity proposed by White[20] does not rely 
on the normality assumption and is very easy to 
implement. As an illustration of the basic idea, consider 
the following three-variable regression model (the 
generalization to the k-variable model is straight-
forward). Given the data, we estimate regression 
parameters by the OLS method and obtain the residuals. 
 We then run the following (auxiliary) regression:  
 

2 2 2
t 1 2 2 t 3 3t 4 2 t 5 3t 6 2 t 3t tû X X X X X X e= α + α + α + α + α + α +  (8) 
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where et is the random error term. In other words, the 
squared residuals from the original regression are 
regressed on the original X variables or regressor, their 
squared values and the cross product(s) of the 
regressors. Higher power of the regressors can also be 
introduced. It is important here to note that there is a 
constant term in this equation even though the original 
regression may or may not contain it. Now we obtain 
the R2 from this (auxiliary) regression. Under the null 
hypothesis that there is no heteroscedadticity, it can be 
shown that sample size (n) times the R2 obtained from 
the auxiliary regression asymptotically follows the chi-
square distribution with d.f. equal to the number 
regressors (excluding the constant term) in the auxiliary 
regression as given in (8). That is, for a regression 
model with p regressors: 
 
n.R2 ~ Asymptotic 2

aχ   (9) 
 
 The degrees of freedom a = 2p+p-1. If the chi-
square value thus obtained exceeds the critical chi-
square value at the chosen level of significance, the 
conclusion is that there exists heteroscedasticity.  
 

MATERIALS AND METHODS 
 
Modified Goldfield-Quandt test: we have briefly 
discussed some popular tests for heteroscedasticity 
detection. But there is evidence that all these tests suffer 
a huge setback when outliers are present in the data. So 
we need to develop a test which is not much affected by 
outliers. Here we propose a new test which is a 
modification of the Goldfeld-Quandt test. We first 
identify which components of the Goldfeld-Quandt test 
are affected by outliers and then replace these 
components by robust alternatives. It is worth 
mentioning that this kind of replacement does not help 
the other two tests that we consider in the previous 
section. We call this test the Modified Goldfeld-Quandt 
(MGQ) test which, we believe, will be more powerful 
than the existing tests in the presence of outliers.  
  Here we outline the proposed modified Goldfeld-
Quandt test. This test contains the following steps: 
 
Step 1: Likewise the classical Goldfeld-Quandt test, 

we order or rank the observations according to 
the value of X, beginning with the lowest X 
values  

Step 2: We omit central c observations, where c is 
specified a priori and then we divide the 
remaining (n-c) observations into two groups 
each of (n-c)/2 observations 

Step 3: Check for the outliers by any robust regression 
technique. We prefer to use the robust Least 

Trimmed of Squares (LTS) method suggested 
by Rousseeuw and Leroy[13] to fit the 
regression line. We compute the deletion 
residuals[8] for the entire data set based on a fit 
without the points identified as outliers by the 
LTS fit.  

Step 4: For both the groups compute the Median of the 
Squared Deletion Residuals (MSDR) and 
compute the ratio  

  

MGQ = 2

1

MSDR
MSDR

  (10) 

 
where, MSDR1 and MSDR2 are the median of the 
squared deletion residuals for the smaller and the larger 
group variances respectively. Under normality, the 
MGQ statistic follows an F distribution with numerator 
and denominator degrees of freedom each of (n-c-2k)/2. 
 

RESULTS AND DISCUSSION 
 
Numerical examples: Here we present few examples 
to show the advantage of using the modified Goldfeld-
Quandt test in the detection of heterogeneity of error 
variances problem. 
 

Housing expenditures data: Our first example is the 
housing expenditures data given by Pindyck and 
Rubinfeld[12]. This single-predictor data set (Table 1) 
contains 20 observations that give housing expenditure 
for four different income groups. 
 As expected, peoples with higher income have 
relatively more variation in their expenditures on 
housing. The scatter plot as shown in Fig. 1 clearly 
exhibits the heteroscedastic pattern of the data.  
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Fig. 1: Residuals vs. fitted plot for original housing 

expenditures data 
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Table 1: Original and modified housing expenditures data 
Index Income Housing Exp. Index Income Housing Exp. 
1 5 1.8 (4.9) 11 15 4.2 
2 5 2.0 12 15 4.2 
3 5 2.0 13 15 4.5 
4 5 2.0 14 15 4.8 
5 5 2.1 15 15 5.0  
6 10 3.1 16 20 4.8 
7 10 3.2 17 20 5.0 
8 10 3.5 18 20 5.7 
9 10 3.5 19 20 6.0 
10 10 3.6  20 20 6.2 (2.0) 

 
Table 2: Heteroscedasticity diagnostics for housing expenditures data 
 Without outliers With outliers 
 -------------------------- -------------------------------- 
 Value of  Value of  
Test Statistic p-value Statistic p-value 
Goldfeld- 9.3817 0.0077 1.5128 0.3139 
Quandt 
Breusch- 6.8660 0.0088 0.8387 0.3598 
Pagan 
White 7.2003 0.0073 0.3416 0.5589 
MGQ 5.8450 0.0248 10.8055 0.0034 
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Fig. 2: Residuals vs. fitted plot for modified housing 

expenditures data 
 
 We now deliberately put two outliers into the data 
set by replacing the housing expenditures of the cases 
indexed by 1 and 20 (modified values are presented 
within the parentheses).  
 Figure 2 shows the residuals-fits plot for the 
housing expenditures data. This plot is not as clear as 
Fig. 1 in exhibiting variance heteroscedasticity and we 
definitely need analytical tests to draw a definite 
conclusion. 
 
 We apply all the conventional tests like the 
Goldfeld-Quandt, the Breusch-Pagan and the White 
tests on the original and modified housing expenditures 
data and the results are presented in Table 2. We 
observe from this table that all the conventional tests 
variance   when   the   data   set   is   free  from  outliers. 
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Fig. 3: Residuals vs. fitted values for original 

consumption expenditure data 
 
But all these tests fail to detect the problem of 
heteroscedasticity when outliers occur in the data set. 
We now apply our proposed modified Goldfeld-Quandt 
test on the original and modified housing expenditures 
data and these results are presented in Table 2. We 
observe from this table that the modified Goldfeld-
Quandt test performs in a similar way as the Goldfeld-
Quandt test when there is no outlier. But unlike the 
other tests, it can successfully detect the 
heteroscedasticity in the presence of outliers yielding a 
highly significant p-value.  
 
Consumption expenditure data: Our next example is 
the consumption expenditure and income data given by 
Gujarati[6]. 
 This data contains 30 observations and it shows 
that the expenditure of peoples vary with their income. 
So we can guess that in this data the variation is not 
constant. We now deliberately put three outliers into the 
data set by replacing the housing expenditures of the 
cases indexed by 1, 2 and 30 (modified values are 
presented within the parentheses). This data set together 
with the outliers is shown in Table 3.  
 Figure 3 and 4 shows the residuals-fits plot for the 
original and modified consumption data. The variance 
heterogeneity is clearly visible with the original data 
but when outliers are present in the data this 
phenomenon is not clearly visible. 
 Table 4 offers a comparison between the newly 
proposed modified Goldfeld-Quandt test and other 
existing tests in the detection of heteroscedasticity for 
the consumption data. Table 4 shows that the Goldfeld-
Quandt, the Breusch-Pagan and the White tests can 
correctly identity the heteroscedastic pattern of variance 
when the data set is free from outliers but they become 
unsuccessful in the presence of outliers. The modified 
Goldfeld-Quandt test can successfully detect the 
heteroscedasticity on both the occasions. 
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Table 3: Original and modified consumption expenditure data 
Index Expenditure Income Index Expenditure Income Index Expenditure Income 
1 55 (10) 80 11 74 105 21 152 220 
2 65(10) 100 12 110 160 22 144 210 
3 70 85 13 113 150 23 175 245 
4 80 110 14 125 165 24 180 260 
5 79 120 15 108 145 25 135 190 
6 84 115 16 115 180 26 140 205 
7 98 130 17 140 225 27 178 265 
8 95 140 18 120 200 28 191 270 
9 90 125 19 145 240 29 137 230 
10 75 90 20 130 185 30 189 (100) 250 

 
Table 4: Heteroscedasticity diagnostics for consumption expenditure 

data 
 Without outliers With outliers 
 ----------------------------- ------------------------------ 
 Value of p-value Value of p-value 
Test Statistic  Statistic 
Goldfeld- 3.8895 0.0215 1.0149 0.4909 
Quandt 
Breusch- 5.214 0.0224 0.1856 0.6666 
Pagan 
White 5.2722 0.0217 0.0697 0.7917 
MGQ 2.9066 0.0537 6.2216 0.0039 
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Fig. 4: Residuals vs. fitted values for modified 

consumption expenditure data 
 
Restaurant food sales data: Finally we consider 
restaurant food sales data given by Montgomery et 
al.[11] 
 In this data set there is a relation of income with 
advertising expense. Again we deliberately put three 
outliers into the data set by replacing the income of the 
cases indexed by 1, 27 and 30 (modified values are 
presented within the parentheses). The original and the 
modified data are shown in Table 5.  
 Figure 5 and 6 show the residuals-fits plot for the 
original and modified consumption data. The varianc 
heterogeneity is clearly visible with the original data 
but when outliers are present in the data this 
phenomenon is not clearly visible. 
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Fig. 5: Residuals vs. fitted plot for original restaurants 

food sales data 
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Fig. 6: Residuals vs. fitted plot original restaurants 

food sales data 
 
 Likewise the previous examples we employ the 
Goldfeld-Quandt, the Breusch-Pagan, White and 
modified Goldfeld-Quandt test to the restaurants food 
sales data and obtain similar results that we got 
earlier. Test  results as shown in Table 6 shows that 
the  three conventional  tests perform  well in 
detection of heteroscedasticity but their performances 
become  poor  when  outliers  are  present  in  the data.
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Table 5: Original and modified restaurant food sales data 

Index Income Ad. Exp. Index Income  Ad. Exp. Index Income Ad. Exp. 

1 81464 (300000) 3000 11 131434 9000 21 178187 15050 
2 72661 3150 12 140564 11345 22 185304 15200 
3 72344 3085 13 151352 12275 23 155931 15150 
4 90743 5225 14 146926 12400 24 172579 16800 
5 98588 5350 15 130963 12525 25 188851 16500 
6 96507 6090 16 146630 12310 26 192424 17830 
7 126574 8925 17 147041 13700 27 203112 (300000) 19500 
8 114133 9015 18 179021 15000 28 192482 19200 
9 115814 8885 19 166200 15175 29 218715 19000 
10 123181 8950 20 180732 14995 30 214317 (21431) 19350 

 
Table 6: Heteroscedasticity diagnostics for restaurants food sales data 
 Without outliers With outliers 
 ------------------------------- -------------------------------- 
 Value of  Value of 
Test statistic p-value statistic p-value 
Goldfeld- 4.03671 0.019 1.074 0.4563 
Quandt 
Breusch- 3.1787 0.0746 0.3799 0.5376 
Pagan 
White 4.3575 0.0368 0.0963 0.7562 
MGQ 4.9917 0.0090 10.4566 0.0005 

 
The modified Goldfeld-Quandt test performs best. 
Irrespective of the presence of outliers it can 
successfully detect the heteroscedastic error variance in 
the data.  
 
Simulation Study: Now from our experience with 
individual data sets we want to confirm our results by 
reporting a Monte Carlo simulation experiment. In our 
simulation experiment, we consider a design of 5 and 
10% outliers in heteroscedastic data. Here we consider 
a simple but interesting heteroscedastic variance 
problem where the variance is the square of the mean of 
the response variable.  
 Let us consider a  simple two variable linear 
model: 
 
Y = 4 + 5 X + ∈  (11) 
 
 In our simulation study, all the values of X are 
being taken equally spaced such as 1, 2,…, 10 and 
these values are replicated several times to get higher 
sample sizes. We generate the random errors from 
Normal distributions with mean 0 and standard 
deviations X, 2X and 3X. We put outliers in the error 
term in every 20th or 10th position to generate 5 and 
10% outliers respectively. The magnitude of the 

outlier is 5 times the standard deviation of the original 
errors. The Y values are obtained from the Eq. 11. We 
run this simulation experiment for five different 
sample sizes n = 20, 30, 40, 60 and 100. To assess 
which of the tests does the best in detecting 
heteroscedasticity in the presence of outliers we 
consider powers of four tests, the conventional 
Goldfeld-Quandt, Breusch-Pagan and White tests and 
the newly proposed modified Goldfeld-Quandt test. 
For each test we set the level of significance 0.05 and 
the results of this experiment are shown in Table 7-9 
each of which is based on the average of 10,000 
simulations. 
 Table 7-9 offer comparisons between the newly 
proposed modified Goldfeld-Quandt test and 
conventional Goldfeld-Quandt, Breusch-Pagan and 
White tests in the detection of heteroscedasticity for the 
5 and 10% outlier data. All the three conventional tests 
perform very poorly in simulation. The Goldfeld-
Quandt test performs relatively well for 5% outliers. 
The Bruesch-Pagan test performs relatively well for 
10% outlier cases but its performance tends to 
deteriorate with the increase in sample size. The White 
test performs worst in every situation. Throughout the 
simulation experiment each of the conventional tests 
shows inconsistence pattern for the sample size n = 30. 
But the newly proposed modified Goldfeld-Quandt test 
performs  superbly  throughout. For small sample size 
(n = 20) and lower contamination (5%) its performance 
is similar to the Goldfeld-Quandt test, but its power 
tends to increase with the increase in sample size. We 
also observe that the test is robust in the sense that it 
performs exactly in the same way when outliers occur 
in a data with different levels of error variances. Thus 
the modified Goldfeld-Quandt test outperforms the 
conventional tests in every respect and is proved to be 
the best overall. 
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Table 7: Simulations results of heteroscedasticity tests for error variance = X2 
   5% Outliers     10% Outliers 
 -------------------------------------------------------------------------- --------------------------------------------------------------------------- 
Test 20 30 40 60 100 20 30 40 60 100 
GQ 84.50 0 57.83 94.58 100.00 100.00 5.80 0.94 1.20 0.00 
BP  0.00 0 0.00 22.90 94.90 79.64 18.26 38.34 7.12 5.30 
White 0.00 0 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 
MGQ 82.58 95 97.58 99.52 100.00 88.16 97.20 99.30 99.88 100.00 
 
Table 8: Simulations results of heteroscedasticity tests for error variance = 4X2 
   5% Outliers     10% Outliers 
 ----------------------------------------------------------------------------- ---------------------------------------------------------------------------
Test 20 30 40 60 100 20 30 40 60 100 
GQ 85.00 0.00 58.36 94.56 100.00 100.00 0.80 5.78 1.22 0.00 
BP 0.02 0.00 0.00 22.95 90.18 79.74 38.42 18.96 7.52 4.50 
White 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 
MGQ 83.12 95.34 97.50 99.70 100.00 86.98 97.14 99.10 99.92 100.00 
 
Table 9: Simulations results of heteroscedasticity tests for error variance = 9X2 
   5% Outliers     10% Outliers 
 ------------------------------------------------------------------------- ----------------------------------------------------------------------------- 
Test 20 30 40 60 100 20 30 40 60 100 
GQ 86.28 0.00 57.12 95.06 100.00 100.00 0.96 6.30 1.21 0.00 
BP 0.00 0.00 0.00 24.56 90.32 78.82 36.80 18.08 7.96 4.46 
White 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 
MGQ 83.40 96.40 97.72 99.66 100.00 87.36 97.46 99.12 99.94 100.00 
 

CONCLUSION 
 
 In this research we show that all commonly used 
tests for detecting heteroscedasticity fail when outliers 
are present in the data. We develop a new test in this 
regard which is a simple but robust modification of the 
Goldfeld-Quandt test. The real data sets and Monte 
Carlo simulations show that modified Goldfeld-Quandt 
test offers substantial improvements over the existing 
tests and performs superbly in the detection of 
heteroscedasticity in the presence of outliers. 
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