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Abstract: Problem Statement: The problem of detection of functional magnetic resonance images 
(fMRIs), that is, to decide active and nonactive regions of human brain from fMRIs is studied in this 
paper. fMRI research is finding and will find more and more applications in diagnosing and treating 
brain diseases like depression and schizophrenia.  At its initial stage fMRI detection are pixel-wise 
methods, which do not take advantage of mutual information among neighboring pixels. Ignoring such 
spatial information can reduce detection accuracy. During past decade, many efforts have been 
focusing on taking advantage of spatial correlation inherent in fMRI data. Most well known is 
smoothing using a fixed Gaussian filter and the compensation for multiple testing using Gaussian 
random field theory as used by Statistical Parametric Mapping (SPM). Other methods including 
wavelets had also been proposed by the community. Approach: In this study a novel two-step 
approach was put forward that incorporates spatial correlation information and is amenable to analysis 
and optimization. First, a new multi scale image segmentation algorithm was proposed to decompose 
the correlation image into several different regions, each of which is of homogeneous statistical 
behavior. Second, each region will be classified independently as active or inactive using existing 
pixel-wise test methods. The image segmentation consists of two procedures: Edge detection followed 
by label estimation. To deduce the presence or absence of an edge from continuous data, two 
fundamental assumption of our algorithm are 1) each wavelet coefficient was described by a 2-state 
Gaussian Mixture Model (GMM); 2) across scale, each state is caused by its parent state, hence the 
Multiscale Hidden Markov Model (MHMM). The states of Markov chain are unknown (“hidden”) and 
represent the presence (state 1) or absence (state 0) of edges. Using this interpretation, the edge 
detection problem boils down to the posterior state estimation given observation. Results: Data 
processing results demonstrate much improved efficiency of our algorithm compared with pixel-wise 
detection methods. Conclusions: Our methods and results stress the importance of spatial-temporal 
modeling in fMRI research. 
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 INTRODUCTION 
 
Spatial modeling of fMRI and outline fort the 
method: Magnetic Resonance Imaging (MRI) is a 
powerful diagnostic imaging technique based on the 
principle of nuclear magnetic resonance, describing the 
interaction of nuclei and magnetic fields. While 
traditional MRI provides only static images to analyze 
anatomical structure, functional MRI (fMRI), a newer 
imaging modality which is based on MRI and just came 
to the stage around two decades ago, acquires a series 
of images to detect neural activity, to locate brain 
activation. In other words, the central task for fMRI is 
to obtain maps of active and nonactive regions of the 
brain[1-2]. 

 Closely related to this study is[1], which uses 
generalized likelihood ratio test to get the activation 
map. Since its publication[1], has received many 
citations, including, but not limited to[26,28,29,30]. It 
almost forms the basis for fMRI complex data 
processing. In particular, the model and methods in[1] 
were also validated and generalized by some other 
work[29,30]. 
 As in[1], pixelwise detection for fMRI is most 
common in practice[2-4]. Some standards software’s like 
SPM and AFNI[13-14] now already exist. However, these 
techniques do not take advantage of mutual information 
between neighboring pixels. Ignoring such spatial 
information can cause problems. For example, at first 
sight to a physician, the last figure in[1] seems surprising 



J. Math. & Stat., 4 (4): 255-263, 2008 
 

 256 

because there are activation areas outside brain! On the 
other hand, utilizing spatial information may enhance 
our detection accuracy. For example, it may be quite 
possible that an activated (contiguous) areas is larger 
than individual pixel dimensions. In other words, 
activated areas tend to occur in clusters of neighboring 
pixels, or if we know, by some means, there is strong 
indication that a large group of pixels, which may be 
thought of as one large pixel at very coarse (spatial) 
scale, is active, then the individual pixels inside this 
group, which may be regarded as pixels at a finer scale, 
are more likely to be active themselves. Hence comes 
the idea of (spatial) scale and incorporating spatial 
correlation into the fMRI detection process. 
 In light of the above simple idea, the kind of the 
pixelwise detection is oversimplistic. Therefore it is 
necessary to develop detection methods taking 
advantage of spatial correlation. There are many 
approaches to attack the problem, for example, cluster 
analysis[23] and Independent Component Analysis (ICA) 
algorithm[6]. Detection methods using Bayesian 
strategies have been proposed for fMRI[22]. Just as in 
pixelwise detection, we need to model each time series; 
when we turn attention to spatial correlation, we also 
need consider spatial modeling for our problem. This is 
by no means an easy job. But, we note that those 
Bayesian methods mentioned above are all restricted to 
modeling on the finest scale. Such methods tend to be 
very computationally demanding and are often difficult 
to analyze and interpret. Therefore, multiscale modeling 
(specifically, multiscale image segmentation) will be 
considered that incorporates spatial correlation 
information and is much more amenable to analysis and 
optimization. 
 Some work  has already been done in this aspect[10-

11, 28]. This study will adopt a two-step approach for 
fMRI detection: multi-scale image segmentation will be 
first used to break the correlation image into several 
different regions, each of which is of homogenous 
statistical behavior, then these regions will be classified 
independently as active or inactive by single-pixel 
detection methods. Since pixelwise detection has been 
elaborated in other literature, this study will concentrate 
on the first step of image segmentation. 
 

MATERIAL AND METHODS 
 
General setting of Bayesian image segmentation: In 
essence, the detection of fMRI, in a more general 
setting, may be addressed as particular image 
segmentation problem. 
 We are given a random continuous noisy image Y 
which must be segmented into a discrete image X 

consisting of regions of distinct statistical behavior. For 
example, in fMRI, image Y may be composed of the 
correlation data (specifically the correlation between 
amplitude time series and the reference signal) at all 
pixels, image X may be just the binary detection map. 
 We assume that each observed pixel in image Y is 
dependent on a corresponding unobserved label in X. 
Each label specifies one of M possible states, each with 
its own statistical behavior. In our case, ideally we hope 
M = 2 indicating “active” and “inactive”. However, in 
the general case of our two-step approach, in the first 
step, we just want to segment the correlation image in 
to regions with homogeneous statistical behavior, so M 
is not confined to be 2. The decision on activeness is 
made in the second step, i.e., applying single-pixel 
detection to each region. 
 The dependence of observed pixels on their labels 
is specified through the conditional distribution of Y 
given X, i.e., Py|x(y|x).This contains most information, 
but is very difficult to determine in practice. A Priori 
knowledge about the size and shapes of regions will be 
modeled by the a priori distribution p(x). The 
complexity of the problem is easily imagined because 
even this information eludes us for real problems. 
Under some criterion (for example, maximize A 
Posteriori (MAP), we wan to find the estimate of X 
given observed image Y = y. This is the general 
framework for Bayesian image segmentation problem. 
 By Bayes formula, the estimate of X given 
observed image Y = y is: 
 

x x

px(x)py x(y,x)
x̂ arg max pX Y(x, y) max

py(y)
= =  (1) 

 
 

x x
all X

p(X x)p(Y y X x)
max maxpX(x)pY X(y,x)

p(X)p(Y y X)

= = =
= ∝

=�
 (2) 

 
 Where capital letters denote random quantities and 
lower case letters denote the deterministic realizations. 
 The formula seems easy. However, remember that 
X is 2-D image of integer values, optimization is 
prohibitively difficult, in general. Further, 
characterization of a prior p(X) is not easy, either. 
 
Multi scale image segmentation methods and 
advantages: Traditionally, image segmentation has 
been accomplished using Markov Random Field (MRF) 
models. The global statistical models in the MRF 
theory substantially improve over local methods[15,16]. 
They provides a powerful framework for studying 
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nonlinear interactions between different features[16]. 
Under MAP criterion, they lead to the minimization of 
a global energy function which is very computationally 
expensive[15,17]. 
 The Multi-Scale Hidden Markov model (MHMM) 
proposed in[18] is used to deal with this problem in this 
study. The states (an edge or smooth area), of the 
wavelet coefficients at different scales are modeled as 
Markov chain. 
 According to results and conclusions from other 
literature[8,20], this kind of multi-scale modeling not 
only captures the key inter-scale physical dependency 
present in natural signals and images (of course, the 
effect is demonstrated by real applications), it also leads 
to computationally efficient (usually scale-recursive) 
algorithms. 
 
Some general peoperties of screte wavelet transform: 
In general, multi-scale analysis refers to the study of 
behavior of signals or images at various spatial and/or 
temporal resolutions[21]. The wavelet transform has 
several attractive properties which allow tremendous 
applications for signal and image processing[18]. The 
first two are multiresolution and locality: Each wavelet 

j
k (t)ψ is only a dilated and translated version of original 

mother wavelet ψ(t) and is localized simultaneously in 
time and frequency. The 3rd one is compressive 
property: The wavelet coefficients of real-world 
signals/images tend to be sparse. The 4th and 5th 
properties are clustering and persistence: If one wavelet 
coefficient is large/small, then its adjacent coefficients 
are very likely to also be large/small and large/small 
values of wavelet coefficients tend to propagate across 
scales. The clustering property suggests that 
coefficients may have strong dependencies within scale, 
while persistence leads to dependencies of wavelet 
coefficients across scale. The hidden Markov model 
used in section (3.4) is to try to utilize these properties.  
 
Theory and method -image segmentation by multi-
scale hidden markov model of wavelet  coefficients: 
The main ideas originate from[18]. This method consists 
of two procedures: The first one is edge detection and 
the other is label (state) estimation. The idea of 
applying wavelet analysis to edge detection is quite 
simple. Roughly speaking, wavelet coefficients 
represent the differences between function 
approximations at different scales (or resolutions), one 
kind of differentiation, intuitively, is well suited for 
edge detection. In the  following  four  subsections,  I' ll 
address  in  detail  how  to  achieve  the  first  step: 
edge-detection.  Then I'll  explain  briefly  the  second 
step  and  how  to  apply  our  formulations  in  1-D 
case to 2-D image. 

Likelihood function for the fMRI data: Modelling 
the spatial correlation of the fMRI data in making 
statistical inference is a challenging problem for which 
not many solutions have been proposed than the 
solutions addressing the temporal dependencies. In this 
study, we deal with fMRI magnitude images. As noted 
in the beginning, the fMRI correlation image in this 
case may be modeled as 2-d Gaussian process. The 
correlation between reference, which is characteristic of 
the BOLD response[1] and assumed known in this study 
and the magnitude time series NT

j jj 1
z :c r z r z

=
= =�  is 

Gaussian distributed (provide the signal noise ratio is 
not very small). But for simplicity, let us first consider 
the one-dimensional analog. Yielding to invention, we 
assume that the length of the correlation sequence is a 
power of 2. The observation model is: 
 

J J J J
k k kc p w ,k 0,...,2 1= + = −  (3) 

 
Where: 

J J
kc {c }=  = Observations (spatial correlations) 

J J
k{ }ρ = ρ  = True correlation values 

J
k{w }  = Noise 

 
 Now we are going to use a special (the simplest) 
multi-scale analysis, i.e., Haar wavelet transform on the 
data: 
 

j 1 j 1
j j2k 2k 1
k 0

c c
c ,k 0,...,2 1, j j J 1

2

+ +
++= = − ≤ ≤ −  

 
 The multi-scale analysis of the data ρ and w is 
defined in an analogous way. 
 It is then straightforward to see that: 
 

j j j
k k kc w= ρ +  

 
 The noise J J

k{w ,k 0,...,2 1}= −  are assumed to be 
(spatially) independent, identically distributed zero-
mean Gaussian random variables with variance σ2. It 
then follows that the preceding sentence is also true for 
any j, resulting in the likelihood function: 
 

( ) ( )
j 12

j j j j 2
k k 0

k 0

p c N c , , j j j
−

=

ρ = ρ σ ≤ ≤∏  (4) 

  

 Where, { }
j 12j j

k k 0
c c

−

=
≡  and similarly for j 2, N(x , )ρ ρ σ  

denotes a Gaussian density with mean ρ and variance 2 
evaluated at the point x. 
 The relationship between a “parent” (e.g., j

kc ) and a 
“child” (e.g., j 1

2kc + ) is very important in multi-scale data 
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analysis. The parent-child conditional likelihood in our 
case turns out to be: 
 

j j 2
j 1 j j 1 k k
2k k, 2k

c
p(c | c ) N c | ,

22 2
+ +

ρ

� �θ σ= +� �
� �

 (5) 

 
 Where, the canonical parameter: 
 

j 1 j 1
j 2k 2k 1
k 2

+ +
+ρ − ρθ =  (6) 

 
 Is simply the Haar wavelet coefficient of true 
correlation ρ at scale j and location k. This nice form of 
the likelihood suggests the use of so called conjugate 
prior for the wavelet coefficients in the following 
subsection, which complements the observation model 
and leads to closed form for the posterior of the states. 
 Further, the likelihood function (4) with j = J can 
be factorized as follows[2]: 
 

j 1

0

J 1 2
J0 J0 j 1 j j

2k k k
k 0j J

p(c ) p(c ) p(c | c , )
−−

+

==

ρ = ρ θ∏∏  (7) 

 
 Where, J0 is the coarsest scale for the analysis 
(usually we use J0 = 0), j 1 j j

2k k kp(c c , )+ θ  is given by (5) and 
J0 J0p(c )ρ is given by (4) with j = J0. 

 
Multi-scale hidden Markov model (MHMM) for the 
prior of the wavelet coefficients: Now let’s consider 
prior (joint) probability for the (unknown) wavelet 
coefficients θ. A simple approach is to model them as 
independent Gaussian mixture random variables. We 
move beyond this simple prior, by specifying 
probabilistic dependencies between the states 
underlying the mixtures of parent and child wavelet 
coefficients. To deduce discrete state estimations from 
continuous data, the key point for our algorithm is to 
associate the continuous wavelet coefficients with a 2-
state discrete Markov chain. 
 Specifically, for our real problem, the states (edge 
or smoothness) of the Markov chain are unknown 
(“hidden”) and represent the presence or absence of 
edges: state 0 indicates a homogenous region, state 1 
represents the existence of an edge. We perceive that 
the under lying signal is generally smooth with a few 
large edges, then the following modeling is intuitively 
reasonable, i.e., we consider two states mixture model 
where states ‘0’ is a highly probable low-variance 
Gaussian density, indicative of a homogenous region, 
while states ‘1’, corresponding to another less likely 
Gaussian density with a large variance, indicates the 

presence of an edge (no-smooth area). Using this 
interpretation, we may test for the presence of an edge 
simply by checking whether following condition holds 
or not: 
 

j j
k kp(s 1 c) p(s 0 c)= > =  (8) 

 
 If it holds, we conclude there is an edge at scale j 
and location k. Otherwise, there is not. 
 Mathematically, the MHMM is based on the 
assumption that the value of each states j

ks is caused by 
the value of its parent state. This leads to the 
factorization of the joint state probability function: 
 

j 1

0

J 1 2
j j 1
k k / 2

k 0j J

p (s ) p (s | s )
−−

−
� 	
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==

= ∏ ∏  (9) 

 
 Where, 0 1 0

0 0 0p(s s ) p(s )− ≡ . At the coarsest scale j = 0, 

we have no parent wavelet coefficients and so we 
introduce a prior for the states of the wavelet 
coefficients 0

0p(s ) . Note that 0
0ρ  is the global average 

correlation data. 
 Another property of the HMM is that, given their 
respective states values, all parameters θ are 
conditionally independent[19]. That is: 
 

j 1

0

J 1 2
j j
k k

k 0J J

p( | s) p( | s )
−−

==

θ = θ∏ ∏  (10) 

 
 Where, the prior probability j j

k kp( s )θ  is assumed to 

be Gaussian 
 

j j j j j2
k k k m mp( s m ) N ( , )θ = = θ µ τ  (11) 

 
 We regard the signal and its wavelet coefficients as 
realizations from a large family of random signal. 
Therefore, collectively, we assume j

m 0µ =  
 
Solution for joint a posterior state probability: 
Having setup the formulations for likelihood and a 
prior, we are now ready to determine the a. posterior 
density of the joint states given observation. Note that:  
 

j 1

0

j 1

0

J 1 2
j 1 j j j j j j j 1 j
2 k k k k k k k kk / 2

k 0j J

J 1 2
j j 1 j j
k k kk / 2

k 0j J
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 Where j
km is one particular state value assumed by 

random variable j
ks and j j j 1 j j

k k 2k k kL (s m) p(c c ,s m)+= ∝ = , 

the essential ingredients for our estimation of the a 
posterior states, are actually marginal likelihoods. From 
the likelihood function in (5) and the prior in (1), we 
drive them to be: 
 

j j j2 2
j j 1 j j j j j j 1 k m
k 2k k k k k k 2k

j
0

m c
L (m) p(c | c , )p( | s m)d N c | ,

22 2

J j J 1,k 0,1,..., 2 1,m 0,1

+ +� �µ τ + σ= θ θ = θ = +� �
� �

≤ ≤ − = − =

�  (13) 

 
Proof:  
 

j j j j j
j 1 k k k k k
2 k

y y y w
y

2 2 2 2
+ + θ θ θ= = = +  

 
 where the first two terms are independent of the 
third. Further, recall:  
 

j j j j j2 j 2 j j j j2
k k k m m k k k m mp( s m) N( , ), i.e., w N(0, ), s m N( , )θ = = θ µ τ θ σ θ = µ τ� �  

 
Therefore, 
 

j j
j 1 j j m k
2 k k k

j2 2
j 1 j j m
2 k k k

y
E(y y ,s m)

2 2

Var(y y ,s m)
2

+

+

µ= = +

τ + σ= =

 

 
 So, j j 1 j j

k 2k k kL (m)p(y y ,s m)+ = (where j
ky is regarded as 

constant), one marginal density function, has the closed 
form representation in Eq. 12. 
 
Marginal a posteriori state probability calculation: 
With these formulations ready, we can use the upward-
downward algorithm[18] to determine the most likely 
marginal a posteriori state for the wavelet coefficients 

j
kθ and then use Eq. 8 to test the presence of an edge. 

 In the upward-downward algorithm, the Up step 
marginalizes the joint posteriori state probability 
recursively from the finest scale j = J-1 to the coarsest 
scale j = 0. At the end the posterior state probabilities 

0 M 1
0 m 0{p(s m c)} −

==  are provided and partial 
marginalizations are also stored for use in the Down 
Step. The Down Step computes the marginal posterior 
state probabilities for each j

ks recursively. For the 
specific flow of the upward-downward algorithm, refer 
to[18]. 
 
Segmentation: After the edges are determined, it 
straightforward to formulate likelihood ratio test to 
estimate the label (state) of each homogenous region.  
 Consider the following multi-hypothesis problem. 
The observation c = [c1,c2…cn]

T within each 

homogenous region is Gaussian random vector of 
dimension n. The M hypothesis are: 
 
   Hi: c∼N(mi,ci), i = 1,2,…,M (14) 
 
 Where mi and Ci is the mean vector and covariance 
matrix of the observation under the ith i = 1,2,…,M 
hypothesis, which are assumed to be known. Suppose 
each hypothesis equally likely and minimum error 
criterion is adopted, the decision rule then boils down to 
hosing Hj where: 
 

2

i ii
j arg min c m ln c= − +  (15) 

 
 where 2 T 1

i i i ic m (c m ) C (c m ) and c−− ≡ − − and Ci.  

 In the following simulated processing, the 
observation within each homogenous region is assumed 
to be independent and identically distributed (i. i. d.), 
that is, I assume mi = mi1 and 2

i iC = σ . Some important 
practical problems are: How to assign the a prior 
probability for 0

0s , how to assign transition probabilities 
for the states: 
 

j j 1
k k / 2p(s m s m')−

� 	
 �
= =  (16) 

 
and how to determine the parameters for the Gaussian 
distribution characterizing each homogeneous region. 
Theoretically, these parameters are estimated by a 
complicated E-M algorithm. For our initial 
investigation, we set them empirically (by observation). 
It turns out that our experiment results are insensitive to 
the a priori probability and transition probability. The 
robustness is a nice feature.  
 
Extension to 2 dimensions: We can extend the multi-
scale analysis and MHMMs easily from 1-D sequence 
to 2-D images. Instead of taking the usual 2-D wavelet 
transform to the original image; we use the following 
conversion method. First we convert the original 2-D 
image into 1-D sequence and then apply previous 1-D 
wavelet analysis to the resulting sequence. The 
conversion details are: First split the image vertically 
into two halves, then horizontally splitting each half 
into two quarters, and iterate until each one is a 1×1 
pixel. The merit of this conversion is that it retains the 
original spatial configuration. Refer to Fig. 1 for details. 
 
One simulation testifying image segmentation by our 
algorithm: Figure 2a and b shows a simulated noisy 
image,    the    grey    level   of   the   segmented   image  
respectively. A two-state MHMM was specified for this 
problem with the following parameter settings: 
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Fig. 1: Conversion of a 2-D image to 1-D sequence 
 

 
(a) 

 

 
(b) 

 
Fig. 2: (a) Noisy image, (b) Segmented image 
 

0

1

0
0

j j
k

j j
k

1,

100,

(0) .9,

(0 | 0) 0.9,k 0,...,2 1, j 1,...,J 1,

(0 |1) 0.25,k 0,...,2 1, j 1,..., J 1.

τ =

τ =

=

= = − = −

= = − = −

p

p

p  
 
 Figure 2b demonstrates that the results are 
excellent. 

RESULTS 
 
 Processing results for fmri simulated data by two-
step approach as stated in the beginning, the method for 
fMRI detection in this study involves a two-step 
procedure: Multiscale image segmentation will be first 
used to break the correlation image into different 
regions of homogeneous statistical behavior, each 
region will then be tested independently as active or 
inactive by single pixel detection method. 
 In order to see the potential of this method for 
fMRI detection, the following experiment is conducted 
to compare results from the combined effects of single 
pixel detection and image segmentation with results 
obtained based solely on pixel-wise detection. 
 Using the model in Eq. 1 of[1], a simulated fMRI 
complex time series is generated at each pixel. In order 
to simulate the profile of the brain, the magnitudes of 
the baseline signal (a’s in Eq. (1) in[1] in the complex 
time series roughly follow the magnitude data from a 
static brain image. Actually the original complex data 
used in this example are exactly the same as Fig. 3b 
in[1], which is reproduced here as Fig. 3a for sake of 
comparison, Next, the correlation value at each pixel is 
computed by correlating the magnitude time series with 
the reference to produce Fig. 3b. 
 Figure 3c is the segmented result of correlation in 
Fig. 3b based on our algorithm. There are M = 2 lablels: 
each pixel is assigned to either 0 or 1 to its lablel. The 
parameters in the example are set to be:  
 

2

2
0

2
1

0
0

j

j

0

1

1;

1;

100;

(0) .95;

(0 | 0) 0.95,k 0,...,2 1, j 1,..., J 1;

(0 |1) 0.05,k 0,...,2 1, j 1,...,J 1;

m 0;

m 2.

σ =
τ =

τ =

=

= = − = −
= = − = −

=

=

p

p

p

 

 
 In this example, I set σ1 and σ0 (variances for the 
Gaussian characterizing two homogeneous regions) to 
be equal. The test criterion in Eq. 15 reduces to simple 
from in this case. The original simulated active region 
in Fig. 3a is a 9*9 square; in Fig. 3c the white region is 
10*8 rectangle. They are in good agreement but not in 
prefect match. This is not surprising, since, in general, 
we cannot guarantee the segmentation step produces 
exactly the same geometry as the original simulated 
regions: What is shown here is just one realization of 
many random simulations. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 3: Comparison of detection results from one step 

pixelwise method and from two-step approach. 
(a) Detection image from[1] (b) fMRI correlation 
image, (c) Segmented image of (b), also final 
detection results by combination use of image 
segmentation and single pixel detection 

 Next I consider applying single pixel detection 
technique in[1] to each of the above homogeneously 
(statistically) distributed region. The idea is to regard 
each homogeneous region as one large, macro-pixel: 
The average of all time series inside each macro-pixle 
is taken to be the new time series characterizing this 
macro-pixel, then apply single pixel detection method 
(magnitude correlation method in[1]) to the new time 
individually to determine which of these macro-pixels 
is active and which one is in active. By this approach, 
the macro-pixels (original pixels in Fig. 3b), in contrast 
to macro-pixels) corresponding to the black region in 
Fig. 3c are all inactive, which is expected since this 
region contains a large outside the brain. The micro-
pixels in Fig. 3b corresponding to the white region in 
Fig. 3c turns out to be all active. In other words, by this 
approach, only 9 pixels inside the square are missed 
while the 8 pixels outside the square false-alarmed. 
 Now let us take a comparison between Fig. 3a and 
3c in this study. For the former, we see spurious 
activation regions outside the brain. However, the 
falsely alarmed regions disappear in Fig. 3c (except for 
8 pixels outside the square) after combining image 
segmentation with single pixel detection. Pure single 
pixel detection methods failed to detect some active 
pixels inside the small square in last figure of[1]. 
However, these regions (except for 9 pixels) are now 
correctly detected by combining image segmentation 
with single pixel detection. 
 The enhancement of detection efficiency is clearly 
visible and also easily understandable. Actually we are 
given spatial-temporal series. However, the pixel-wise 
detection method only takes temporal information into 
account: Spatial information is completely ignored. The 
image segmentation algorithm in this study exactly 
complements the pixel-wise detection and remedies its 
shortcoming: it utilizes the spatial correlation 
information inherent in the data. So it is no wonder that 
the detection performance improves after image 
segmentation. 
 One point to be noted is that in Fig. 3c the brain 
profiles are overlapped, as are the case in the last figure 
in[1]. 
 Our simulations  were done using Matlab 7.0 
software and on  a usual PC with Windows XP (main 
frequency 2GHz, memory 1GB, hard disk 80 GB). 
 

DISCUSSION 
 
This paper put forward a novel two-step procedure 
(image segmentation combined with single pixel-wise 
detection) for fMRI detection. The  image segmentation 
(or edge detection) using a novel hidden Markov 
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modeling wavelet coefficients actually exploits the 
spatial information of fMRI correlation image, while 
single pixel-wise detection utilizes the temporal 
information in fMRI time series. 
 Considering utilizing spatial correlation 
information, this study uses Bayesian image 
segmentation method. Other approaches involving 
spatial consideration can be used as well. For example, 
clustering analysis are gaining more recognition in this 
field[23]. Formulation as decentralized detection 
problem is also a possible candidate[27,24]. 
 

CONCLUSION 
 
 FMRI signals are actually both temporally and 
spatialy dependent. Pixel-wise detection, however, 
considers only temporal correlation information and 
ignores spatial correlation information. In order to 
remedy this deficiency, this study uses a multi-scale 
image segmentation algorithm to first segment an fMRI 
correlation image into several regions, each with 
homogeneous statistical behavior. A single pixel 
detection algorithm is the applied to each homogeneous 
region. Extensive simulations demonstrate improved 
efficacy of our method. 
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