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Abstract: This study considers a version of the stochastic vehicle routing problem where customer 
demands are random variables with known probability distribution. A new scheme based on a hybrid 
GA and Tabu Search heuristic is proposed for this problem under a priori approach with preventive 
restocking. The relative performance of the proposed HGATS is compared to each GA and TS alone, 
on a set of randomly generated problems following some discrete probability distributions. The 
problem data are inspired by real case of VRPSD in waste collection. Results from the experiment 
show the advantages of the proposed algorithm that are its robustness and better solution qualities 
resulted.  
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INTRODUCTION 
 
 The classical Vehicle Routing Problem (VRP) lies 
at the center of distribution management and has been 
extensively studied by operations researchers. 
Formally,  the  problem  can  be  described as follows. 
V = {0, 1,…, n} is a set of nodes with node 0 denotes 
the depot and nodes 1, 2, …, n correspond to the 
customers and A = {(i, j): i, j ∈ V, i ≠ j} is the set of 
arcs joining the nodes with each arc is associated a 
distance or a cost cij. With each customer is associated a 
nonnegative demands ξi to be collected by a vehicle. It 
is assumed that the cost matrix C is symmetric and 
satisfies the triangular inequality. The CVRP consists of 
designing a route that minimize the total cost, starts and 
ends at the depot, such that each node is visited exactly 
once and the total demand does not exceed Q.  
 There exist several practical contexts where one or 
some components of the problem (e.g., demands, 
customer presence, time, etc.,) are not known for 
certainty. These are known as Stochastic VRP. In this 
study, we consider a particular SVRP that is VRP with 
Stochastic Demands, denoted by the abbreviation 
VRPSD, where the demand is stochastic. Dror et al.[8] 
mentioned that there are two solution frameworks for 
Stochastic VRP (including VRPSD), namely stochastic 
programming and Markov decision process. Further in 
this study, we focus the discussion on the stochastic 
programming. The problems in stochastic programming 

are usually modeled in two ways: so-called chance 
Constrained Stochastic Programming (CCP) and 
Stochastic Programming with Recourse (SPR). In 
general, the SPR models are more difficult to solve than 
CCP models but their objective functions are 
meaningful[10]. 
 Stewart and Golden[16] provide a comparison of the 
two mentioned frameworks for solving a multiple 
VRPSD. They concluded that if the route failure 
penalty cost is known, SPR models produce lower costs 
than CCP. The theoretical work in[1] extends the 
Stewart and Golden formulations. They revise the SPR 
model with a fixed penalty for every unit of unsatisfied 
demand to include the expected cost of transportation 
instead of the transportation cost for a complete route. 
The recourse action could be in a priori approach[2] or 
re-optimization. For the rest of study, we confine the 
discussion on stochastic programming with recourse 
under a priori approach. 
 The first two recourse versions were provided 
by[16]. The first version is to charge a fixed penalty λk 
every time a route k fails. The second version is to 
charge a penalty for every unit of demand in excess of 
the vehicle capacity Q on route k. Both versions 
assumed that all customers must be visited on the route 
and therefore the objective function includes the 
deterministic total cost of the route plus the penalty 
term. Dror and Trudeau[7] replaced the fixed linear 
penalty cost in Stewart and Golden by a non-linear 



J. Math. & Stat., 4(3): 161-167, 2008 
 

 162 

recourse that considers failure location. Their recourse 
assumed that after a failure all the remaining customers 
are served through individual deliveries. Assuming this 
non-optimistic recourse, the deterministic cost in the 
objective function is replaced by the expected cost. 
 Dror et al.[8] introduce theoretically a new recourse 
defined by a return to the depot whenever the vehicle is 
unable to satisfy the demand (the capacity becomes 
exceeded) and resume the service at the customer on 
the planned route where route failure had occurred. 
Savelsbergh and Goetschalckx[15] simplified the 
recourse to achieve computational efficiency assuming 
at most one failure in a route. All subsequent 
publications (e.g., by[10,13]) have maintained the simple 
recourse policy defined in[8] with the exception of[3,4,19] 
that using preventive restocking and the recourse of[5] 
that is to terminate the route and impose a penalty such 
as lost revenue and/or emergency deliveries.  
 Recent studies in development of metaheuristics 
for VRPSD were done by[4]. They considered basic 
implementation of five metaheuristics for single 
vehicle: Iterated Local Search, Tabu Search (TS), 
Simulated Annealing, Ant Colony Optimization and 
Evolutionary Algorithm (Genetic Algorithm (GA)) that 
found better solution quality in respect to cyclic 
heuristic. Instead of the work of[4,10,20], the work on the 
application of GA and TS for VRPSD are lacking in the 
literature, although it is widely known that GA has been 
proven effective and successful in a wide variety of 
combinatorial optimization problems, including certain 
types of VRP; and as known also that TS, the approach 
that dominates the list of successful algorithms, is a 
robust, efficient and effective approach to the general 
VRP family of problem[12,14] and often outperforms 
other heuristic techniques in terms of computational 
speed and solution quality[14]. 
 Although pure GA performs well, mostly it does 
not equal TS in terms of solution quality and sometimes 
pure GA perform inefficient on practical combinatorial 
optimization. To improve pure GA performance, some 
algorithms are combined with the simple GA, yielding 
a hybrid algorithm. The statement about GA 
hybridization is noted by[6] that hybrid algorithms, 
which combine a GA with more traditional algorithms, 
have been hinted as a highly powerful combination for 
solving practical problem, also by[11] that it is well 
known that a standard GA must be hybridized with 
another search procedure to be able to compete with 
metaheuristics like TS. The approach is also inspired by 
the emerging interest in hybrid metaheuristics that has 
risen considerably among researchers in combinatorial 
optimization. The best results found for many practical 

or academic optimization problems are obtained by 
hybrid algorithms[17,19]. 
 Based on previous researches on algorithm 
developed for VRPSD and the knowledge of the basic 
structure of GA and TS, in this study, we propose a 
hybrid GA with TS as an alternative of existing 
algorithms. Our reviews also found that hybrid GA-TS 
has not been used to solve VRPSD. It is hope that this 
hybrid could combine the advantage of GA as 
population-based method and the strength of TS as 
trajectory method. As known, population-based 
methods are better in identifying promising areas in the 
search space, whereas trajectory methods are better in 
exploring promising areas in search space. 
 

MATERIALS AND METHODS 
 
 Definitions of some of the frequently used 
notations for the VRPSD are given as follows: 
 
Customers and depot: V = {0, 1,..., n} is a set of 
nodes with node 0 denotes the depot and nodes 1, 2,…, 
n correspond to the customers to be visited. We assume 
that all nodes, including the depot, are fully 
interconnected. 
 
Demands:   Customers   have   stochastic    demands ξi, 
i = 1,..., n which follows discrete uniform probability 
distributions pik = Prob (ξi = k), k = 0, 1, 2,…, K. 
Assume further that customers’ demands are 
independent. Actual demand of each customer is only 
known when the vehicle arrives at the customer 
location.  
 
Vehicles and capacity constraint: The vehicle has a 
capacity limit Q. If the total demand of customer 
exceeds the vehicle capacity, route failure is said to be 
occurred.  
 
Route: A route must start at the depot, visit a number 
of customers and return to the depot. A feasible solution 
to   the   VRPSD   is  a  permutation  of  the  customers 
s = (s(1), s(2),…, s(n)) starting and ending at the depot 
(that is, s(1) = s(n) = 0) and it is called a priori tour. 
 
Route failure and recourse action: Route failure is 
said to be occurred if the total demand exceeds the 
vehicle capacity and the preventive restocking 
policy[4,19] is employed. 
 
Cost  and  VRPSD   objective function: A = {(i, j): i, j 
∈ V, i ≠ j} is the set of arcs joining the nodes and a 
non-negative matrix C = {cij: i, j ∈ V, i ≠ j} denotes the 
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travel costs (distances) between node i and j. The cost 
matrix C is symmetric and satisfies the triangular 
inequality. The cost matrix is a function of Euclidean 
distance; where the Euclidean distance can be 
calculated using the following equation: 
 

2 2
ij i j i jd (x x ) (y y )= − + −  

 
 Given a vehicle based at the depot, with capacity 
Q, VRPSD under restocking policy requires finding 
vehicle routes and a restocking policy at each node to 
determine whether or not to return to the depot for 
restocking before visiting the next customer to 
minimize total expected cost. The costs under 
consideration are: 
 
• Cost of traveling from one customer to another as 

planned 
• Restocking cost: the cost of traveling back to the 

depot for restocking 
• The cost of returning to depot for restocking 

caused by the remaining stock in the vehicle being 
insufficient to satisfy demand upon arrival at a 
customer location. This route-failure cost is a fixed 
nonnegative cost b plus a cost of traveling to the 
depot and back to the route[19] 

 
 Let 0 → 1 → 2 … j → j+1 … → n be a particular 
vehicle route. Upon the service completion at customer 
j, suppose the vehicle has a remaining load q (or the 
residual capacity of the vehicle after having serviced 
customer j) and let fj(q) denote the total expected cost 
from node j onward. If Sj represents the set of all 
possible loads that a vehicle can have after service 
completion at customer j, then, fj(q) for q ∈ Sj satisfies: 
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with the boundary condition: 

   n n,0 nf (q) c ,q S= ∈  (4) 

 
 In Eq. 2-4, p

jf (q)  represents the expected cost of 

going directly to the next node, whereas r
jf (q)  

represents the expected cost of the restocking action. 
These equations are used to recursively determine the 
objective value of the planned vehicle route and the 
optimal sequence of decisions after customers are 
served[4]. 
 
Data: We consider VRPSD application in the solid 
waste collection problem of residential area in 
Malaysia. The problem of optimization of waste 
collection can be described as follows. The solid waste 
is located in box or containers along the streets and they 
must be all collected by a fleet of vehicles whose 
capacity can not be exceeded. Each vehicle can service 
several such sites before going to dumpsite to unload. 
Each vehicle starts from the depot, visits a number of 
stops and ends at the depot. When a vehicle is full, it 
needs to go to the closest available dumpsite to empty 
its load and then resume their visit. Each vehicle can 
make multiple disposal trips per day.  
 Based on experiments reported in[9], three factors 
seem to impact the difficulty of a given VRP instances: 
number of customers’ n, number of vehicles m and 
filling coefficient f. In a stochastic environment, the 
filling coefficient can be defined as: 
 

   
n

i

i 1

E( )
f

mQ=

ξ=�  (5) 

 
where,  E(ξi)  is  the  expected demand  of  customer i, 
m = 1 for single vehicle and Q denotes the vehicle 
capacity. This is the measure of the total amount of 
expected demand relative to vehicle capacity and can be 
approximately interpreted as the expected number of 
loads per vehicle needed to serve all customers. In this 
experiment, the value of f is 1.1. 
 Several sets of data are randomly generated to 
simulate this problem of waste collection. n nodes are 
generated in the [0,100]2 square according to a 
continuous uniform distribution. Nodes are first 
assigned to a specific three demand range in equal 
probabilities. Three ranges of demand present low, 
medium and high solid waste weight. The value of each 
demand is then generated in the appropriate range 
according to a discrete uniform distribution. Twenty 
instances are generated for each 10, 20 and 50 
customers with demand range (1,5), (6,10), (11,15). 
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The proposed algorithm: The proposed hybrid 
algorithm of GA and TS consists of several properties 
such as the order or permutation representation; small 
population in which all individuals are distinct; 
inclusion of good simple heuristic solutions in the 
initial population; Roulette Wheel Selection with 
elitism; Order Crossover and the Tabu Search as a 
mutation operator. The algorithm is implemented in the 
Visual C++ language under the operating windows XP. 
 
Step 0: [Define] Define operator settings of GA 
suitable with the problem which is VRPSD. 
 
Step 1: [Initialization] Create an initial population P of 
N chromosomes that consists of constructive heuristics 
solutions and randomly mutation of it where all 
individuals are distinct or clones are forbidden. In this 
study, N was set to be 30. 
 
Step 2: [Fitness] Evaluate the fitness f(Ci) of each 
chromosome Ci in the population. The fitness is the 
function of VRPSD objective function. The lower the 
VRPSD objective function, the higher fitness it is likely 
to be.  
 
Step 4: [Selection] Apply Roulette Wheel Selection. 
This gives the set of Mating Population M with size N. 
 
Step 5: [Crossover] Pair all the chromosomes in M at 
random forming N/2 pairs. Apply OX crossover with 
probability pc to each pair and form N chromosomes of 
offspring, if random number ≥  pc then offspring is the 
exact copy of parents. 
 
Step 6: [Mutation] Different with ordinary GA where 
mutation is applied with probability of pm, in this 
Hybrid GA-TA, Tabu Search is applied to each 
offspring.  
 
Step 7: [Replace] Evaluate fitness of parents and new 
offspring. Choose the best N chromosomes. Replace the 
old population with newly generated population. 
 
Step 8: [Test] If the stopping criterion is met then stop 
and return to the best solution in current population, 
else go to Step 2. 
 The detail of Tabu Search algorithm implemented 
is shown below. 
 
Initial solution: It is necessary to generate a number of 
solutions to initialize the main search process. Here two 
methods are used to construct initial solution: 

randomized Nearest Neighbour (NN) and randomized 
Farthest Insertion (FI). The best among them will be 
chosen as the starting solution to the main body of the 
search itself.  
 
Neighbourhood structure: The neighbourhood of a 
solution contains all solutions that can be reached by 
applying the 2-opt local search. 2-opt proceeds by 
checking pairs of non adjacent edges in a given tour and 
computing the improvement in the tour length after 
rearranging these pairs by exchanging the terminal 
nodes  of the two edges in each pair as shown in the 
Fig. 1. If no pair of edges can be rearranged to improve 
the current tour, the algorithm is terminated. Otherwise, 
the pair of edges that improves the performance 
maximum (minimum tour length) is rearranged and the 
algorithm is executed again. 
 
Tabu moves: The aim of tabu moves is to avoid going 
back to a solution that has been visited in the last few 
iterations. The concept of tabu move is: 
 
• It is tabu to add an edge which is on the deleted-list 
• It is tabu to delete an edge which is on the added-

list 
 
Tabu list: Tabu list is a list of moves that are currently 
tabu. For the first iteration, set tabu tenure for all edges 
is 0. If an edge is moved at iteration v, its addition or 
deletion is tabu until iteration v + θ. Dynamic tabu list 
size was applied. If an edge is moved at iteration v, its 
addition or deletion is tabu until iteration v + θ. θ is 
randomly selected in the interval N N N N

,
3 5 3 5

� �− +� 	

 �

. The 

idea of using random tabu list size was introduced by[18] 
and also used by[10].  
 
Aspiration criteria: As a rule, the search process 
moves at each iteration from the current solution to the 
best   nontabu   solution   in   neighbourhood   solutions. 
 

 
 
Fig. 1: 2-opt local search 
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Table 1: Standard deviation values of solutions from GA and HGATS, each for 5 runs 
Problem instance number 

  ------------------------------------------------------------------------------------------------------------------------------------------------- 
N Algorithm 1 2 3 4 5 6 7 8 9 10 
10 GA 3.130 0 0 1.643 0 0.548 0 0 0 1.095 
 HGATS 6.025 2 . 2 3 6 0 0 0 0 0 0 0 3.742 
20 GA 6.140 0 7.727 0 5.762 0 2.588 0.707 1.095 6.465 
 HGATS 0 0 6.986 0 0 0 1.342 0 0 3.082 
50 GA 1.155 0 6.731 9.37 16.07 2.828 4.528 5.477 3.286 5.814 
 HGATS 0 0 0 0 0 0 0 0 0 0 
                                        ------------------------------------------------------------------------------------------------------------------------------------------------- 
N Algorithm 11 12 13 14 15 16 17 18 19 20 
10 GA 0 0 0 0 0 1.095 0 0 4.147 0 
 HGATS 0 0 0 0 0 0 0 0 0 0 
20 GA 1.095 21.000 0 2.408 0 0.837 6.504 0 5.215 2.881 
 HGATS 0 12.381 1.789 1.095 0 0 1.342 0 5.367 0.548 
50 GA 1.517 0 4.93 6.573 3.633 1.643 0 0 0 1.304 
 HGATS 0 0 0 0 0 0 0 0 0 0 

 
However, a tabu solution may be selected if the value 
of objective function decreased upon the best value of a 
solution so far encountered. 
 
Stopping criteria: In our implementation, the number 
of iteration is equal to the maximum number of 
iterations. 
 

RESULTS AND DISCUSSION 
 
 Twenty instances were generated on each of the 
problem size 10, 20 and 50. Each algorithm was tested 
on each instance for 100 iterations and executed 5 
times. Since the result of TS was robust, means that the 
results just remain constant from one run to another run, 
we only reported the dispersion measure based on 
standard deviation of GA and HGATS for the need of 
robustness comparison.  
 Table 1 shown the standard deviation values from 
GA and HGATS for each problem instance and each 
problem size. It can be seen that HGATS was more 
robust than GA, since the standard deviation values of 
solution yielded by HGATS were smaller than one 
produced by GA for most of all problem instances 
especially for large number of nodes (N = 50) where the 
value of solutions produced by GA still vary from one 
run to another run, but in HGATS the solution values 
remain constant over the runs. 
 Figure 2 shows the results obtained by the TS, GA 
and the HGATS for each problem size; each point is the 
average of best fitness function found at the end of each 
run. As it can be observed from the box plots, the 
relative performance of the algorithms was similar on 
problem size equal to 10 and 20, while the pattern was 
different for problem size equal to 50. To investigate 
whether the differences of algorithm performance are 
statistically different, we conduct the paired samples test. 

Table 2: Summary of p-values of Kolmogorov-Smirnov normality 
test for differences among algorithm performances 

Problem size Diff GA-TS Diff GA-HGATS Diff TS-HGATS 
10 0.025 0.001 0.003 
20 0.105 0.159 0.174 
50 0.903 0.653 0.423 

 
Table 3: The  results  of  Wilcoxon  signed-ranks test for problem 

size = 10 
  Asymp. Sig. 
Test statisticsb Z (2-tailed) 
TS_10-GA_10 -2.449a 0.014 
HGATS_10-GA_10 -1.101a 0.271 
HGATS_10-TS_10 -2.375a 0.018 
a: Based on negative ranks, b: Wilcoxon signed ranks test 
 
Firstly we tested the normality assumption of the 
differences among the algorithms for each problem 
sizes using software SPSS. The p-values of 
Kolmogorov-Smirnov test were presented in Table 2. 
 As shown in Table 2, all the differences on 
problem   size   equal   to   10 have   p-value   less  than 
α (= 0.05). It means that we should reject null 
hypothesis that the data follows normal distribution. 
Since the normality assumptions of the differences are 
violated, we can not conduct paired t-test and 
alternatively non parametric Wilcoxon signed ranks test 
should be used. On the other hand for problem size 20 
and 50, all the p-values of differences were greater than 
0.05, thus we can not reject the null hypothesis and 
furthermore we can conduct paired t-test for problem 
size 20 and 50. The results of Wilcoxon signed ranks 
test for problem size 10 were shown in Table 3 while 
the results of paired t-test for problem size 20 and 50 
were shown in Table 4.  
 From Table 3, we can conclude that the difference 
of TS and GA performances was statistically significant 
for  problem  size  10  since  the  p-value  is  less  than 
α = 0.05,  TS and HGATS were  also  different  but  the
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Table 4: The result of paired t-test for differences of GA, TS and HGATS performance 
 Paired differences 
 ------------------------------------------------------------------------------------- 
    95% confidence interval 
   Std. of the difference    Sig. 
   error ------------------------------   (2- 
 Mean SD mean Lower Upper t df tailed) 
Paired samples test for GA and TS, N = 20 
GA_20-TS_20 -5.73000 9.84795 2.20207 -10.33898 -1.12102 -2.602 19 0.018 
Paired samples test for GA and HGATS, N = 20 
GA_20-HGATS_20 1.02000 4.62210 1.03353 -1.14321 3.18321 0.987 19 0.336 
Paired samples test for TS and HGATS, N = 20 
TS_20-HGATS_20 6.75000 9.21026 2.05948 2.43946 11.06054 3.278 19 0.004 
Paired samples test for GA and TS, N = 50 
GA_20-TS_20 8.12500 8.26870 1.84894 4.25513 11.99487 4.394 19 0.000 
Paired samples test for GA and HGATS, N = 50 
GA_50-HGATS_50 7.02500 6.97272 1. 55915 3.76167 10.28833 4.506 19 0.000 
Paired samples test for TS and HGATS, N = 50 
TS_50-HGATS_50 -1.10000 7.44029 1.66370 -4.58216 2.38216 -0.661 19 0.516 

 

 
 
Fig. 2: Box plots of solutions resulted by GA, TS and 

HGATS 
 
performance of GA and HGATS are similar since the p-
value of differences between TS and HGATS is greater 
than 0.05. The same conclusion can be drawn from 
Table 4 for problem size 20. The detail conclusion for 
problem size 10 and 20 in terms of solution quality was 
given as follows: the HGATS and GA were better than 
TS while HGATS and GA performances were 
relatively the same. 
 For problem size 50, the performances of GA and 
TS were significantly different (shown by p-value less 
than α = 0.05), GA and HGATS were different while 
TS and HGATS were similar. Further from the value of 
mean difference, we can draw a conclusion that 
HGATS and TS were better than GA. 

CONCLUSION 
 
 The hybrid GA and TS for solving a priori VRPSD 
under preventive restocking is designed. We also report 
the results of comparative study between the proposed 
HGATS with GA and TS alone for solving single 
VRPSD. For small problem sizes, the HGATS and GA 
show superiority compared to TS while the 
performances of HGATS and GA are similar. Although 
the relative performances of HGATS and GA are 
similar; the HGATS is more robust than GA. The 
HGATS also shows its advantage for larger problem 
size, since it yields better solution quality than GA 
although the performances of HGATS and TS are 
similar. Future works can be done by implementing 
more powerful local search move to improve the 
HGATS performance.  
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