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INTRODUCTION 
 
 Consider the Initial Value Problem (IVP): 
 

  
0 0

y '(t) f (t, y(t))
y(t ) y

=

=
 (1) 

 
where, a ≤ t ≤ b, a = t0 < t1 < t2 <…< tN−1 = b, 

(b a)N
h
−

= , N = 0, 1, …, N-1 and h = tn+1 is called 

the step length. The conditions on the function f(t, y(t)) 
are such that existence and uniqueness of solution is 
guaranteed[2]. 
 The numerical solution of the Eq. 1 had received 
lots of attention and it is still receiving such due to the 
fact that many physical (Engineering, Medical, 
financial, population dynamics and Biological sciences) 
problems formulated into mathematical equation results 
into the above type. 
 The solution is generated in a step-by-step fashion 
by a formula which is regarded as discrete replacement 
of the Eq. 1[1-5]. 
 In the class of methods available in solving the 
problem numerically, the most celebrated methods are 
the single-step and the multisteps methods. In a 
single step, an information at just one point is 
enough to advance the solution to the next point while 
for the multisteps (as the name suggests), information at 
more than one previous points will be required to 
advance the solution to the next point. 
 The Euler’s method (the pioneering method), which 
is the oldest method and the Runge-Kutta methods fall in 
the class of the single-step methods while the Adams 
methods are in the class of the multistep method[1-5].The 
Adams method is divided into two namely the Adams-

Bashforth (explicit) and Adams-Moulton (implicit). 
These two methods combined can be used as a predictor-
corrector method. This class of method has been proved 
to be one of the most efficient method to solve certain 
class of IVP (non-stiff). 
 In the literature, the derivation of the Adams method 
had been extensively dealt with using the interpolatory 
polynomial for the discretised problem. For the 
derivation of linear multisteps method through 
interpolation and collocation[1,3,4,6]. Omolehin et al.[8] 
used the collocation method to derive a new class of 
the Adams-Bashforth schemes for ODE while Onumayi 
et al.[9] also used the collocation method for deriving a 
continuous multisteps method. Lie et al.[7] discussed the 
super convergence properties of the collocation methods. 
 In this study, we consider a new class of methods for 
solving (1) based on interpolation and collocation. Our 
method is based on a general method for deriving the 
spline functions. 
 The study is organised in the following order, §2 
deals with description of piecewise interpolation 
functions, the derivation of our scheme features is §3. 
The results from some numerical examples will be given 
to illustrate and validate our scheme in §4. Furthermore, 
our results will be compared with an already known 
scheme of Omolehin et al.[8] while the conclusion is 
featured in the last Section. 
 
Piecewise-interpolation: One of the methods of 
deriving the multisteps method is by polynomial 
interpolation for a set of discrete point, however, 
polynomial   interpolation   for  a  set of (N+1) points 
{tk, yk} is frequently unsatisfactory because the 
interpolation error is related to higher derivatives of 
the interpolated function. To circumvent this, we 
discretise the interpolation domain and interpolate 
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locally. The overall accuracy may be significantly 
improved even if the interpolation polynomial is of low 
order. 

Interpolation functions obtained on this 
principle are piece-wise interpolation functions or 
splines. We define a spline function as follows: 
 
Definition: A function S(t) is called a spline of 
degree k if: 
 
• The domain of S is the interval [a, b] 
• S, S′, S″, . . . , S(k-1) are all continuous on [a, 

b] 
• There are points ti (called knots) such that a = t1 

< t2 < . . . < tn = b and such that S is a 
polynomial of degree k on each sub-interval [ti, 
ti+1], i = 1, . . . , n − 1. subject to the interpolating 
conditions 

• S(ti) = y(ti) ∀ t ∈[ti, ti+1] i = 1, . . . n-1 
• Sr

(j)(ti) = ( j)
r 1S +   (ti),  j = 1,…, k-1, r = 1, n-1, i = 2, 

…n-1 
 

Condition (iv) is the collocation while (v) is the 
continuity condition, only on interior knots. 

We shall now use the piece-wise linear and cubic 
interpolation spline functions to derive our methods. 
Adams methods are recoverable from our methods 
 
Derivation of the scheme: 
Pseudo Quadratic spline function: Let S(t) be the 
desired function, the linear langrange interpolation 
formula gives the following representation for S′(t) at 
the given points tn-1 and tn, for all t ∈ [tn−1, tn], as: 
 
   n 1 n

n 1 n

S'(t) S'(t ) S'(t ) S'(t)
(t t ) (t t)

−

−

− −
=

− −
  (2) 

 
 Simplifying (2) we have: 
 

 n 1 n n n 1
n n 1

1S'(t) {(t t ) S'(t ) (t t)S'(t )}
(t t ) − + −

−

= − −
−

  (3) 

 
 Integrating (3): 
 

2 2
n 1 n n n 1

n n 1

1 1 1S(t) (t t ) S'(t ) (t t) S'(t ) A
2(t t ) 2 2− −

−

 = − − − + 
−  

  (4) 

 
where, A is the constant of integration to be 
determined.   Since   S(t) interpolates the function f at 
t = tn, it implies that S(tn) = f(tn, y(tn)). 
 Thus for t = tn−1: 

 2
n 1 n n 1 n 1

n n 1

1A S(t ) (t t ) S'(t )
2(t t )− − −

−

= + −
−

  (5) 

 
Substitute (5) into (4) we have, 
 

 
2

n 1 n n 1 n 1
n n 1

2 2
n 1 n n n 1

n n 1

1S(t) S(t ) (t t ) S'(t )
2(t t )

1 1 1(t t ) S'(t ) (t t) S'(t )
2(t t ) 2 2

− − −
−

− −
−

= + − +
−

 − − − 
−  

  (6) 

 

 
{ }2 2n 1

n 1 n n 1 n
n n 1

2n
n 1

n n 1

S'(t )S(t) S(t ) (t t ) (t t)
2(t t )

S'(t ) (t t )
2(t t )

−
− −

−

−
−

= + − − −
−

+ −
−

   (7) 

 
 If in (4) we evaluate S(t) at t = tn: 
 

  2
n n n 1 n

n n 1

1A S(t ) (t t ) S'(t )
2(t t ) −

−

= − −
−

 (5)′ 

 
 If (5)′ is substituted into (4) we have: 
 

2 2n
n n n 1 n 1

n n 1

2n 1
n

n n 1

S'(t )S(t) S(t ) {(t t ) (t t ) }
2(t t )

S'(t ) (t t)
2(t t )

− −
−

−

−

= − − − −
−

− −
−

  (8) 

 
 Collocating (7) and (8) at t = tn+1 and using the 
property that S(t) ≈ y(t) and that h = tn−tn−1 we have the: 
 
    yn+1 = yn−1+2hfn  (9) 
 
and 
 

   n 1 n n n 1
hy y {3f f }
2+ −= + −  (10) 

 
 If we also collocate (7) at t = tn and simplify we 
have: 
 

   n n 1 n n 1
hy y {f f }
2− −= + +  (11) 

 
 Equation (9) and (10) correspond to the mid-point 
rule and the Adams-Bashforth of second order while 
(11) is an implicit method (the Implicit Trapezoidal 
Method). 
 Various multisteps of the Adams forms can be 
derived from the Eq. (7) and (8) at different collocation 
points (say t = tn+2, tn+3,..). 
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The local truncation error: Assume that y ∈ C3 [a, b] 
for all x in a ≤ x ≤ b. Due to a standard approach by 
Lambert[5] we have been able to show that the local 
truncation errors associated with these numerical 
algorithms can be expressed respectively as: 
 

2
9 n 1 n 1

1e h y '''( ), (x ,x )
3 − += ζ ζ∈  

 
2

10 n 1 n 1
5e h y '''( ), (x ,x )

12 − += ζ ζ∈  

 
2

11 n 1 n
1e h y '''( ), (x ,x )

12 −= ζ ζ∈  

 
 Using well known analysis in Herinci[2] and 
Lambert[5], it can be shown that these methods are all 
consistent and zero stable. Consistency and zero stability 
are necessary and sufficient conditions for the 
convergence of methods of this kind, hence the three 
numerical schemes are convergent with errors of order 
O(h2). 
 
Pseudo cubic spline function: Since we are 
considering a piecewise cubic spline, its second 
derivative is piecewise linear on [tn−1, tn], then the linear 
langrange interpolation formula gives the 
representation for S′′(t) at the given points tn−1 and tn: 
 

  n 1 n

n 1 n

S''(t) S''(t ) S''(t ) S''(t)
(t t ) (t t)

−

−

− −
=

− −
 (12) 

 

n 1 n n n 1
n n 1

1S''(t) {(t t )S''(t ) (t t)S''(t )}
(t t ) − −

−

= − + −
−

 (13) 

 
Integrating Eq. (13) twice we have,  
 

3 3n n 1
n 1 n

n n 1

n n 1

1 S''(t ) S''(t )S(t) (t t ) (t t)
(t t ) 6 6

A(t t) B(t t )

−
−

−

−

 
= − + − 

−  
+ − + −

 (14) 

 
where, A and B are constants. To determine these 
constants, (14) is collocated at two points say t = tn−1 
and t = tn, this yield: 
 

 2n 1
n 1 n 1 n n 1

S''(t )S(t ) (t t ) A(t t )
6

−
− − −= − + −  (15) 

 
and 

  2n
n n 1 n n 1

S''(t )S(t ) (t t ) B(t t )
6 − −= − + −  (16) 

 
 From (15) and (16) we have that: 
 

2n 1
n 1 n n 1

n n 1

1 S''(t )A S(t ) (t t )
(t t ) 6

−
− −

−

 
= − − 

−  
 

 
and 
 

2n
n n n 1

n n 1

1 S''(t )B S(t ) (t t )
(t t ) 6 −

−

 
= − − 

−  
 

 
 Substitute for A and B in (14), we have: 
 

3 3n n 1
n 1 n

n n 1

2n 1
n 1 n n 1 n

n n 1

2n
n n 1 n 1

n n 1

1 S''(t ) S''(t )S(t) (t t ) (t t)
(t t ) 6 6

1 S''(t )S(t ) (t t ) (t t)
(t t ) 6

1 S''(t )S(t ) (t t ) (t t )
(t t ) 6

−
−

−

−
− −

−

− −
−

 
= − + − 

−  
 

+ − − − 
−  

 
+ − − − 

−  

 (17) 

 
 Collocating (17) at t = tn+1 yields: 
 
  2

n 1 n n 1 nS(t ) 2S(t ) S(t ) h S''(t )+ −= − +  (18) 
 
 By collocation property, we have: 
 
   2

n 1 n n 1 ny 2y y h y''+ −= − +  (19) 
 
and using (1), we have that the coefficient of h2 in the 
Eq. 19 can be replaced by: 
 
   t n n y t n ny '' f (t , y(t )) f f (t , y(t ))= +  (20) 
 
where, here ft and fy are the first partial derivatives of 
f(t, y(t)) with respect to t and y respectively. Using the 
approximation relations, n 1 n 1

t
f ff

2h
+ −−

≈  and 

n 1 n 1
y

f ff
2h

+ −−
≈  we simplify (18) to give: 

 

 
n 1 n n 1 n n 1 n 1

n 1 n n 1 n 1 n 1 n n 1 n n 1

hy 2y y {(1 f )(f f )}
2
hy 2y y {(f f ) f f f f }
2

+ − + −

+ − + − + −

= − + + −

= − + − + −
 (21) 

 
 Neglecting the nonlinear part in (21), Eq. 21 
becomes: 
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n 1 n n n 1 n 1

hy 2y y {f f }
2+ + −= − + −  (22) 

 
which is an implicit 2-step method. 
 The local truncation error associated with (22) as 
outlined for the schemes (9)-(11) can be shown to be 

31 h
12

− . The scheme was observed to be consistent but 

to our surprise the method is not zero stable according 
to[2,5] yet it gives a convergent solution of maximum 
error of order O(h3). 
 

RESULTS 
 
The schemes derived in this study are: 
 

yn+1 = yn−1+2hfn 
 

n 1 n n n 1
hy y {3f f }
2+ −= + −  

 

n n 1 n n 1
hy y {f f }
2− −= + +  

 

n 1 n n n 1 n 1
hy 2y y {f f }
2+ + −= − + −  

 
Numerical examples: We shall consider the following 
problems: 
 

1. yy ' , y(0) 1, t [0,1]
2(t 1)

= − = ∈
+

 

 
 The exact solution is given as: 
 

2. 
2

1y(t)
1 t

y ' y t 1, y(0) 0.5, t [0,1]

=
+

= − + = ∈
 

 
 The exact solution is given as: 
 

2y(t) (1 t) 0.5* exp(t)= + −  
 

DISCUSSION 
 
 The methods described by Eq. 9 and 10 are 
respectively represented as method A and B, while 
method C, D, E and F are the combinations of Eq. 9 
with (11), (10) with (11), (9) with (22) and (10) with 
(22) as predictor-corrector methods respectively. 
 Table 1 and 2 shows the maximum error of the 
Methods A and B for the examples with h = 0.1. 

Table 1: Error of y(t) for example 1 (h = 0.1) 
t Method A Method B 
0.3 1.8428727e-004 2.2810119e-004 
0.4 2.4052639e-004 5.1440716e-004 
0.5 4.5748153e-004 8.5876660e-004 
0.6 5.8078449e-004 1.2697656e-003 
0.7 8.4856274e-004 1.7575791e-003 
0.8 1.0543354e-003 2.3338030e-003 
0.9 1.3952231e-003 3.0116219e-003 
1.0 1.7044890e-003 3.8060145e-003 
 
Table 2: Error of y(t) for example 2 (h = 0.1) 
t Method A Method B 
0.3 4.5065362e-004 5.8284717e-004 
0.4 2.9443804e-004 9.7450032e-004 
0.5 6.7867750e-004 1.2528296e-003 
0.6 4.3923840e-004 1.4525075e-003 
0.7 8.0112923e-004 1.5966312e-003 
0.8 5.1017146e-004 1.7007588e-003 
0.9 8.6895411e-004 1.7756254e-003 
1.0 5.4196872e-004 1.8287918e-003 
 
Table 3: Error of y(t) for example 1 (h = 0.1) for methods A and 

B[8] 
t Method A Method B [8] 
0.4 2.9443804e-004 9.7450032e-004 4.2530000e-004 
0.5 6.7867750e-004 1.2528296e-003 7.1200000e-004 
0.6 4.3923840e-004 1.4525075e-003 1.0556000e-003 
0.7 8.0112923e-004 1.5966312e-003 1.4620000e-003 
1.0 5.4196872e-004 1.8287918e-003 3.1397000e-003 
 
Table 4: Error of y(t) for example 1 (h = 0.1) 
t Method C Method D Method E Method F 
0.3 3.9207500e-005 3.7016804e-005 2.6716341e-005 2.3962309e-005 
0.4 8.4890939e-005 8.1906006e-005 7.1444753e-005 6.3614004e-005 
0.5 1.3983292e-004 1.3583079e-004 1.2883332e-004 1.1388709e-004 
0.6 2.0539203e-004 2.0019529e-004 1.9547040e-004 1.7156573e-004 
0.7 2.8319791e-004 2.7659929e-004 2.6911307e-004 2.3454770e-004 
0.8 3.7510163e-004 3.6686362e-004 3.4824665e-004 3.0142337e-004 
0.9 4.8320835e-004 4.7305897e-004 4.3182385e-004 3.7122645e-004 
1.0 6.0991014e-004 5.9753835e-004 5.1910500e-004 4.4328173e-004 

 
Table 5: Error of y(t) for example 2 (h = 0.1) 
t Method C Method D Method E Method F 
0.3 1.0547721e-004 1.0823124e-004 4.6064141e-006 6.7971098e-006 
0.4 1.8156813e-004 1.8399233e-004 1.4349767e-005 2.1497021e-005 
0.5 2.3569468e-004 2.3785106e-004 2.9862905e-005 4.5378172e-005 
0.6 2.7460440e-004 2.7656997e-004 5.1892600e-005 7.9915113e-005 
0.7 3.0275940e-004 3.0458348e-004 8.1313344e-005 1.2680491e-004 
0.8 3.2316603e-004 3.2488108e-004 1.1914183e-004 1.8799699e-004 
0.9 3.3789855e-004 3.3952672e-004 1.6655518e-004 2.6572679e-004 
1.0 3.4841822e-004 3.4997514e-004 2.2491025e-004 3.6255372e-004 

 
 The numerical solution generated by these methods 
are compared with the third order method of[8] and this is 
shown in Table 3. 
 From the tables of results displayed it could be 
seen that one of our methods which is of order 2 
performs better than the third order method of [8]. 
 When the explicit methods of this work are 
combined to form a predictor-corrector method, the 
results as shown in Table 4 and 5 reveal that these 
methods give a better accuracy. 
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CONCLUSION 
 
 In this study, we have derived new schemes for 
solving first order differential equations based on 
interpolation and collocation through the general 
method for deriving the spline functions. 
 Although we pointed out in §3 that there are other 
explicit methods that could be obtained from collocating 
Eq. 7 and 8 from other points other than the ones used in 
this work, nevertheless these methods are far less 
accurate due to instability. 
 As a comparison to[8], Eq. 7 and 8 are the 
continuous form of our scheme of order two with 
equivalent discrete forms (9) and (10). Our method is 
easier to derive and more user friendly than the method 
of derivation in[8]. 
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