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Abstract: SK-partitions were introduced by Sharma and Kaushik, who defined distances (metrics)

between vectors in terms of partitions of the alphabet set F 7’ the set of the ring of integers modulo q.

These distances were applied in Coding Theory. The research examined algebraic and topological
aspects of SK-partitions and related sets of measures. A lattice of SK-partitions was introduced and
shown to have distributive sub lattices. Generator sets of the lattice were obtained and the structure of
its ideals and filters examined. Corresponding results for lattices of measures were presented.
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INTRODUCTION

Measures on the quotient spaces of the
integers were studied by Niederreiter and Sookoo ! in
connection with the uniform distribution of sequences.
Systems of measures were studied by Maharan *!, who
considered a family of measures with orthogonality
properties and also by Schmidt!"”, who proved that a
certain ordered Banach space of vector measures is a
Banach lattice. We examined the algebraic aspects of
systems of measures defined on quotient spaces of the
integers modulo g for different natural numbers gq.
These measures were defined in terms of SK-partitions
of the ring of integers modulo ¢. Studies in Coding
Theory involving SK-Partitions were carried out by
Kaushik[2’3’4’5’(”7], Sharma and Dial "' and Sharma and
Kaushik!'>"*" From results obtained we deduced
comparable results for systems of measures.

DEFINITIONS AND NOTATIONS

Notation: Let_Fq: {0, 1,...., g-1} be the ring of

integers modulo ¢, g€ {2,3,...}.

Definition: Given F , ¢ 22, a parition P

={B,,B,,.....B, |} of Fq is called an SK-partition if
1. B,={0}, and g-a € B,if ae B,,i= 1.2,

oo, -1

2. Ifae B, and be Bj;i,j=0,1,...,m-1, and if

j precedes i in the order of the partition P,
written as i>j, then min{a, g-a} > min{b, g-b}.

3. Ifi>j (4, j€ {OLom—1 ) and i#m—1,
then

B

b}

|Bi| > |Bj| and ‘B’H‘ 2%

m-2

where |Bi| stands for the size of the set B, .

Notation: 3 p is the set of all SK-partitions.

The concepts of a generator set, an ideal and a filter are
well known in lattice theory , Birkhoff "),

Definition: G is said to be a generator set of a lattice L
if every element of L is the upper
bound of elements of G.

Definition: Let (L,<) be a lattice. A subset A of L is
called an ideal, if
1. abe A=>avbeA
2.aeAandce L3cfa=ce A
Definition: Let ( L,<) be a lattice. A subset H of L is
called a filter if
1. a,be H=anrbe H

2. ae HandcelL>c2a=ce H.
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Notation: For an SK-partition P of F_, P” denotes
the number of classes of P, and [P]i denotes the
(i+Dth class, i=0L.., |[P|-1. Ao if

P={B,.B,...B,}. B/

m—

for

denotes
x>2L
2

Notation: Z/qZ is the quotient group of integers

then

{xe Bi|x<%} and Bi2 denotes {xe B,

i=1,2,....,m-1.

modulo g with the discrete topology.

Definition: Given a partition P of F g0 We define a

measure U, on Z/qZ as follows:
Up(i+qZ)=j,ifie B;,i=0,1,...,q-1.

THE CLASS-SIZE ORDERING

Definition: Let P and Q be elements of 3 , such that
P={B,,B,.....B, ,} and
0= {CO,CI,...,Cm,_l};m,m'e {2,34,...}

F_and Q is an SK-

where P is an SK-partition of [,

partition of F ;

q,.9"€{23,...}.

P<. Q< m<m’ and the number of elements of
F,_of weight @ with respect to P < the number of
elements of F 7 of weights @ with respect to Q,

w=01,..,m-1.

Definition: Let [/, be a measure on Z/gZ and [,
be a measure on Z / q’Z , where
P={B,,B,,....B, ,} is an SK-partition of F,, and
0={C,,C,,...,C,, —1} is an SK-partition of F,.
Also, let M , = {/1P|P € 3} We define an ordering
on M, as:For Uy, ly €M ,,

Up <, M, < number of elements of Z/qZ

of measure j < number of elements of Z/g’Z of measure j

j=0,1,..,m-1.
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Note: Clearly (1, <, < P<; Q
Remark: Clearly, the
P<; Qe |Bl<|c| i=01....m1.

from above definition

Theorem 3.1: < is a partial ordering on 3 b

Proof: LetP, Q€3 > P< Qand Q< P.

Then m<m’ and m < m.

m=m
I Also, g<q and ¢'<gq
q9=4

(I) We also have

B,|<|C,|and |C,|<|B|:i =0],....m~1

~[B|=|C;i=01,...m-1
(IIT)  From (I), (II) and (III), it follows that P=Q. Hence
Sgis antisymmetric.  Also, <,is reflexive and

=5
transitive. gsdf

<

Corollary 3.2: < . 1s a partial ordering on M,.

The following example showed that < is not linear.

Example. Let P ={B,,B,,B,,B,}

where B, ={0}

B, ={1,2,21,22}

B, ={3,4,5,6,17,18,19,20}

B, ={7,89,10,11,12,13,14,15,16}
and let o={¢,.C.c,.c.C,}
where C, =1{0}

C, =1{1,2,3,26,27,28}

C, =1{4,5,6,23,24,25}

C, ={7,89,10,19,20,21,22}

C,={1112,13,14,15,16,17,18}
B|=4<6=|C|

QL P
also |B3| =10>8= |C3|
~P£; 0.

We devised a more convenient notation for an SK-
partition which was expressed in terms of its class-
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sizes, and which would also uniquely determine the
SK-partition.

Theorem 3.3: a,,a,,as,,....,a,,, are positive, even
integers satisfying a, <a, <...<a, _,
& there exists a unique SK-partition

P={B,.B,...B, ) in
3,3 [B|=a;i=12,..m-1.

Proof: Suppose that a,,a,,...,a,,_, are positive, even
integers such that a, < a, <...<a,_,

m—1
and that ¢ = 1+Zai

i=1
Any class of an SK-partition of F , is of the form

{x,x+1,....x+a,g—(x+a),g—(x+a—-1),..qg—x

Also, from condition (2) of an SK-partition, Bi and
B, can only be classes of an SK-partition

P={B,.B,.....B,_} oquif the elements of

B, less than 4 are all less than the elements of

B

i+1

less than %, (i=12,..m=-2).

P={(B,.B,,...B,_ }of

F , satisfying conditions (1) and (2) of an SK-partition

The only partition

must satisfy and following:

B, = {0}
a
B, ={xe Fqlﬁxﬁ—l}
2
| i—1 aj i aj
B, =<xe F |l+) —<x<) —
i) i)
i=23,..,m—1.
P also satisfies condition (3) of an SK-partition since
|B;| =a, (i = 1,2,...,m—1) and SO
B.|<|By|<........ <|B,.|

Hence P satisfies the three conditions of an SK-

partition. Since |Bi|is even for [ € {1,2,...,,m—1}

and |B,|<|B,|<...<|B, |, Pe3,.
Conversely, suppose that
Pe3,>P={B,.B,....B, } and

B|=a,(i=12,...m-1)
Since P 3 > then a;'s are positive and even for

i=12,..,m—1landalso a, <a, <...
Remark: From the previous theorem, any SK-partition

.<a,_,

in 3 , was determined by the sizes of its classes, so w

the notation given below was used.
Notation: If Pe 3 >P= {BO’BI””’Bm—l} and

l.| =a, (i = 1,2,...,m—1), we shall denote P by

(1, a,,d,,....a,, )), when it is convenient.

THE LATTICES (3,,< )and (M,,<,)

We presented the l.u.b and g.1.b of any two elements in

(S o SS ) and then established that it is a lattice.

Lemma 4.1: Let

The lub of P and Q is G  where

G=1G,.G,,....G,_ },

G| = max{B,,|C,|}i = 0,1,...m~1, and

G| = max‘ﬂBm_1 JClbi=mm+1,...m —1.
Also Ge 3 .

Proof:_ Gi‘ = maXﬂBi |G }S maXﬂBm ACin }: G

for i =12,....m—2.
Also, for i=m—1,mm+1,m+2,..m -2
‘Gi = maXﬂB C, }S maXﬂB Cm‘}: ‘Gm

From Theorem 3.3, G is an SK-partition.

m—1|° m—11>

G is an upper bound of P and Q since
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[Pl=m<m’=|d]

o] =m"=|a]

B|<|G li=01...m—1.
|Cl.|S|Gl.|;i:0,1,...,m'—l.

If Kis another upper bound of Pand @, then

<

G <, K, since |Gl.| is the smallest number satisfying
|B,|<|G ;i =0]1,...m—1

and

C,|<|Ghi=00m -1,

GisthelLubof P and Q.

G| ((=12,...m"-1)

G| <|G,,y|for i=12,..m"-2. Ge 3.

is even for and

Lemma 4.2: Let Pand Qand (SP,SX) be as in
Lemma 4.1. The g.l.b of P and Qis H, where

H={H,.H,...H, }and

|H,|= min{B,||C[}i =0,1,...m~1.

Also H € 3p.

Proof:

|Hi| = minﬂBi ) Ci|}S minﬂBm ) Ci+1|}= |Hi+1|
,i=0,1,....,m—2.

H is an SK-partition from Theorem 3.3. H is a lower
bound of P and Q.

If Lis another lower bound of Pand Q, then
L <, H,since |Hl. | is the largest number satisfying

|H,|<|B
H |[<|cfj=01..m-1.

:i=0,1,...,m—1, and

Hence H is the g.l.b of Pand Q. Clearly |Hl| is even

for i=12,.,m-1and |Gl.| S|Gi+1|for

i=12,.,m—2.Hence H € Sp.

From the foregoing the following result was obvious.

Theorem 4.3: (S - )is a lattice.

<

Py ) is a lattice.

Corollary 4.4: (M
(3

<

S ) is not distributive, as shown:

191

Example: Let P,Qand Rbe elements of 3 ,such

that

P =((1,2,2,6,6,8,8,10,14)),

0 =1((1,2,4,4,4,6,6,10)) and R = ((1,2,8,10)).
Now, O v R =((1,2,8,10,10,10,10,10))
PA(QvR)=((1,2,2,6,6,88,10))
PAQ=((12244,6,6,0))
PAR=((1,2,2,6))
(PAQ)v(PAR)=((1,2,2,6,6,6,6,10))
~PA(QVR)Z(PAQ)V(PAR)

(3 s <, )is not distributive.

Also, the following example showed that (3 o <, )is

not modular.

Example:Let P =((1,2,4,4,6,8,10,12)), 0 =((1,6,8,10))
and R =((1,2,2,4,6,6)).

We have, P > R

0 v R=((1,6,8,10,10,10))
PA(OVvR)=((1,2,4,4,6,68))
PAQ=((1244))
(PAQ)VR=((1,2,4,4,6,6))

Hence PA(QVR)#(PAQ)v Rand so (3
not modular.

P’Ss

)is
THE SUBLATTICES (3,,,.< )and (M ,,,.<,)
Notation: For a fixed integer me {2,3,..}, let

Spm = {P €3, |Phasm classes} and
let M, = {,uP € MP|P has mclasses}

The following result was deduced.

Theorem 5.1: (3 P Sy

foreach me {2,3,....}.

<

)

) is a sub lattice of (SP )

Remark: For any natural number #nall codes over
(F P )n had the same maximum weight with respect to
any element to any element of J p.m- All codes have

the same maximum distance with respect to any
element of 3P!m.
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<

Theorem 5.2: (3 P S ) is a distributive lattice.

Proof: Let P,(Q and R be fixed, arbitrary elements of
Sem

We show that P A(QV R)=(PAQ)v(PAR).
|PA(@vR)=|(PAQ)v(PAR)
[Pr(@vR)|=[Prg)v(PAR)

i=01,.,m-1.
Let:

H =[[Pr(QvR)]|=

min{“P]"L } i=0,1,...m—1.
max{[lel[[&1}]"
K, =[(PrQ)v(PAR)]|=
{min{l[Pll,l[Qll},
[ mine o1 )
H,=K;;i=0].12,..,m-1.

} ,

s b T Vo dyeens

1it[P],| 2 [[0] | = [[R] ], then

H, =min{[P].[0][}= o]

K, = max{[o) &1 }= [0} |- ,

For other relative sizes of [P]i’[Q]i and

[R]i, similarly H, = K| (i=0,1,.,m—1)
Hence PA(QV R)=(PAQ)v(PAR).L

<

Corollary 5.3: (M P Sy ) is a distributive lattice

GENERATOR SETS OF (3, ,< ) AND
(M P.m> < /’l)

Notation: Let G =

{((1, 2,2,..,2,0, )

o, = 2,4,6,..}’

P.m1 =
€ SP,W
G _ ((1’2’2""’2’amf[’almel’“"crmfl))
P.mi
€ 3[’,}71 am—i = m—i+1 == am—l = 4’ 6’ 8’

for ie {2,3,...,m—1}
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m—1
and G, = UGP,m,i
i=1
Lemmaé.1 GP’m is a generator set of

(3},!,",33,) where (m =23,...)

Proof: We showed that any element of J p.m1s the

|

each SK-partition on the R.H.S is in GP!m.

upper bound of elements of G Pom-

)){a[ €{2,4,6,..};

i=12,.,m-1
be fixed, arbitrary elements of 3 P

a

2 ¥ m-1

Let ((1,a1,a2,..

In view of the above, we infered the following result:

Theorem 6.2: Gpis a generator set for

(SP’SS)’Whefe Gp = UGP,m :

m=2

Notation: Let G = {/tP € MP‘PE GP,m} and

M.P.m

G.r= {:uP|PE GP}

Corollary 6.3: G ,u.p 18 @ generator set for (M PSSy )

Notation: Let K be infinite, increasing sequence of
positive, even numbers, namely, kl s k2 yeen

Also let

HPAWAk i — ((1’ 2’ 2""’ 2’ am—i ’ am—i+l 200 am—l )) 31’)’/1 for
" |wherea, ,=a, ., =..=qa,
ie{1,2,...,m-2},
((1,a1,(12,...,am_l ))
HP,V/LKJYI—I = c SP . al = az
== a, , =2,4,6,..
and
m—1
HP,m,K = HP,m,K,i

1l
—_

i
Theorem 6.4: GP’m,HP!va] ,HP!W,’K2 ,.... form an
infinite chain of generators for (S Pm,Ss), where

K, is an infinite, increasing sequence of positive, even
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numbers and K,,, is an infinite subsequence of

K, (h=12..)

Proof: Let j be a fixed, of
{1,2,..} We showed that H pmx 18 @ generator of

arbitrary element

(S5,,,<,) by proving that any element of G, was

obtained by performing lattice operations on elements

of H

P,m,Kj .
Let K, =k .k,
positive, even numbers and let
A= ((1,2,2,...,2, a,a,...,a)) be an arbitrary element

be an increasing sequence of

of GP’m for some fixed, positive integer such that
A¢ GP!m’m_l. Then Ae GP!W. for
ie{l2,..,m-2}.
~A=(122..2,a,a,..,a))

some

(m—l—i)times (itimes)
=((1,2,2,....2,b,b,.,....b)) A((1,a,q,...,a))
<(m-1-i) twos > € ib’s > <(m-1)a’s 2>
where b {k k5, }3 b > a.

J1

< (m-1-i) twos> €ib’s>
and ((l’a’a’ ’a))e Hp, ki
K,
<(m-1) times—>
We have shown that A is the glb of elements of
H

P,m,Kj .

If Be G

then Be H

P.m,m—1> P,m,Kj .

Any element of G, either already was an element of

H,, K, OF could be obtained by taking the g.Lb. of

two elements of H Pk,

Notation: Let H , ,, , = {/tP € MP‘PE Hy,. }

Corollary 6.5: G H H . form

M Pm > "7 Pomky > T 1, Pomky 00

an infinite chain of generators for (M Poms < y )

IDEALS AND FILTERS OF
(Sp,Ss)and (M < )

P>—u
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We next considered SK-partitions with bounded class
sizes. In the next theorem, we showed that some sets of

<)

Theorem 7.1:_Every ideal H of (S - )has one of

the forms:

such zpartitions are ideals of (S

(i)H =3,.
pes, P={B,.B,....B, ,},m<d,
and either (1)
(i) H =1 |B|<b,(i=12,...h),if h<m—1

or (2)|B|<b,(i=12,...m—1),if h>m—1
where h and d are fixed, arbitrary, positive integers
that h<d-land b ,b,,.....b,are fixed,
arbitrary,  positive,

b <b,<..<b,.

(iii) H has the same form as in (ii ), except M is not
bounded.

such

even integers  satisfying

Proof: Let H be an ideal of

(8,.<,).d = max{m|P ={B,.B,.... B, }e H}
P={B,,B,,....B, }€ H, and either
(1)|B/|.|B,|.---s|B,

are bounded above if r <m—1
and h =max<r
or

(2)|B,].|B,].--.|B,,

are bounded above if r >m—1

H takes different
h exists and d exists.

(i) If hdoes not exist, then d does not exist and
H=3,.
(ii)@ I hand

b, :rnax{|Bi|P:{B°’Bl
eH,i=12,..,

forms, depending on whether

h<d-1,let

d exist, and

s B, 1}
h

From the definition of

b (i=12,..,h),30,€eH>30 =

{QiO’Qil’QiZ"“"Qi(ml_l)}’ m —12i
and |Q,|=b, (i =12,...h).
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Let D=Q,vQ,Vv..v0,

From property (1) of an ideal, De H.
ClearlyD={D0,D1,D2,...,D”1_1}, for some integer

n >3h<n —1, and|D|=b,(i=123,...h)
b <b,<..<b.

Let
P={B,,B,...B, },m<d, and either
K={Pe§, ()|B|<b,(i=1.2,....h), if h<m—1,¢,
or Q|B|<b(i=12..m—1ifh>m—1

We proved that H = K.
Let L= {Lo ,L,..., an_l }be an arbitrary element of

H , for some positive integer 7,.
Then either (1)|L,|<b, (i =1.2....,h)if h<n, -1
or (2QL|<b,(i=12.....n,=1),if h>n, -1
from the definition of b, (i =12,..., h).
~Le H=LeK,
~HcK (1)
Let M be an arbitrary element of K 3 ”M ” <h.

Then M < D.
Since pe g, from property (ii) of an ideal

MeH.

Now, let NI{NO,NI,...,N,[}_I}( where n,is a
positive integer) be an arbitrary element of
K 5|N|>h.

Since only the first (/2 +1)classes of elements of

H are bounded ( for those elements of H having
h + 1 or more classes ),

37 ={1,.1;,...T,, .}
e H,(n,<n,)3[N, |<[T,.,|.
Also,3U ={U,,U,.,...U, _ fe H >n, <nj,

from the definition of d.
Let V=DvTvVvU.
From property (i) of an ideal, V € H.

Since N <V, from property (ii) of an ideal,
NeH.
~NeK=NeH
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~KcH.

mn

From (I) and (II)
H=K

(b) If H = d —1, the proof is similar .

If hexists and d does not exist, the proof is also
similar to the proof in (ii).
Corollary 7.2: If H, ={u, € M ,|Pe H} where H is

an ideal of (3P,Ss
(M,.<,).

The next result was expressed in terms of filters of

(35.%5).

P>
Theorem 7.3: Every filter H of {(S S, )}has the
form: H = {P €3, |P > D} for some fixed element
Dof 3,.

Proof: Let Hbe a filter of (S -9 ), and let

h+1=min{me N|P={B,.B,.....B,  }e H}
b. = min

Also let ™ { B,
i=12,..,h

From the definition of h+1, 3
C ={CO,C1,...,C,1}E H , and from the definition of
b (i=12,...,h),30 € H>

0, =10+ 0:1+ Qs Qi) }
0,|=b,(i=12,....1). and h<m, —1.

Let D=CAQ, AQ, A..NQ,.

From property (i) of a filter D € H.
D={D,,D,,D,,...D,}.

where |D,|=b,(i=1,2,..,h) and H ={Pe 3,|P > D}
Corollary 7.4: Every filter K of (M P S ﬂ) has the

form K ={,up € MP|P2 D},where D

), then H is an ideal of
Hpp

P’Sy

e N|P={B,.B,....B, }e H}.

some element

is a fixed element of 3 .
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