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Abstract: Boundary control systems arises naturally in many applications. Any modelling of real systems

involve uncertainty. Sufficient conditions for well-posededness for additive or multiplicative uncertainty

are presented through the use of matrix theory.
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INTRODUCTION

Boundary control systems arises naturally in many

applications such as robotics and acoustics. Modelling

of any real systems require a certain amount of idealizing

assumptions, consequently there are always some error in

the mathematical model.

The input/output map of a boundary control system is

said to be well posed if the mapping is well-defined and

bounded. This concept was first unified by Salamon[8].

An ill-posed input/output map indicates that the mea-

sured outputs are not continuously dependent on the in-

puts. This would lead to difficulties in the practical im-

plementation of any such control system. Often, however,

ill-posedness of the control system indicates modelling er-

rors. If the ideal boundary control system is close to being

ill-posed, this would also hints in incorrect modelling er-

rors.

In this paper we consider two types of uncertainty on

a well-posed ideal boundary control system. We give suf-

ficient conditions for both types of uncertainty.

In section 2, we give a brief introduction to bound-

ary control and some relevance results. In section 3, we

present our result through the use of matrix theory.

PRELIMINARIES

In this section we give some background definitions

and results needed for the next section. For a more de-

tailed introduction to boundary control system see for e.g.

[1, 3, 6, 7, 8, 9].

Definition 1: A boundary control system is defined by

d
dtz(t) = Lz, z(0) = z0

Γz(t) = u(t),
y(t) = Kz(t).


 (1)

The operators L ∈ L(Z,H), Γ ∈ L(Z,U) and

K ∈ L(Z,Y). The spaces (Z, ‖ · ‖Z), (H, ‖ · ‖H),

(U , ‖ · ‖U ), (Y, ‖ · ‖Y) are all Hilbert spaces and Z is a

dense subspace of H with continuous, injective embed-

ding ιZ .

Throughout, we shall assume that the boundary con-

trol system (1) satisfies the following assumptions:

[A1] The operator Γ is onto, ker Γ is dense in H and

there exists µ ∈ R such that ker(µI −L)∩kerΓ =
0 and µI − L is onto H.

[A2] For any z0 ∈ Z with Γz0 = 0 there exists a unique

solution of (Γ, L) in C1[0, T ;H] ∩ C[0, T ;Z] de-

pending continuously on z0.

Definition 2: The abstract elliptic problem (L, Γ)e cor-

responding to the boundary control system (L,Γ), as de-

fined in (1), is

Lz = sz, s ∈ C

Γz = u.

}
(2)

Th solution z ∈ Z will be denoted by z(s).
Let Ω be an open set in �n. A linear second order

differential operator in Ω is defined by

L(x,D) =
n∑

i=1

n∑
j=1

aij(x)Dij +
n∑

i=1

ci(x)Di+d(x). (3)

We assume that the coefficients are sufficiently smooth

and that the operator L is uniformly elliptic in Ω. More

precisely,

[H1a] (Smoothness Condition 1) The coefficients aij(x)
are bounded and uniformly continuous in Ω̄ and

the remaining coefficients are bounded and mea-

surable in Ω.

[H1b] (Uniform Ellipticity)Define the principal part of L
by
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L0(x,D) =
n∑

i=1

n∑
j=1

aij(x)Dij = DtA(x)D,

where A(x) is an n × n positive definite matrix with

components aij(x). Then L is uniformly elliptic in Ω
if there exists a positive constant cL such that for all

x ∈ Ω, ξ ∈ �n,

|L0(x, ξ)| ≥ cL|ξ|2. (4)

The boundary operator Γ is defined by

Γ(x,D) = b0(x) +
n∑

i=1

b1i(x)Di = b0(x) + B′
1(x)D,

(5)

where B′
1(x) =

(
b11(x), . . . , b1n(x)

)
and D′ =

(D1, . . . , Dn). We impose the following condition on the

operator B.

[H2] (Smoothness Condition 2) The coefficients of B
are real. Also, b0(x) ∈ C2(∂Ω) and b1i(x) ∈
C1(∂Ω), for i = 1, . . . , n.

Estimates of the solution to a uniformly elliptic boundary

value problem depend on regularity of the region Ω. In

particular, we will assume that

[H3] Ω is bounded and uniformly regular of class C2.[2]

In general, it is non-trivial to show that a region is uni-

formly regular of class Cm. For our work, we are con-

cerned only with bounded sets Ω in �n and cylinders of

the form Ω × � in �n+1. It can be shown that if Ω is

bounded with sufficiently smooth boundary, then Ω × �
is also uniformly regular.

In addition to [H1a], [H1b], [H2] and [H3], we as-

sume, unless stated otherwise, that Ω, L and Γ also satisfy

the following:

[H4] (root condition) Let L0(x,D) denote the princi-

pal part of L(x,D). For every pair of linearly

independent real vectors ξ and η, the polynomial

L0(x, ξ + τη) in τ has an equal number of roots

with positive and negative imaginary parts.

[H5] (complementing condition) Let B0(x,D) denote

the principal part of B(x,D). Let x be an arbi-

trary point on ∂Ω and n be the outward normal

unit vector to ∂Ω at x. For each tangential vector

ξ �= 0 to ∂Ω at x, let τ̂ be the root of the polyno-

mial L0(x, ξ + τn) with positive imaginary part.

Then τ̂ is not a root of B0(x, ξ + τn).

Theorem 1: (Theorem 6.6[1]) Let Ω, L, Γ define a bound-

ary control system with H = L2(Ω) and U = H
1
2 (∂Ω).

Assume that [H1]-[H5] are satisfied. Then there exist a

positive constant R such that for any z ∈ H2(Ω), u ∈ U
satisfying Γz = u on ∂Ω and any complex number s on

the open right half plane CR2 := {s : Re s > R2}, the

following inequality holds:

|s|1/2 ‖z‖H1(Ω) + ‖z‖H2(Ω)

≤ m
[
‖(L − s)z‖L2(Ω) + |s|1/2 ‖u‖L2(Ω)

+ ‖u‖H1(Ω)

]
, (6)

where m is a positive constant dependent only on L and

Ω.

MAIN RESULTS

We are now in position to present our results.

Throughout this section we shall assume that the ideal-

ized boundary control system takes the form in ( 1) and

satisfies assumptions A1,A2 and H1-H5.

The additive uncertainty consider here takes the form

d
dtz(t) = Laz, z(0) = z0

Γz(t) = u(t),
y(t) = Kz(t).


 (7)

where La and L only differs in the principal part of L in

the following way:

L0
a(x,D) = Dt(A(x) + ∆(x))D.

Similarly, the multiplicative uncertainty takes the form

d
dtz(t) = Lmz, z(0) = z0

Γz(t) = u(t),
y(t) = Kz(t).


 (8)

where Lm and L only differs in the principal part of L in

the following way:

L0
m(x,D) = DtA(x)

(
In + ∆(x)

)
D.

Theorem 2: Let the idealized boundary control system (1)

with L being a uniformly elliptic operator be well-posed.

Let cL be a constant satisfying Equation (4). If ∆(x)
is symmetric, then the boundary control system (7) with

Neumann or Robin boundary condition is also well-posed

provided that |min
x∈Ω

S(∆(x))| < cL, where S(∆(x)) de-

notes the spectrum of ∆(x). Proof: Since ∆(x) is sym-

metric, it is orthogonally diagonalizable. Thus there ex-

ists an invertible matrix P (x) and a diagonal matrix D(x)
such that ∆ = PDP t and P tP = I . Consequently, it is

enough to show that the result hold for diagonal matrix

∆(x) = diag(dii) since

∆ = PDP t ⇒ ξt∆ξ = (P tξ)tD(P tξ)
≥ (min

x∈Ω
{dii})|P tξ|2

= (min
x∈Ω

{dii})|ξ|2
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for all ξ ∈ �n. To complete the proof, since L is

uniformly elliptic there exists cL > 0 such that |ξtAξ| ≥
cL|ξ|2. So for diagonal matrix ∆(x) we have that

|ξt(A+∆)ξ| ≥ |ξtAξ|−|ξtDξ| ≥ (cL−|min
x∈Ω

{dii}|)|ξ|2.
Hence La is also uniformly elliptic and the result follows

from Theorem 1.

Theorem 3: Let the idealized boundary control sys-

tem (1) with L being a uniformly elliptic operator be well-

posed. Let cL be a constant satisfying Equation (4). If

∆(x) is Hermitian, then the boundary control system (8)

with Neumann or Robin boundary condition is also well-

posed provided that min
x∈Ω

|S(∆(x))| < 1.

Proof: Let λk(x), k = 1, . . . n, denotes the eigenvalues

of ∆(x). Since ∆ is Hermitian, by Wely’s Theorem on

eigenvalues we have that λk(∆) + 1 ≤ λk(∆ + In) for

each k = 1, . . . , n. Since min
x∈Ω

|S(∆(x))| < 1, λk(∆) + 1

is positive for all k and so In + ∆(x) is positive definite.

Since L is uniformly elliptic, A(x) is positive definite thus

so is A(x)
(
In + ∆(x)

)
. Hence Lm is uniformly elliptic

and by Theorem 1, system (8) is well-posed.

CONCLUSION

Well-posedness is preserved under additive and multi-

plicative uncertainty under mild assumption. These are

sufficient but not necessary conditions since if ∆(x) is

positive definite, then trivially the resulting boundary con-

trol system of the form (7) or (8) remains well-posed re-

gardless of the bounds on its spectrum.

These mild assumption can be used to determine

whether the idealized model is sufficiently accurate for

use in controller design.
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