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Abstract:

In this study we extend the sufficient optimality conditions of complex programming

problems to a large class of functions that include the twe parts (real and imaginary) of the objective

function. The sufficient conditions

were established under generalized forms

of convexity

assumptions. The previous results that considered the real part enly can be deduced as special cases.
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INTRODUCTION

Mathematical pregramming in complex space was
initiated by Levinson [1] who extended the duality
theerems for complex linear programming. These
results were extended (o polyhedral cones in complex
space by Ben-Israel [2] and Craven and Mond [3].
Abrams and Ben-Israel [4,5] surveyed contemporary
works in complex programming and outlined some
applicaticns. Optimality conditions of noenlinear
programming in complex space were discussed in many
publications. More details, necessary conditions were
established by Abrams and Ben-Israel [6]. They gave a
complex version of the wellknown Kuhn-Tucker
conditions. Craven and Mond [7-9] gave a complex
version of Fritz John conditions. Youness and Elbrolosy
[10], in extending the above wversions, gave the
conditions considering the two parts {real and
imaginary) of the objective function.

On the other hand, sufficient conditions were
established by Abrams [11], Mond and Craven [9] with
the usual concepts of convexity assumpficns; Bector
et al. [12], Gulati [13,14] and Mond and Craven [5]
with the generalized convexity concepts. Other works
in the field include Bhatia and Kaul [16], Rani and Kaul
[17], Datta [18], Mend and Murray [19], Mond and
Parida and Weir and Mond [21]. For more generalized
and recent discussion, cne may refer to Smart and
Mond [22] where the concept of invexity is invelved.
As well-known, the optimality conditions for the
existence of an optimal sclution in complex space
induce their correspondents in real space [23] as special
cases. Previously, the objective function in such
theerems in complex programming problems was
considered as the real part of a complex function, while
the imaginary part is ignored. Here we extend the
sufficient conditions with considering the two parts
under usual and generalized forms of convexity notions.
It is worthing that these results contain all the above
formulations as special cases.
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Notations and Preliminaries: Denote by (" the
R -dimensicnal complex space, and A7 A AF denofe

the transpose, the conjugate, the conjugate transpose of
amatrix Ag {mxn,

The dual S of a cone § < C" is defined by:

S ={veC":xe § >Re y¥x20}.

The interiors of § and S are:
intS={yeS§:0#xe 8 =>Re y x>0}

int 8 ={ye 8§ :0£xe §=>Re yix>0}

One can easily show thatif § and T are convex cones
in C", then

ay § * is a closed convex cone,
b} S+intScint§,

O (SxT) =8"%xT",

& imt (S xTYy=int§ ximT,

&) ScT=T <=5%

H)Sc(s8™)" and §=(S§")" iff S is closed.

2 (SNTY =cl(s™ +773if § and T are closed; “cl”

denotes closure.
Define the manifold {J by:

Q:{(af,af)e Cg”:cogzg}-

Define the canonical mapping p:C"—= R by
x+iy, = (x,v), i=1..,n.
A convex cone S is pointed if §N-§ ={0} {i.e.;if

it does not contain a line} and it is solid if {nf § = &3

A pointed closed convex cone § < C " induces a partial
orderin C" via X £y iff yv—xe§.
For an analytic function f :C" —— C and a point

g € C " , the gradient of f at Z, is denoted by:
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i=1,..,n

V fe)= [0S

dz, )
For a complex-valued function f(@',”) analytic in
the 2n variables (@', ") at the point

(25,75 )€ C" X C", denote the gradients by:

V(%) = {W“j Len
0@

and

A ORAE [af(”_)} i=l..n-
I

For an analytic function £ : CF—C",

D g(zy) = [%J, i=lomj=Ll..n-

<

(g:C"——C" is analytic if each of its
components g :C"——C, i=1...m is analytic)
Similarly for a complex functicn

g:C"XC" — C” analytic in the 2

variables (&',@") atthe (z,,Z,)e C"xXC"

— _| 982020 | . :
ng(z(jsz{));( glgzolz(j)]![=]-s"'am;.]=1s"'!n
o;
and
- _| o8z %) |, :
Dgg(zo,zg)E[%},L=1""=m;J=L---,n'
i

Definition 2.1: A set S is a polyhedral cone in C" it
it is the intersection of finitely many closed half spaces,
each containing the origin in its boundary, i.e.;

N
S = H El
k=1 Yk

where, H"‘k ={ZE C”;RezHukEO},

n
for some vectors Uy , ..., U, € C and pe N.

This is equivalent to S is a polyhedral cone if there is an
integer r and Ae C™ such that

S={ze C" - Re AzEO}-

Definition 2.2: Let .§ be a clesed convex cone in CF,

and let z, < S. Define S(ZO),theconeS at Zo,as:
S(z)={xe C":Rey’z,=0, ye§

= Rey"x =0}
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[n the case that S is polyhedral, S(zg) is the

intersection of those closed half spaces Hw which

contain 2y in their boundaries, i.e.,
B(z,)={k:Re z] u, =0} =
Szg)= N H,

ke Blz)

»

with the convenfion that § (Z(} )= C" when

B(zg)=@. Clealy z,e8(zq), —z,€5(z;)
and §c8(zy)

Definition 2.3: Let § be a closed convex cone in C™.
At a point (Z,,3,)€ @, the analytic function

f: C” =C™is said to be:

i) convex on () with respectto § if
F(2.2) = f20: %) = D f (26, 5 )2~ %)
D f(2.%)F-T)e S |
for any (z,f)e Q ;

ii} strictly convex with respect to § if

f(Z’E)_f(zo’zo)_sz(Zo’Eo)(Z_Zo)’
-D_ (2,7 0T —%)eimt §
forany (z,7)€ 0, (2,2) # (%, %) 3

iil} quasi-convex with respect to §'if

[z, %) - f(2De S=

sz(Z()»Zg)(Zo _Z)+sz(Z0yzo)(Eg _E)E S
forany(z,7)e @

iv} strictly quasi-convex with respect to § if
f(20.%) - f(2.2)e § = D, f(2. 7z, — 2)
+D_f(z,.Z, )%, —Z)eint § ’
forany (z,7)e @, (2,2) #(2,.%)

v} pseudo-convex with respect to S if

D, (2.5 )% =)+ D f(2.7)(Z, —2)€ S
= f(2.2)— [z, 5)e s

for any for any {z,7)€ 0 ;

vi} strictly pseudo-convex with respect to §if

D f(20, 2502y =2+ D_ (2,5 Z, 7)€ §

= f(2.7)- f(z.T)eint S
for any for
any (z,2)€ 0, (2,7) # (2, %):
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vii} concave, strictly concave, guasi-concave, stricily
guasi-concave, pseudo-concave or sftrictly pseudo-
concave with respect to S if f is convex, strictly
convex, quasi-convex, strictly guasi-convex,
pseudo-convex or strictly pseudo- convex with respect

to —§ ={z:—z€e S}, respectively;

viii} quasi-menoctenic with respect to § if it is beth
guasi-convex and quasi-coencave with respect to .

Definitiens of convexity of a function f :C* —-C™
are obtained, likewise, by replacing f(z,7) with

f(z)and noting that D f{z)=0 .

For more illustration, let us give the following simple
examples:

1- The function f(z)=az+b, where a and b are

constant complex numbers, is convex with respect to
any cone.

2- The function f(z,7)=2zZ+az , where a is a
constant complex number, is convex with respect to the

cone § ={ze C:Re[l —i i] 220}
(note that p(S):S‘:{(x,y)e RQ:xZO,y:O})-

X={ze C:Re[1-i 1+ z20}and
3- Let .
AT
s={ze C:Re 1 —if 220}
Then the function f(z)=z" is convex on X at the
point z=0 , withrespect to S.

{note X :{(x,y)e R :y+x2 O,y—xSO}aﬂd

g:{(x,y)e RQ:xZO,yZO})v

Let us, in the following, list a number of previously
established results obtained in [15,24] that will be
needed in proving our theorems.

Lemma 2.1: Let S be a closed convex conein C " ,then §
is pointed iff §™ is solid.

Lemma 2.2: Let S be a closed convex cone in € 4 and
a€ S, then ze[S(a)" iff zeS”
RezHa=0.

and

Theorem 2.1: Let O = Al e menl ,

A, € ™2 letT, 81, §, be polyhedral cones in
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c™, c™, "2, respectively andlet §; be pointed.

Then exactly cne of the following systems is consistent:
[- Ax +Ax,eT, 0+#x,e8,.x,€5,,

1I- ye-T", AH yeintS|, Al ye §;.

Theorem 2.2: Let Ae C™" let Kl and K2 be

pointed closed convex cones in C"and C™7,

respectively. Then exactly one of the following systems
is consistent:

[- Axe K,, 0= xe K

- Al yeimt K, , —veintK;.

Thecrems 2.1 and 2.2 are complex versions of the well-
known fransposition theorems of Motzkin and Gordan,
respectively.

Complex Programming Problem Formulation: We
will consider two classes of nonlinear programming
problems. The first class consists of problems of the
form:

(T-A)
subject to

(z.2ye M ={(z,2)e C : g(z. 7)€ 5},
r-B)

subject to

(e M ={(z,2)e C :g(z,T)e $,h(z,2)=0 },
where,  f:C” =C, g:C”" =C"
h:C? —C’ are analytic functions,

min f{z,2)

or

min f{z,2}

and
and § is a
closed convex cone in C". A vector (29.%9) € C* is
an optimal solution of (T'— ) or (T — F) with respect
to a pointed closed convex cone I' C C ,if (z,,Z,)is

and  f(z,2)— f(z,%)€T,
(z,2)e M or {z,7)e M’, respectively.
The second class consists of preblems of the form:

feasible, for every

(r-p) min f(z)
subject to

zeM ={z€ C":g(z)e S}, or
T-£) min f (z)
subject to

zeM'={zeC":g(x)e S, h(z)=0 },

where f :C" —-C, g:C" =C" and h:C" -C”’
are analytic; and optimality is defined as above.
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RESULTS

Complex Programming Problem Without Equality Constraints
Theorem 1: Let f,¢.5,T be asin problem (T — F). If at some feasible point (z,,%,). f is convex with respect

to T on the manifeld @ and g is concave with respect to § on ¢, then a sufficient condition for {g,,7;) to be an

optimal solution of problem (T — p) with respect to T'is the existence of a Vg € S such that

Re{| 7V £ (2,3 + 7 V. f (5. %)~ D8 (2. %) - D.8(2%,%) (2= )} 20
forall (z,z)e M andall T 7", (1)

Revilg(zy.2)=0" @
Proof: Since f is convex with respectto 7, then for all {z,z)€ M andall TE€ 7%,
Ret”[f(2.2) = f (20, %) 2Re[ 17V, f(2, %) (2= 2)+17 V. [ (2, 2)T %)

=Re [ch sz(zg,fg)+rTVg7(zg,Eg)}(z—zg)

2 Re{[vi'D, (2, %) +vi D5 (2. 2N (z—2,)} by (1)

= Re[y' D,g (2, 52— )+ vy D,2(2,%)(T-7)]

>Revi[ g(z2,2)—g(2,,%)]  (by concavity of g)

=Rev] g(z2.7) {by (2}
=20. {since vOeS* and g(z,7)e §)

Thus f(z,Z7)— f(zy,2,)€ T .forany (z,7)€ M which means that (z,, Z5) is an optimal sclution for (I'— P)
with respect to 7.

Corollary 1: Let f, g, 8,7 beasin problem (1" — Pz) . If at some feasible point <y » f is convex with respect
to T and g is concave with respect to §, then a sufficient condition for Z, to be an optimal solution of problem

(I — P,) with respect to 7 is the existence of a v € § ™ such that

Re[ "V, (2)=v{'D,2(zo) |(z —2)20 forall z€ M andall ce7”, ®

Revé" g(z0)=0 4

Theorem 2: Let f,¢.S and T be as in problem (7—p), with § to be solid. If at some feasible point
(29-39), f 1is convex with respect to T and g is strictly concave with respect to S(g(z,,7,))on O, then a

sufficient condition for (ZO,EO) to be an optimal solution of (T'—F), with respect to 7, is the existence of a

T and * h th
’COE an voeS ,(fco,vo)i() such that
TEV, Flap )+ 57V, fapz)—VE D, 8(zg )= VE D, 8(zg 2) =0, (5)

Re vl g(z4.,7,)=0. (©
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Proof: From Lemma 2.2; Vg € S* and (6) imply v, € [S(g(zo,zg))]*. Since there exists a non-zero vector

(’CO Yy ): T € 7% v, € [S(g(zo,zﬂ))]*, satisfying (3), then there exists a solution to the system

V. (2 |

T T
Vel @ 2) | |7 [ - P R——
S GoZ) T e T le T T X[ S (e 2] X[S(elz 2] ™
“D.g(z7) | | v y
_@(ZG’EG) v v

By Theerem 2.1 or 2.2, there existsno p € C” such that

=V [ (z4:2p)
_sz (ZO’Z_O)
ng(zD’z_D)

peint [T xT xS (g(zg2)XS(2(zg:20)) |

D_g(z4.29)
i.e.; there exists no solution p to the system

_sz(ZO’EO) pe lntT
V. f(z5,3,) Ppe int?
D,g(zy,25) peint 5(g(z5.2,))

ng(zu’zo) PEe int S(g(zo’zo))

By conjugating the second and fourth, then adding te the first and third, respectively, there is no p satisfying
—[V,f (2. 2) P+ VY f (2. %)P€int T }

D, g(25:2) P+ D8 (25, 2 pe int 5(g(24.25))

Since T'is peinted, there is no p to the system

V. [z 2} p+ V. f(z5.5)p € intT } "
D (2.2 P+ D.g(20, 25} P €int §(g(24,%))

Consequently, there exists no solution to the system

fz.2)— flzg. %) €T
s.1. , ©)

(z.zye M
forif it did have a solution

V (2. 7o M 2= 2) + Vo f(25. 5 M T~ F) +
| F(2.2) = F(2. %)~V f (2.2 ) (2= %) = V. F (2. 70T - ) | € T.
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It follows, from convexity of fwith respect to T, that
V 2y 2 e =2 )+ Vo flzp. 2 )T —2)e T, (10}

otherwise f(z,2)~ (225} =V, (2. He = 5) = V; [z 2 Wz — 2 )& T -
Now forany gy < [S(g(zo,fo))]* we see, using Lemma 2.2, that

Reu” g(z,7)20=Reu” g(z,.2,)
ie., Re u”[g(2,2)— 8(2.%)] 20,

hence  g(z,2)— gz, %) € S(g(zg. 25 ))-
It follows, from the strictly concavity of g with respect to §(g{z,,z,)), that

8270~ 8(2. %) +[ D,8(20. 22— %)+ D5 8(26. T )T — %) — 8(2. D) + 8(%0- %)
€ 5(g(2p. 2N +int S(g(2g.2)) S int 5(8(%g: %))
ie.,

D.8(20, 2= %)+ D:8(20, X T — ) e int 5(8(20, %)) (11

Thus, if (%) has a soluticn, setting p =g — g in {10} and {11), we have a solution to (8), confradicting the fact
that the system (7) has a solution. Hence (9) has no solution, which implies that (z,,z,) is an optimal solution of
problem (T — Pl) with respect to T

Corellary 2: Under conditions similar to Theorem 2, a sufficient condition for Z, to be an optimal soluticn of

problem (T— ]32) with respect to T'is the existence of a T, € 7% and vy € S* : (1:0 Vo y#0 such that

GV f(2)=viD, g(zy) =0, (12)
Re vy g(z)=0

Theorem 3: Let f ¢ § and T be as in problem (T —F). If at some feasible point (z,,z,), f is pseudo-convex
with respect to T"and g is quasi-concave with respect to §(g(z,,z,)), then a sufficient condition for (z;,7;) to be

an optimal selution of (7—Pp), with respect to 7, is the existence of v; € S™ such that (1) and (2) above are
satisfied.

Proof: Let v e [S(g(zo,zo))]* , using Lemma 2.2; we have for any (z,7)e M

Rev7 g(z,2)=0=Rev” g(zy. %)
50, RevH[g(Z,g)_g(Zo’go)]zo’

thus  2(2,2)— 8(zg, %} € S(8(2. %))
By the quasi-concavity of g with respectto §(g{z,,Z, ),

D, g(zg, 20 Mz — 20} + D 8(24. 2, M7 — 25} € S(g(25.20)) -
From (2) with v € S, Lemma 2.2 implies v, [ $(g(z0.2))] -
Therefore Revé{ [JDZ 8(25. 29 M2 —2g) + Dz g(zG,ZD)(E—EG)] 20,
ie.; Re{[vg]qug(zg,fg)+V§@(Zo’z})}(2_zﬂ)}20'
It follows, from (1), that for all 1e T *and all (2,Z7)€ M
Re{[rHsz(zo,zOHfﬂ(zo,Eo)}(z—zo)}20 ’
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ie.; Re 77 [V, f (2. 20z =200+ V. £ (2. )T - %)) 20

then V. (2202 —2) + V[ (5, 02— %) e T-

The pseudo-convexity of f with respect to T gives f(z,2)— f(z4,2,)€T ,forany (z,7)e M , which means
that (z,,7,) 1s an optimal soluticn of (' —F) with respectto T .

Complex Programming Problem with Equality Constraints
Theorem 4: Let f,g k8, T be asin problem (7' —P}. If at some feasible point (z,,Z,), f is pseudo-convex

with respect to 7', g 1s quasi-concave with respect to §(g(z,,z,)) and % is quasi-monotonic with respect to a pointed

closed convex cone K in 7, then a sufficient condition for (ZO ,ZO) to be an optimal solution of problem (T — Pl’)

is the existence of a vy € S* and ug € C7 such that

Re{[ 79V, £ (2. %)+ &V, F(20,2)— v D,8(20: %)~V D8 (2. Z) + e Dz, %)

+u§@(zo,go)}(z _ZO)] >Q,forall (z,7)e M andall teT", (13)

H _
Re vy g(z4.24)=0"-
Proof: As in the above Theorem, for any (2,7 )€ M’

Revy [D, 820,200z — 20+ D; 8(2, 202 = 2)] 20 - (14
Now, by the quasi-convexity of /1 with respect to K

(29, 20) —h(2,2) =0 K = D h(zy, 2929 —2) + D2y, 3 )2y —2)€ K,

and by quasi-concavity of /i with respect to K

h(z.2) — (24, 25) =0€ K = D h(2, 2 )3 — 2+ D A(Zg, 305 —2) e K-

Since K is pointed,ie; KN—K ={0}, we have

D h(zq. 290z — 23+ D h(24,2)(2, —2) = 0.

Thus

Re ufl D,h(z5,%)(2— 2) + g D;h(2,%)(% —2) = 0. as)
[t follows, from (13)-(15}, that for all (z,7)e M and all te T~
Re {[THVZf(z(,,E(,)+f@(zg,€g)}(z - zu)} 20,

ie;  Re [V, (2 2)(a—2)+ V. F (5. 202 — %) 20 -

Hence V f(z25,2e02—2)+ V. f(2.2 02 —Z)e T,

which by pseudo-convexity off with respect to 1, gives f(z,2)— flz5.25)€ T, forany (z,7)eM.
Therefore (z,,7,) is an optimal solution of (T— £y with respect tol .

Remark 1: The conclusions of the above Theorem remain valid under some medified hypotheses; if K is not pointed, then

restrict #n to (K" +(=K)]=[KN(=K)]":if & is quasi-convex only with respect to K , then restrict ugto K *

Theorem 5: Let f, g, h,5 and T be as in (T—H'); with § and T to be solid. If at some feasible point
(ZO ,EO) , f is pseudo-convex with respect to 7, g is strictly quasi-concave with respect to S(g(z,,%,)); and A

is strictly quasi-convex with respect to a solid pointed closed convex cone K in 7, then a sufficient condition for
46
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(24, %) o be an optimal solution of problem (7'— £} is the existence of a T € T, vy € §* and iy € T, not all

zero, such that

TOHsz(Zo’Zo) + TOTsz(Zo’Zo)_Vé{ng(Zo’Zo) - ch@(zo,fo)

1l D_h(zy, %) + 13 D,h(z),5)=0, (16)

Re vl g(z4,7,)=0.

Proof: A procedure similar to that in the proof of Theorem 2, yields the consistency of the system

= —H
sz _7.'_ _T_

Vof| |z T

_ng v v * _* — * — * * _*

=00 e T"XT"X[S(g(z0, 70| x[S(g(z0, 70| XK xK

—ng v v

Dzh o u

D | L#] 3

So, there exists no solution p € C n to the system
V. (2. %)p+ Vo flzZ)peint T

D 8(24. %) P+ D-g(2,, %) P € int S(8(25.%))
=D 1z, %) p— D:h(2y,25) p €int K

Consequently, there exists no solution to the system
f22)=f(z.%) €T
8.1 ’
(z.7)e M’
for if it did have a soluticn, the pseudo-convexity of f with respect to 1" gives
V. F (2.2 2= 2) + Vo f20. 20z %) T,

and so

V. J (2.2 2= 2) + Vo f (25, 3 NZ —Z,) 2 int T

Since, as in Theorem 2,

8(2.2)— 8(29: %) € 8(8(29:20)):

then the strict quasi-concavity of g with respectto §(g(z 0 }) implies

D, 802y, 22— %) + D g(20, 2 )2 = Zp ) € int §(8(24.20)) -

Finally, the strict quasi-convexity of /i with respectto K implies

24, 29)— M2, 2)=0e K = =D h(z,, 72— 20) — D125, 2 (T — ) € int K.

Hence, as in the termination of the proof of Theorem 2, we conclude that {z,,7) is an optimal solution of (T— P}

with respectto 7.

Remark 2: Whenf g and h are functions of z Special Cases: If the objective functicn in this study is
’ ’ considered as Re f(z,z) instead of f{g,7), then our

N theorems vield, as special cases, the results discussed
formulated in similar forms, for problem (T'—FP), t©  pefore in complex space C*" by taking T = R, . the

conditions (3} and {12} in Corollaries {1} and {2). cone of nen-negative half line of R.

conditions {13} and {16}, in the above theorems, can be
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