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Abstract: The aim of this work is to introduce a methodology for monitoring diversity of a biological 
population by using the tool of diversity profiles. In particular, we develop a theory for studying the 
diversity profile along the temporal axis. We propose forecasting techniques for diversity profile by 
using the VAR model on multivariate time series of abundance vector and ARMA models both on 
univariate time series of abundances and on the aggregated series of diversity profiles. A Monte Carlo 
simulation is performed in order to test the goodness of forecasts obtained applying the three different 
methods proposed. 
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INTRODUCTION 

 
 The concept of diversity arises both in ecological 
and non-ecological subject areas. Diversity is related to 
the apportionment of some quantity into a number of 
categories. What the actual quantity is, depends by the 
problem on hand. When we measure diversity we 
should take into account different aspects such as the 
number of different species and the relative abundance 
of different species. Most diversity measures can be 
classified as being heavily dependent on rare species 
(species richness) or on the abundance of the 
commonest (dominance). Consider a population of s 
species for which Nk and pk denotes the abundance and 
the relative abundance of species k, for k=1,2,…,s, 
respectively.   
 Pielou[1] gave two characteristics an index of 
diversity should possess: 
* for given s, the index should be a maximum when 

the pk are equal; 
* if the pk are equal, the index should be an 

increasing function of s. 
 Patil and Taillie[2] proposed a general class of 
diversity index allowing all diversity measures to be 
encompassed into a single diversity spectrum. They 
started by defining diversity as the “average rarity of 
species within a community”. More formally, given a 
community { }1 2; , ,..., sC s p p p=  and defining ( )kR p  

as a measure of rarity for a species k, then the average 
rarity of species in the community is given by 

1
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∆ = −∑  when 0=β  (1) 

 The value β denotes the relative importance of 
richness and evenness. For β =-1 we get the richness 
index, for β=0 the Shannon diversity index and for β=1 
the Simpson index. Both Simpson and Shannon indexes 
are affected by the number of species and the evenness 
of species abundance, but they are affected differently. 
Thus, diversity profile can be plotted to compare 
communities in space and/or time over a range of 
different evenness emphasis. In the following we will 
be interested in a range of values of β  belonging to the 
set { }: 1 1Β β β= − ≤ ≤  in order to have a suitable 

picture of the structure of the community under study[2]. 
 Monitoring biodiversity is a growing concern of 
environmental agencies. While species and habitat are 
disappearing, it is crucial to be able to evaluate, even 
roughly, the biodiversity loss and predicting it. A lot of 
works in the literature deal with abundance and biomass 
prediction[3]. Nevertheless, a few works attempt to 
predict biodiversity[4,5]. There are no specific 
mathematical tools for predicting biodiversity but 
techniques used for predicting abundance also could be 
used for predicting biodiversity by using a wide range 
of multivariate techniques. This approach has the 
shortcoming to assume a linear relationship  between 
the level of biodiversity and species abundances or any 
other measurable biological variable. Indeed, the 
literature data have failed to detect simple and linear 
relationship between the studied variables and diversity. 
For a thorough and critical review of the matter[6,7].  
 In this work we propose to understand, predict and 
manage biodiversity by viewing it as a function of 
species interaction or any other additional 
environmental variables. In particular, instead of using 
one single index we focus our attention to the diversity 
profiles of Patil and Taillie[2] in order to better describe 
the diversity of a community. Finally, we examine the 
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behaviour of forecasts of the diversity profile along the 
temporal axes by using multivariate VAR model and 
univariate ARMA model. 

DIVERSITY INDEX ESTIMATION 
 
 Let us suppose that the ecological population is 
made up of N units and is partitioned into s species. 
Moreover, let Nk be the abundance of the k-th species 
(k=1,2,…,s). Hence, 1 2( , ,.., )TsN N N=N  denotes the 

abundance vector, while 1 2( , ,.., )Tsp p p=p  represents 

the relative abundance vector with 
1

s

k k kk
p N N

=
= ∑ . 

As seen in the previous section, the diversity may be 
expressed as a function, say ( )∆ p , of the relative 

abundance vector. We consider the problem of 
estimating N and p and accordingly ( )∆ p  on the basis 

of a sample of biological units under SRS with 
replacement of size n. Let  

1 2( , ,.., )Tsn n n=n  (2) 

be the estimated abundance vector, and  

1 2
ˆ ˆ ˆ ˆ( , ,.., )Tsp p p=p  (3)  

the estimated relative abundance vector, where 

ˆ k
k

n
p

n
=  (k=1,2,…,s). Therefore, under SRS, n  is a 

realisation of the multinomial random vector 

1 2( , ,.., )TsN N N=N with parameters n and p. 

Accordingly, since 1ˆ n−=p n , then p̂  turns out to be an 

unbiased and consistent estimator for p . The variance-

covariance matrix of p̂  is given by 1ˆ( )Var n−= ∑p  

where ( ) Tdiag∑ = −p pp . Moreover, a straightforward 

consistent estimator for ∑  is given by 
ˆ ˆ ˆ ˆ( ) Tdiag∑ = −p pp . Finally, the use of the Central 

Limit Theorem provides that  
1

2 ˆ( ) ( , )d
sn N− → ∑p p 0 ,    as ∞→n . 

 Being ( )β∆ p  function of a random variable, we 

may consider it also as a random variable. Moreover, 
by using the Delta method Tong[8] proves that as 

∞→n , if 

, ( ) ( )k
k

β β
∂Φ = ∆

∂
x x

x
, k=1,2,…,s, Ββ∈  

are defined in a neighbourhood of p and non-null at p, 

then the variance-covariance matrix of { }( ) : Ββ β∆ ∈p  

is given by 
( ) ( )T= Φ ∑ΦΤ p p . 

 
Forecasts for diversity profiles: As seen in the 
previous section, vector of abundances 

( )1 2, ,...,
T

sn n n=n  can be viewed as a realisation of the 

multinomial random vector 1 2( , ,.., )TsN N N=N . 

Suppose that for each of s species of a given 
community C the time series of absolute abundances is 
available. It is plausible to think that information about 
abundance ˆ ktn observed at time t=1,2,…,T for the 

species k=1,2,…,s is contained in the past values 
observed for the abundance vector. 
 In other words, we suppose that time series of 
absolute abundance of the specie k is a realisation of the 
discrete stochastic processes { }( ) 1,2,...,k t t T=N  and 

the set of series observed in the whole community is a 
realisation of a vector stochastic process 

[ ]{ }T
s(t)(t)(t) NNN ,...,1= . In particular, we assume 

that absolute abundances are realisation of a stable 
Vector Autoregressive Process of order l (VAR(l))[9], 
such that: 

1( ) ( 1) ... ( ) ( )lt t t l t= + − + + − +N v A N A N u  (4) 

where [ ]1 2( ) ( ), ( ),..., ( )
T

st t t t=N N N N  is a s-

dimensional random vector, [ ]1,..., l=A A A  is a (s×sl) 

matrix of coefficients, v  is a (s×1) vector of intercept 
terms allowing for the possibility of a non zero mean 

[ ]E ( )tN  and 1( ) [ ( ),... ( )]Tst t t=u u u  is a s-dimensional 

white noise process. The matrix of coefficients A can 
be estimated by ordinary least square. 
 In particular, we focus our attention on the 
abundance vector of (2), so that we say that tn  is the 

abundance vector observed at time t. Consequently, 
once tn  has been observed, we can straightforwardly 

derive the relative abundance vector observed at time t, 
say ˆ tp  and the diversity profile observed at time t, say 

,
ˆ( )t tβ∆ p . 

 Then a forecast for period T+h, may have the form 

1( , ,...)T h T Tf+ −=n n n  where ( )f ⋅  denotes some 

suitable function of the past observations.  
 We consider forecasts which are linear function of 
past observations. Assuming that only a finite number 

l , say, of past kn  values are used in the prediction 

formula we get, for (1,2,..., )k s=  

......ˆ )1(,1,,)1(,21,2,)1(,11,1,, +++++= −+−+−++ hTsskhTkhTkkhTk nnnvn ααα

)(,1,,)(,1,2,)(,1,1, ... lhTlsklhTlklhTlk nnn −+−+−+ ++++ ααα              (5) 

 To simplify the notation let ( )1, 2, ,, ,...,
T

t t t s tn n n=n , 

( )1 2, ,.., sv v v=v  and for 1,2,...,r l=  
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Then (2) can be written compactly as 
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1 1
ˆ ...T h T h l T h lA A+ + − + −= + + +n v n n  (6) 

which is the optimal forecast obtained from a vector 
autoregressive model of the form (4). 
 Naturally, we might focus our attention to diversity 
profiles. Under the assumption that absolute 
abundances are realisations of a VAR(l) process, the 
β -diversity profile is a non linear combination of 

abundance vector observed at time t, so it is also a 
random variable. In particular, for a fixed value Bβ ∈  

the diversity profile ( )β∆ p , is a real function of the 

components 1 2( , ,.., )Tsp p p=p  defined in sℜ , then 

{ }( ) : Ββ β∆ ∈p  is a m-dimensional random variable, 

where m is the cardinality of the set Β . The function 
: [0,1]mF ℜ → , 

( )
( )

1 2

1 1 2 2

, ,...,

, ,...,
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m q

F
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β β β

β β β β β βδ δ δ

∆ ∆ ∆ =

∆ < ∆ < ∆ <
 

is the joint distribution function of { }( ) : Ββ β∆ ∈p . 

Obviously, for a any fixed value Ββ ∈  , ( )tβ∆ p , 

t=1,2,…,T, is a stochastic temporal process. For 
simplicity we assume that time series of β -profile is a 

realisation of a linear ARMA(p,d,q) process[10]. 
 For a fixed Bβ ∈ , using an ARMA(p,d,q) model , 

forecast of diversity for period (T+h) might be 
expressed as: 

, 1 , 1

,( ) 1 1 ( )

ˆ ( )

... ... ...
T h T h

p T h p T h q T h q

wβ β

β

φ
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+ + −
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∆ = + ∆ +

∆ − − − −

p
 (7) 

 
under the assumption that order of integration d is 
estimated outside the model for non stationary mean 
time series. 
 Suppose that the goal is to forecast the diversity 
profile (1) in order to analyse the dynamic structure of a 
given biological community. When temporal 
observations for absolute abundances are available, it is 
theoretically possible to obtain a forecast for the 
diversity profile in three different ways. 
 First of all, using the multivariate forecasting 
model in (5) and (6) it is possible to obtain forecasts for 
absolute abundances, which aggregated by using (1) 
lead to forecasts for β-diversity profile. Obviously, the 
process under study is unknown and in practice the 
coefficients of assumed VAR(l) process must be 
estimated from a given multiple time series. Criteria for 
determining the order l of the model and for checking 
the assumptions underlying a VAR analysis have to be 
followed[9]. 
 Second, using an univariate ARIMA(p,d,q) model, 
forecasts for each time series of abundances can be 
estimated and aggregated to obtain forecasts for 
diversity profile (1). Finally, forecasts could be directly 

obtained for time series of β-diversity profiles by using 
an univariate ARIMA(p,d,q) model. 
 When univariate model is applied the order is 
obviously unknown and have to be estimated using one 
of the automatic selection criterion proposed in the 
literature[10]. In the next section, by means of a Monte 
Carlo simulation we evaluate the performance of the 
three different methods for forecasting diversity. 
 

MONTE CARLO EXPERIMENT 
 
 The sample behaviour of forecasts for diversity 
profile is investigated by a Monte Carlo experiment. 
The process used in the simulation is a stable VAR 
process of order l=1, where the disturbance are i.i.d. 

( ), sN 0 I  whit s=2,3,4,5,6,7,8. For every 

parameterisation 300 replications are considered. In 
order to test the performance of estimators, length time 
series is fixed at 105 simulated observations, since a 
stabilisation of mean square error of estimates is 
obtained when length is not less then 100 simulated 
observations. 
 Forecasts for different hypothesis described earlier 
are computed as follows. Using multivariate technique 
a VAR(l) model is estimated for the simulated data of 
absolute abundances by ordinary least square; order of 
model is specified using AIC criterion for multiple time 
series   whit   a   maximum   number of parameters 
equal to 4[9].  
 When univariate technique is applied, an 
ARIMA( p,d,q) model is estimated respectively for each 
univariate series of simulated absolute abundances and 
for the related time series of diversity profiles; order of 
the model is specified using AIC criterion for univariate 
time series whit a maximum number of parameters 
equal to 6 and estimation is performed by ordinary least 
square. 
 For each of the above methods, estimation is 
performed using the first T=100 observations; the 
estimated model is used to produce a sequence of 5 
forecasted values for β-profile and Root MSE of 
forecasting is computed. The results for increasing 
number of species are shown in Fig. 1. 
 

 
 
Fig. 1: Average root MSE of forecasting over the 

Monte Carlo experiment for increasing number 
of species 



J. Math. & Stat., 1 (4): 322-325, 2005 

 325 

 The Fig. 1 reveals that forecasts obtained using a 
VAR(l)   model   show  always  lowest  average  Root 
MSE,  particularly   when  the  number  of simulated 
species is large. 
 Results highlight that VAR models are suitable for 
predicting diversity with respect to ARMA models as 
the performance of multivariate temporal models is 
higher when the variables are highly dependent on each 
other. In fact, it is known that species of biological 
community are highly correlated. 
 Finally, we point out that, recently different case 
studies have implemented monitoring systems for the 
construction of panel-data for abundance vector of 
biological populations. Since our methodology suitably 
should fit these new research fields, our next goal is to 
apply the methodology proposed to a real data set. 
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