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VAR-modelsfor Predicting Biodiversity
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Abstract: The aim of this work is to introduce a methodoldgy monitoring diversity of a biological
population by using the tool of diversity profilds. particular, we develop a theory for studying th
diversity profile along the temporal axis. We prepdorecasting techniques for diversity profile by
using the VAR model on multivariate time seriesabundance vector and ARMA models both on
univariate time series of abundances and on theeggted series of diversity profiles. A Monte Carlo
simulation is performed in order to test the goadnef forecasts obtained applying the three differe
methods proposed.
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INTRODUCTION A, (C)= z;l_ p. log(p,) when ﬂ =0 ()

The concept of diversity arises both in ecological ~ The valuep denotes the relative importance of
and non-ecological subject areas. Diversity isteeldo  richness and evenness. Hbr=-1 we get the richness
the apportionment of some quantity into a number ofndex, forp=0 the Shannon diversity index and fis¥l
categories. What the actual quantity is, dependthby the Simpson index. Both Simpson and Shannon indexes
problem on hand. When we measure diversity weare affected by the number of species and the egsnn
should take into account different aspects suckhas of species abundance, but they are affected diffigte
number of different species and the relative abnoela Thus, diversity profile can be plotted to compare
of different species. Most diversity measures can bcommunities in space and/or time over a range of
classified as being heavily dependent on rare epeci different evenness emphasis. In the following wé wi
(species richness) or on the abundance of thge interested in a range of valuesgobelonging to the

commonest (dominance). Consider a populatiors of —{a._ : .
species for whiciN, andpy denotes the abundance and set B_{’B' 1S’BS]} in order to have a sitable

the relative abundance of speciks for k=1,2,....,s  picture of the structure of the community undedgti

respectively. Monitoring biodiversity is a growing concern of
Pielod! gave two characteristics an index of environmental agencies. While species and habitat a

diversity should possess: disappearing, it is crucial to be able to evaluaten

*  for givens, the index should be a maximum when roughly, the biodiversity loss and predicting itlg of
thepy are equal; works in the literature deal with abundance andiriaiss

* if the p are equal, the index should be anpredictio®”. Nevertheless, a few works attempt to
increasing function . predict biodiversity®. There are no specific

Patil and Tailli® proposed a general class of mathematical tools for predicting biodiversity but
diversity index allowing all diversity measures e  techniques used for predicting abundance also doeild
encompassed into a single diversity spectrum. Theysed for predicting biodiversity by using a widage

started by defining diversity as thaverage rarity of ©Of multivariate techniques. This approach has the
species within a commuriityMore formally, given a shortcoming to assume a linear relationship batwee

. _ L the level of biodiversity and species abundanceangr
community C'{S’ R B Q} and defining R(R,) other measurable biological variable. Indeed, the

as a measure of rarity for a spedieshen the average literature data have failed to detect simple ameadr

rarity of species in the community is given by relationship between the studied variablese??rgjrsliﬂsxe
-\S ; For a thorough and critical review of the matter

AC) Zk:l AR(R). A general formulation of In this work we propose to understand, predict and

manage biodiversity by viewing it as a function of

s R =@ P) versi
R(R) is R = ‘ B so that we get the diversity species interaction or any other additional

profile for community C as environmental variables. In particular, insteadusing
1-pf one single index we focus our attention to the it
A4(C) = Zi_l n.( Pi ) when 8 £0 profiles of Patil and Taill#€ in order to better describe

the diversity of a community. Finally, we examiree t
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behaviour of forecasts of the diversity profileradothe  Suppose that for each o species of a given

temporal axes by using multivariate VAR model andcommunityC the time series of absolute abundances is

univariate ARMA model. available. It is plausible to think that informatiabout
DIVERSITY INDEX ESTIMATION abundance i, observed at timet=1,2,...,T for the

. . .speciesk=1,2,...,s is contained in the past values
Let us suppose that the ecological population I bserved for the abundance vector

made up ofN units and is partitioned inte species. In other words, we suppose that time series of
Moreover, letN, be the abundance Oi theth species absolute abundance of the spdcis a realisation of the
(k=1.2,....3. Hence, N=(N,,N,,...N,)" denotes the ;. ote stochastic processds, (t) t=1,2,..T} and
abundance vector, while =(p,, p,,.., R)' represents e set of series observed in the whole commusit |
the relative abundance vector with, = N, /Zizl N, . realisation of a vector stochastic process
As seen in the previous section, the diversity roay {N(t) = [Nl(t),---,Ns(t)]T}- In particular, we assume
expressed as a function, say(p), of the relative that absolute abundances are realisation of aestabl

abundance vector. We consider the problem olector Autoregressive Process of ordefVAR(I))®,
estimatingN andp and accordinglyA(p) on the basis Such that:

of a sample of biological units under SRS with N(t) =v+ANE-D+.+ANE-1)+ut) (4)

replacement of size. Let where  N(t) =[N, (t),N,(®),....N, (t)]T is a s
_ \T

n=(n, nz,...,rg) 2) dimensional randomector, A =[A,,..., A | is a(sxsl)

be the estimated abundance vector, and . - . .

PN T matrix of coefficients,V is a(sx1) vector of intercept

p=(p, D ) ®)

) ) terms allowing for the possibility of a non zero ane
the estimated relative abundance vector, WhereE[N(t)] and ut) =[u,(t),..u. )] is as-dimensional
n (1), ..U

By :Fk (k=1,2,...,$. Therefore, under SR} is a  white noise process. The matrix of coefficients ac

- . , be estimated by ordinary least square.
realisation of the multinomial random vector In particular, we focus our attention on the

N=(Ny,N,,..,N. Y with  parameters n and p.  apundance vector of (2), so that we say thatis the
Accordingly, sincep =n"n, thenf) turns out to be an abundance vector observed at timeConsequently,
unbiased and consistent estimator fior The variance- once n, has been observed, we can straightforwardly
derive the relative abundance vector observedregtfi
say p, and the diversity profile observed at tiesay

APH(HE
f Then a forecast for periotth, may have the form
2 =diag(p)-pp . Finally, the use of the Central Ny, = f(N;,n;,,..) where f()] denotes some

Limit Theorem provides that suitable function of the past observations.
n%(f)—p) 0 N,(0,X), asn — . We consider forecasts which are linear function of
past observations. Assuming that only a finite nemb

covariance matrix off) is given by Var(p)=n"X
where Y. = diag(p) —pp' . Moreover, a straightforward
consistent estimator for > is given by

Being A4(p) function of a random variable, we

may consider it also as a random variable. Moreover
by using the Delta method Tdfgproves that as formula we get, fokk = (1,2,...s)
n - oo, if

D, 5(x) :£Aﬂ(x) ,k=1,2,....,s,f 0B
k

|, say, of pasth, values are used in the prediction
MNerin =V T 1M rangy T Q1Mo qing Toot Qi N ring e

are defined in a neighbourhood mfand non-null ap,  +0y Mty oMy F- F0hs Ny )

then the variance-covariance matnx{d!ﬂ(p) : ,BDB} To simplify the notation lef, = (nl’“ nz,t,...,r'gyt)T ,

is given by _ _
T=d(p) S o). v=(,V,,..,\) and forr =1,2,...|
Forecasts for diversity profiless As seen in the ay, UUOag,

previous section, vector of abundances A =| [ O
n=(n,n,...,n) can be viewed as a realisation of the a,, 00O0ag,

multinomial random vector N=(N,,N,,..,N,).  Then (2) can be written compactly as

323



J. Math. & Stat., 1 (4)322-325, 2005

Aoy =V+HANL L+t AN, (6) obtained for time series @gkdiversity profiles by using
which is the optimal forecast obtained from a vecto &0 univariate ARIMA,d,g model. _
autoregressive model of the form (4). When univariate model is applied the order is

Naturally, we might focus our attention to diveysi obviously unknown and have to be estimated usirgy on
profiles. Under the assumption that absoluteOf the automatic selection criterion proposed ie th

abundances are realisations of a VAR{rocess, the literaturd'®. In the next section, by means of a Monte
S -diversity profile is a non linear combination of Carlo simulation we evaluate the performance of the

. o three different methods for forecasting diversity.
abundance vector observed at timeso it is also a 9 y

random variable. In particular, for a fixed valy#1B MONTE CARLO EXPERIMENT

the diversity profile A;(p), is a real function of the The sample behaviour of forecasts for diversity

componentsp =(p,, p,,...p.) defined in O°, then profile is investigated by a Monte Carlo experiment
The process used in the simulation is a stable VAR

{Aﬂ(p):,BDB} is am-dimensional random variable, process of ordet=1, where the disturbance aréd.
wherem is the cardinality of the seB . The function ~ N(0,1,)  whit s23,456,7,8. For every

F.0™ - [0,1], parameterisation 300 replications are considered. |

= (A A A ): order to test the performance of estimators, letigte
prrp2r e pm series is fixed at 105 simulated observations, esiac

P(Am<5ﬂl,Aﬂ2<5ﬂ2,,,,,Aﬂm<5ﬂq) stabilisation of mean square error of estimates is

obtained when length is not less then 100 simulated
is the joint distribution function oﬁ{AE(p):,BDB} . observations.

Obviously, for a any fixed valueBOB A, (p), Forecasts for different hypothesi; de.scribed mrli
’ are computed as follows. Using multivariate techeiq

t=1.2....T is a stochastic temporal process. Fory yar() model is estimated for the simulated data of
simplicity we assume that time series Bf-profile is @ apsolute abundances by ordinary least square; ofder

realisation of a linear ARMA{,d,qg proces8?. model is specified using AIC criterion for multiptiene

For a fixed S0B, using an ARMAp,d,d model , series whit a maximum number of parameters
forecast of diversity for period(T+h) might be €qualto B, o _ . .
expressed as: When univariate technique is applied, an
~ ARIMA(p,d,g model is estimated respectively for each
Aﬁ,T+h(p) = W"'@Ap,nm"' univariate series of simulated absolute abundaands
--%Ap,(nh— § = O, — --_ec{:(n - () for the related time series of diversity profilesder of

the model is specified using AIC criterion for uaiiate

under the assumption that order of integratobns time lser|6es \(’j"h't a maximum fnumbgrbof %gr:ameters
estimated outside the model for non stationary meaffu@! to 6 and estimation is performed by ordinaagt
time series square.
' For each of the above methods, estimation is
Suppose that the goal is to forecast the diversit . . ’ .
bp g )f)erformed using the first T=100 observations; the

profile (1)in order to analyse the dynamic structure of a" _. .
. . : . estimated model is used to produce a sequence of 5
given biological community. When temporal

. S forecasted values fop-profile and Root MSE of
observgtlons for apsolute abunqlances are availdloge, forecasting is computed. The results for increasing
theorgtlcally 'p0'53|ble tq obtain a forecast for the, mber of species are shown in Fig. 1.
diversity profile in three different ways.

First of all, using the multivariate forecasting ~ VAR
model in (5) and (6) it is possible to obtain fasts for 0.0101 & ARMA
absolute abundances, which aggregated by using (1) 0008] ArmA
lead to forecasts fgf-diversity profile. Obviously, the
process under study is unknown and in practice the 0.0061
coefficients of assumed VAR( process must be
estimated from a given multiple time series. Ciétdor
determining the order of the model and for checking 0,002 4
the assumptions underlying a VAR analysis haveeto b
followed?. 0000 =

Second, using an univariate ARIM#(,9 model,
forecasts for each time series of abundances can Ifdg. 1: Average root MSE of forecasting over the
estimated and aggregated to obtain forecasts for Monte Carlo experiment for increasing number
diversity profile (1). Finally, forecasts could Heectly of species
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The Fig. 1 reveals that forecasts obtained using 4, Mc Arthur, R.H., H. Reicher and M.L. Cody, 1996.

VAR(l) model

species is large.

Results highlight that VAR models are suitable for®:
predicting diversity with respect to ARMA models as

show always lowest average Root
MSE, particularly when the number of simutate

the performance of multivariate temporal models is

higher when the variables are highly dependentanh e
other. In fact, it is known that species of biokaji
community are highly correlated.

Finally, we point out that, recently different eas

6.

studies have implemented monitoring systems for the
construction of panel-data for abundance vector of

biological populations. Since our methodology slita
should fit these new research fields, our next go&b
apply the methodology proposed to a real data set.

7.
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