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Abstract: We discuss a framework to obtain temporal predictions for an evolving spatial field 
regularly sampled in time at arbitrary spatial locations. Difficulties caused by large data sets and the 
modelling of complicated spatio-temporal interactions limit the effectiveness of traditional space-time 
statistical models. In this study, we propose the use of a flexible approach to deal with large and small 
time-scale variability of the observed data. The temporal model is applied with respect to both the 
observed data domain and the common component domain, to achieve a dimensionality reduction. 
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INTRODUCTION 

 
 Environmental processes are usually monitored 
over space and time. When dynamical processes 
involve complicated temporal and spatial features, a 
simultaneous space-time analysis can provide benefits 
with respect to a solely temporal or spatial inspection. 
There are several examples of space-time models 
applied to environmental problems. Some of them are 
also based on a Bayesian dynamic linear model[1-3]. In 
order to obtain a parsimonious model (in parameters), 
our study addresses directly the problem of dimension 
reduction, which is a critical issue for implementing the 
Kalman filter on large data sets. 
 More precisely, considering a spatial field on a 
fixed region that is evolving in time and for which we 
have discrete observations at regular time intervals, we 
use a simple and parsimonious model, which accounts 
for the main features of the data to obtain temporal 
forecasts. We let Y, later indexed by both space and 
time, represents the primary variable of interest. 
Recognizing the presence of a measurement error 
component, the space-time dynamic process can be 
described through a state-space formulation. Thus, we 
assume that the observational data Z, which is an 
observation of Y with error, can be specified by a 
measurement equation. Subtraction of deterministic 
components, such as temporal trend and seasonal 
effects, identifies a short-time scale dynamical process 
X which is modelled through the transition equation.  
 The role of the X-process is to account for both 
spatial and temporal dynamics beyond those accounted 
for in long-term means and seasonal behaviour. The 
structure of the transition matrix Ξ is a key concern. In 
particular, the crucial issue of modelling spatial 
structures obviously involves a trade-off between the 
richness of Ξ and the level of spatial independence of 
the transition noise term. In this context, using the 
Karhunen- Loève transform, our objective is to obtain a 

good interaction between the modelling of Ξ and the 
covariance matrix of the transition noise vector.  
 
The data: Here we provide an explorative analysis of 
the data set used in the example. We chose the Milan 
district as a test bed for our analysis and statistical 
modelling. The data are daily maximum values of 
Carbon Monoxide concentrations at 25 monitoring 
stations. The coordinate system of the monitoring 
stations refers to the Italian national grid system 
(Gauss-Boaga) based on the Universal Transverse 
Mercator (UTM) projection. The map of the monitoring 
sites is shown in Fig. 1. 
 

 
 
Fig. 1: Map of the Milan monitoring network. The 

marks correspond to the locations of the CO 
monitoring stations 

 
 The measurement units are micrograms of Carbon 
per cubic meter (µg(CO)/m3). The period of the data 
covers the years 1998-2001, giving a 25×1461 data 
matrix. The raw data were provided by the 
Environmental  Agency (ARPA) of Lombardia Region.  
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Fig. 2:  CO concentration time profiles at monitoring station locations 

 

 
Fig. 3: (a) Average of CO concentration over 25 sites from 1998 to 2001. (b) Average of CO concentration over 

days from 1998 to 2001 for 25 sites. Each line indicates one site. 
 
 To avoid the effects of a small amount of missing 
data, they have been estimated by using biharmonic 
splines[4] for each data time. Because concentration data 
are always positive, it is convenient to operate on a 
logarithmic scale, to remove the effect of 
heteroschedasticity. As shown in Fig. 2, the variability 
structure of the data exhibits a strong seasonal 
dependence. 
 Figure 3a and b are also helpful for an exploratory 
data analysis. Figure 3a shows the CO average 
concentration for years 1998-2001, where the average is 
taken over the 25 monitoring sites. Figure 3b shows the 

CO average concentration as a function of years, for the 
25 monitoring sites, where the average is taken over 
days. Both figures indicate that the CO concentration 
pattern is governed by both spatial and temporal 
features. 
 
The dynamic model: Consider a spatio-temporal field 
Z(s,t), where s is a generic location within some 
geographic region of interest and {t=t1,…,tN} indexes 
consecutive times at which monitoring data are 
collected. Let Z(s,t) have the decomposition 
Z( , t) M( , t) ( , t)η= +s s s  (1) 
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 Where M(s,t) is a deterministic component 
modelling a smooth long-term variability of the spatio-
temporal process and η(s,t) is a stationary residual term, 
independent of M(s,t), modelling the space-time higher 
frequency fluctuations around M(s,t). In practical 
applications, the Z field may be a non linear transform 
of the directly observable variable field. For example, 
for non-negative concentration, Z might be obtained 
from a logarithmic transformation. 
 The first task is to identify the long-range temporal 
variability at each monitoring stations si, i = 1,…,n. This 
can be done using time or frequency domain 
procedures[5]. The deterministic component M(s,t) is 
assumed to be modelled, at each site si, as the sum of 
(K+1) basis functions of time ϕj(t) 

K

i j i j
j 0

M( , t) ( ) (t)α ϕ
=

=∑s s  (2) 

 Where αj(si) is the coefficient associated with the j-
th function ϕj(t), with ϕ0(t) = 1 by convention. Each 
basis function is independent of the spatial location si 
and should correspond to some components of 
variability such as temporal trend and annual, seasonal 
or monthly periodic effects. Thus, for environmental 
data, we would typically model these components by 
letting ϕj(t) be a series of sine and cosine functions. 
Exploiting the temporal information, the coefficients 
αj(s i) can be estimated via ordinary least-squares. Once 
the M(s,t) component is determined at station locations 
by equation (2), the residual term is obtained as 

K

i i j i j
j 0

i i

( , t) Z( , t) ( ) (t)

X( , t) ( , t)

η α ϕ

ε
=

= −

= +

∑s s s

s s

 (3) 

 Where X(si,t) is a temporally stationary 
autoregressive spatio-temporal random field and ε(si,t) 
is a zero mean Gaussian measurement noise term. 
 
State-space formulation: The presence of a 
measurement error naturally leads to a state-space 
representation of model (3). It is then also natural to 
consider prediction via the Kalman filter[6]. Let ηηηη(⋅, t) 
the n-vector spatial series at time t. The linear Gaussian 
state-space model[7] is described by the following state 
and measurement equations 

( , t) ( , t 1) ( , t)⋅ = ⋅ − + ⋅ζ Ξζ ν  (4) 

( , t) ( , t) ( , t)⋅ = ⋅ + ⋅η Η ε  (5) 

 Where ζζζζ(⋅, t) is the state vector, ΞΞΞΞ is the transition 
matrix, H is the measurement matrix and νννν(⋅, t) is the 
state noise. The output ηηηη(⋅, t) is a linear function of the 
state ζζζζ(⋅, t) and the state at one time step depends 
linearly on the previous state. Both state and 
measurement noise are mutually independent, zero 
mean normally distributed random variables, with 
covariance matrices ΣΣΣΣν and ΣΣΣΣε. 

 Given the autoregressive assumption for X(⋅, t), 

i.e.
p

ii 1
( , t) ( , t i) ( , t)

=
⋅ = ⋅ − + ⋅∑X Φ X τ , the reader may 

recall that equations (4) and (5) represent the state-
space formulation of a VAR(p)+Noise model[8] which 
is obtained by defining 

( , t)

( , t 1)
( , t)

( , t p 1)

⋅ 
 ⋅ − ⋅ =
 
 

⋅ − + 
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X

⋮
 

 

1 2 p 1 p

n

n

− 
 
 =
 
 
  

Φ Φ Φ Φ

I 0 0 0
Ξ

0 0 I 0

⋯

⋯
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τ

0
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⋮
 

and H = [In 0…0], where In denotes the n× n identity 
matrix. Using the Kalman filter, our goal is to predict a 
smoother process, Y(⋅, t) = M(⋅, t) + H ζζζζ(⋅, t), at all 
spatial locations and time points of interest. In the 
current case, the problem is well defined if we know or 
can estimate the parameter matrices ΞΞΞΞ, ΣΣΣΣν and ΣΣΣΣε. In 
practice, we seldom know these and must either specify 
or estimate them. However, as pointed out by Wikle[1], 
the crucial issue of modelling spatial structures clearly 
involves a balance between the structure of the matrix ΞΞΞΞ 
and the level of independence among the elements of 
the state noise. For example, in some cases a simple 
structure of ΞΞΞΞ, obtained by an autoregressive temporal 
dependence parameter ΦΦΦΦi, implies that the covariance 
matrix for the shocks can be represented by a stationary 
isotropic covariance model[9]. 
 Alternatively, in other circumstances the choice of 
a non-diagonal ΦΦΦΦi matrix may be a natural choice. In 
these cases, the “richer” is the structure of ΦΦΦΦi, the 
higher is the level of independence for the state noise. 
However a parsimonious model can be reached by 
using a “nearest-neighbour” VAR model where, as for 
the Space-Time Autoregressive Moving Average 
(STARMA) models[10], the structure of the parameter 
matrix ΦΦΦΦi is fixed, according to a graph which specifies 
relationships between the sites. We shall come back 
later on this point. 
 
The common components: In order to achieve a 
dimension reduction, we exploit here the spatial 
structure to produce a decomposition of the spatial 
stochastic process into its more basic constituents. Let 
Z(s,t), described in (1), have the following 
decomposition 
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),(),(),( tttZ sss δµ +=  (6) 

 Where µ (s,t) is a spatial trend and δ (s,t) a residual 
spatial process for a fixed time t. The deterministic 
component µ(s,t) is assumed to be modelled as the sum 
of K+1 spatial trend fields fj(si)

[11] with dynamic 
coefficients βj(t) 

∑
=

=
K

j
ijji ftt

0

)()(),( ss βµ  (7) 

 With f0(si)=1 by convention. Applying the theory 
of generalized Fourier expansions[12,13] the zero mean 
residual spatial process δ(s; t) can be expressed as 

∑
∞

=

=
1

)()(),(
v

ivvi tgt ss ψδ  (8) 

 Where the terms ψv(si) are the eigenfunctions of 
the following homogeneous integral equation 

i j v j j v v i

D

( , ) ( )d( ) ( ) v 1,2,...δ ψ λ ψ= =∫C s s s s s  (9) 

 These eigenfunctions are also known as principal 
fields[11]. Under the hypothesis that it can be assumed 
known and common in time, Cδ is the covariance 
matrix of the residual process while λv are the 
eigenvalues. Accordingly, the gv(t) are the principal 
components obtained as the projection of δ(si,t) on the 
eigenfunctions 

v i v i i

D

g (t) ( , t) ( )d( ) v 1,2,...δ ψ= =∫ s s s  (10) 

 While equation (8) is known as the Karhunen- 
Loève Expansion -KLE-, equation (10) is known as the 
Karhunen- Loève Transform (KLT). However, it should 
be noted that we consider the process observed at a 
collection of sites, so, in practice, only a finite linear 
approximation of (8), (9) and (10) is possible. 
Consequently, if there are n sample points in the 
domain, only n eigenfunctions can be estimated while, 
indeed, there are a denumerable infinity for a 
continuous process. Thus, for a continuous domain the 
difficulties of the approach are considerable, when data 
are collected only from a sparse and irregular network, 
since the geometrical relations involving the domain of 
integration and the relations between the sites si, i = 
1,…,n, are completely ignored in a “discrete” matrix 
formulation of (9). 
 In this study, following Fontanella and 
Ippoliti [14], a coherent numerical treatment of the 
problem is obtained considering the spectral 
decomposition of a weighted covariance matrix, 
where the weights are given by a Voronoi polygon 
tessellation of the area of interest. 
 Within the framework of linear approximations, 
equation (8) is the most efficient representation of the 
random process if the expansion is truncated to use 
fewer than n orthonormal basis functions ψv(si). That is, 
ordering the terms of the expansion in decreasing order 

of the variances, λv, of the coefficients, gv(t), gives an 
optimal expansion in the sense that the series truncated 
at any point minimises the integrated mean square error 
between the actual and approximated random 
function[15]. In other words, it means that if we 
approximate the random process in terms of some 
number m<n of basis functions, the optimal basis 
functions for the truncated expansion correspond to the 
eigenvectors of Cδ, with the m largest eigenvalues. 
Finally, note that one reason for truncating the 
expansion occurs if the random process consists of a 
signal in additive noise. In this case, it can turn out that 
by using a truncated expansion, a significant part of the 
noise is eliminated, while most of the signal is kept 
intact[16]. 
Substituting (7) and (8) into (6) it follows that the 
spatio-temporal process can be expressed as 

K

i j j i
j 0

m

v v i v v i
v 1 v m 1

Z( , t) (t)f ( )

g (t) ( ) g (t) ( )

β

ψ ψ

=
∞

= = +

= +

+

∑

∑ ∑

s s

s s

 (11) 

 Where the third term represents an error process. 
As noted by Mardia et al.[11], equation (11) spans the 
process in the space of basic functions, fj(si) and ψv(si), 
known as common fields. The identification of such 
common fields naturally leads to a parsimonious 
measurement equation. However, in a different manner 
from Mardia et al.[11], a parsimonious state-space linear 
model may be directly obtained by transforming the 
data process in the domain of the common components, 
βj(t) and gv(t), so that a new and reduced data matrix, 

Z
~

, can obtained as 
 

(t ) (t ) (t ) g (t ) g (t )0 1 1 1 K 1 1 1 m 1
(t ) (t ) (t ) g (t ) g (t )0 2 1 2 K 2 1 2 m 2

(t ) (t ) (t ) g (t ) g (t )0 N 1 N K N 1 N m N

β β β
β β β

β β β
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Z
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⋯ ⋯
ɶ
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[ ]mKKK ++= ZZZZZZ
~~~~~~

110 ⋯⋯  

 Where as in (1), )(
~

tZu , u = 0,…,(K + m), can be 

expressed as 

)(~)(
~

)(
~

ttMtZ uuu η+=   (12) 

 Once the spatio-temporal process has been 
transformed in the space of the common components, 
one can remove the large scale variation uM (t)ɶ  as 

described earlier and use the linear Gaussian state space 
model for the transformed process u(t)ηɶ  expressed in 

the common field’s domain. 
 
From the observed data to the common components: 
We discuss issues associated with the problem of 
estimating the common components described before. 
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The first task is to analyze the common spatial 
structure; thus the type of trend and the residual 
covariance matrix Cδ must be estimated. In this study, 
the common spatial trend is recognized as a constant 
surface, representing one trend fields f0(si,t)=1, giving 
µ(si,t)=β0(t). Following Cristakos[17], the empirical 
variogram was obtained by averaging in time the spatial 
variograms of the residual process δ(si,t). To asses the 
best fit for the empirical variogram, we investigated a 
variety of variogram transition models[9]. By using the 
weighted least squares procedure, the Indicative 
Goodness of Fit (IGF) index[9] was applied as a metric 
for selecting the best fitting variogram model. 
According to the IGF statistic, we have chosen an 
omni directional spherical variogram with range 
0.1232, partial sill 0.0802 and nugget 0.0703. The 
principal fields have been obtained by the 
decomposition of the covariance matrix weighted by 
the influence areas of the Voronoi polygons[14]. To 
achieve a dimension reduction, the choice of a 
truncation parameter m is essential. 
 In this study the analysis of the scree graph in Fig. 
4 suggests to choose m equal to 13. Consequently, the 
temporal data set Zɶ  of the common components is 
constituted by one trend component and 13 principal 
components. 
 

 
Fig. 4: Scree graph 
 
Modelling the temporal large scale variation: The 
identification of the temporal dynamic term is 
performed in the domain of the observed data as well as 
the domain of the common components. The spectral 
analysis performed independently on each time series 
of the observed data suggests the presence of 
different cycles with different periods. However, 
from an explorative analysis we have seen that all the 
time series exhibit the same dominant periodic 
components. The trend model for the log-
transformed CO concentration profile at each station 
si, is thus obtained as 

5

M( , t) ( )cos(w t) ( )sin(w t)i 1j i j 2 j i j

j 1

α α = + 
=
∑s s s  

 Where wj, j=1,…,5, represent, respectively, the 
frequencies associated to the cycle-trend component, to 
the annual harmonic, to a period of 6 and 4 months and 
finally, to a period of 1 week. The plot of the spatio-
temporal series associated to the large scale variation is 
shown in Fig. 5. Figure 6 provides a representation of 
the residual short temporal variability of the data set. 

 

 
Fig. 5: Surface of the temporal large scale variation 

for the log-transformed CO concentration 

 

 
Fig. 6: Surface of the residual short temporal variation 

for the log-transformed CO concentration 

 
Following the same line, the trend model for the 
common components can be obtained as 

j j

5

M (t) cos(w t) (w t)u u1 j u2 j

j 0

α α = +
  

=
∑ɶ ɶ ɶ  

 Thus, as in the previous case, Fig. 7 and 8 provide 
the plots of the large and small temporal scale variation 
for the common components. 
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MODELLING THE RESIDUAL 
SPACE-TIME DYNAMIC TERM 

 
VAR Model in the observed data domain: Once the 
model for M(s,t) is specified, attention is turned to the 
η(s,t)’s. Through the state-space model, the residual  

 
Fig. 7: Surface of the temporal large scale variation 

for the common components 
 

 
Fig. 8: Surface of the residual short temporal variation 

for the common components 
 
space-time dynamic term is modelled as a vector 
autoregressive (VAR) process. In particular, following 
the standard diagnostic procedures described in Tiao 
and Box[18], a first order VAR model, characterized by a 
25×25 transition matrix, has been proved to provide the 
best fit of the observed data. 
 
Nearest-neighbour VAR Model in the observed data 
domain: In dealing with large spatial dimensions 
typical of environmental problems, it becomes natural 
to find a simplified structure of ΞΞΞΞ=ΦΦΦΦ1. In practice, a ve       
ry simplified version could be achieved considering a 
scalar structure of ΦΦΦΦ1. This results in the separable 
spatio-temporal model is described in Huang and 
Cressie[19]. However, when ΦΦΦΦ1 is assumed diagonal and 
constant across all spatial locations, the model is not 
able to capture complicated dynamics. To overcome 
this problem, a simple extension is to let neighbouring 
spatial locations at previous time contribute to the 
process at current time. This model structure is known 
as nearest-neighbour VAR model[1] and constitutes a 

particular form of the STAR models[10]. In a different 
manner from Wikle et al.[1], the nearest-neighbour 
model relies on a constrained transition matrix which 
allows temporal relations only for the spatially 
contiguous sites. Specifically, the spatial contiguity is 
not specified by a geographical proximity but is directly 
obtained by looking at the spatial correlation of the 
observed data. Accordingly, two sites are defined 
neighbours if their distance is less or equal to the 
variogram range. With this constraint, only 143 
parameters, instead of 625, must be estimated. As 
highlighted in Fig. 9 there is an evident correspondence 
between the parameters of the constrained transition 
matrix and the significant ones (at a nominal p-value of 
5%) of the ”complete” transition matrix. 
 
 
Fig. 9: Transition matrices for the complete VAR 
model and the nearest neighbour VAR model 
 
Common components-based VAR model: We 
achieve a dimension reduction of the Markov parameter 
matrix ΞΞΞΞ. In fact, in the common components domain 
the VAR(1) state-space formulation is characterized by 
a 14×14 transition matrix. Even if it is not so obvious 
for this particular example, it should be noted that this 
approach could lead to a model which results more 
parsimonious even with respect to the one specified by 
the nearest-neighbour VAR model. This strongly 
depends on the spatial correlation structure as the larger 
is the covariance range the smaller is the number of the 
estimated components. As a guide example, Wikle and 
Cressie[2], where in their Near-Surface Wind 
application, the authors achieve a very good 
approximation of the spatial series, defined over a 
17×17 regular grid, using just 20 eigenvectors. 
However, to provide further insight, Fig. 10 and 11, 
give some details on the dimension reduction of the 
parameter matrix ΞΞΞΞ for a (10×10) lattice. Specifically, 
for an increasing value of the range of three different 
transition model variograms, Fig. 10a shows the 
variation of the number (m) of the principal 
components, gv(t), needed to explain the 75% of the 
total spatial variability. As is evident, the more the 
range is large, the lower is the number of components 
which have to be considered to represent the correlation 
structure of the process. As expected, the Gaussian 
model provides a more parsimonious parameterization, 
which is evident above all for small values of the range. 
However, as it can be seen in Fig. 10b, the eventual 
presence of a nugget effect influences the 
dimensionality reduction and Fig. 10c shows the 
number of additional principal components which are 
needed to explain the same percentage of the spatial 
variation. 
 Finally, using the Spherical model and the same 
parameterization resulting from the previous exercise, 
Fig. 11 compares the number of parameters in ΞΞΞΞ for the 
nearest-neighbour and the common component 
approaches. To study the influence of a trend 
component, a quadratic trend surface was also 
considered in the analysis. As obvious, Fig. 11a shows 
an inverse relation between the two approaches.  
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Fig. 9: Transition matrices for the complete VAR model and the nearest neighbour VAR model 
 

 
 
Fig. 10: (a) Relation between the number of principal components (PC) and the range of three different transition 

variogram models with partial sill=10 and nugget=0; (b)Relation between the number of PC and the range 
when a nugget effect is considered; (c)Number of additional PC which have to be taken into account when 
a nugget effect is considered. In all cases, the number of PC explain the 75% of the total spatial variation 
over a (10×10) lattice 
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Fig. 11: (a)Relation between the number of parameters in ΞΞΞΞ and the range of a spherical variogram model with 

partial sill=10 and nugget=0; (b) Relation between the number of parameters in ΞΞΞΞ and the range of a 
spherical variogram model with nugget. In both cases, the number of PC explain the 75% of the total spatial 
variation over a (10×10) lattice 

 

 
 
Fig. 12: Boxplot of the temporal series for 1998-2001 –1=observed data; 2=Complete VAR; 3=Nearest Neighbour 

VAR; 4=Common Components VAR 
 
In particular, we can see that for a (10×10) lattice, both 
procedures are characterized by (approximatively) the 
same number of parameters for a range of 2.5. 
 For larger ranges the common component method 
leads to a more parsimonious parameterization. On the 

other hand, the situation slightly improves for the 
nearest-neighbour method when a nugget effect is 
considered (Fig. 11b) since, in this case, it should be 
preferred to the common component approach (with a 
quadratic trend) until the range reaches the point 3.5. 
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Fig. 13: Predicted spatial series for the last week of December 2001 
 

 
 

Fig. 14: Predicted common components for the last week of December 2001 
 

FITTING AND FORECASTING RESULTS 
 
 To examine the effectiveness of our model we have 
applied the Kalman filter and compared the fitted series 
with the observed data. Figure 12 shows the box plot of 
the distributions of the observed and predicted data for 
each monitoring station. As it can be noted, all the 
procedures perform similarly yielding analogous 

predicted distributions. With respect to the observed 
data distribution, as expected, the plots highlight a 
smoothing effect. This could be due to the difficulties 
of the Kalman filter in fitting extreme values. 
 Furthermore, to test the model ability to perform 
temporal predictions, the last week of the observed data  
set has been taken out from the analysis. Figure 13 
compares the observed and predicted spatial series for 
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the period 25-31 December 2001. As previously noted, 
even for the temporal forecasts all the procedures lead 
to similar results. 
 Focusing the attention to the Common Fields 
domain, Fig. 14 allows to stress the good performance 
of the VAR model in forecasting the Common 
Components for the last week of December 2001. 
 

DISCUSSION 
 
 The dynamic model described here offers a flexible 
approach to modelling a large-class of environmental 
space-time processes. However, as usual, the model 
must be tailored to the problem at hand. For example, if 
our goal is in predicting at a future time, our approach 
is useful; differently, further details must be provided if 
we are trying to predict the process at unobserved 
spatial locations. In particular, given Zɶ , if such 
prediction is required at time t, t≤T and at an 
unmonitored site s0, a straightforward approach might 
use equation (11) to obtain 

K m

0 j j 0 v v 0
j 0 v 1

ˆˆ ˆZ( , t) (t)f ( ) g (t) ( )β ψ
= =

= +∑ ∑s s s  (13) 

 Where j 0f̂ ( )s  and v 0ˆ ( )ψ s  are the estimated 

common fields at site s0. Their prediction is not a 
difficult task and since they are non-stochastic, ensuring 
orthogonality, we could apply some relatively simple 
interpolation schemes. To that end, Mardia et al.[11] and 
Wikle and Cressie[2], provide two alternative 
approaches. 
 We have also seen that the crucial issue of 
modelling spatial structure involves a trade-off between 
the structure of the VAR autoregressive parameter 
matrix and the level of independence among the 
elements of the driving noise. In order to gain a deeper 
understanding further work is needed to consider 
additional parameterizations. In this context, even if 
one loses the computational efficiency and simplicity 
realized by the Kalman filter, a full Bayesian model [1,20] 
provides a useful approach. In this context, spatial 
predictions can also be obtained following Tonellato[20]. 
 The final point is related to the typology of the data 
structure. For instance, of particular interest could be 
those phenomena characterized by a persistent (long-
memory) temporal autocorrelation. Thus, the 
investigation of VARFIMA models[21] represents a 
natural extension of the present approach and is a topic 
for future work. 
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