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Abstract: The ability to combine positive features of an internal 

combustion engine with those of an electric motor has been fundamental to 
the advancement of the high-performance energy-optimized hybrid 

vehicles. However, due to a lack of reliable and realistic hybrid vehicle 

models, much of the hybrid vehicle controller research has been limited to 

computer simulations. To overcome this shortcoming, this paper utilizes a 

highly reliable vehicle model (Autonomie) for simulation. A state-of-the-art 

fuzzy logic controller was developed that considers the battery state of 

charge, wheel torque demand and vehicle speed as the input variables. An 

ARM Cortex M3 microcontroller-based control hardware prototype was 

developed and the processor in loop simulation was performed to verify the 

feasibility of the developed controller in an embedded real-time application. 

The results of this study indicate that the developed fuzzy logic controller 
significantly improved the performance (up to 48%) of the hybrid vehicle 

in a real-time application compared to Autonomie's built-in controller. The 

processor in loop test results provide evidence of the effectiveness of the 

developed control algorithm in the embedded real-time form.  

 

Keywords: Fuzzy Logic Control, Plug-in Hybrid Vehicle, Autonomie, Fuel 

Economy, Processor in Loop Simulation (PIL) 

 

Introduction 

An ever-increasing demand for energy combined 

with a limited supply of sources has led to an increased 

awareness of the efficient uses of energy. Based on the 

US Energy Information Administration (U.S. EIA) 

annual report of 2018 (EIA, 2018), the amount of energy 

consumed by the transportation sector is often more or 

close to the residential, commercial, or industrial power 

sector. Ground vehicles consume the maximum amount 

of energy in the transportation sector. Consequently, a 

significant amount of attention is being given to the field 

of efficient energy management in-ground vehicles.  
Plug-in Hybrid Electric Vehicle (PHEVs) is the latest 

generation in the hybrid electric vehicle family. Plugin 

hybrid electric vehicles are popular because of their 
higher fuel efficiency and low emissions. A majority of 

the plug-in hybrid electric vehicles involve a parallel 

architecture. In the case of the parallel hybrid vehicle, 

both the Internal Combustion Engine (ICE) and the 

electric motor work in parallel to fulfill the driver's 

demand torque. For the parallel hybrid vehicle, the 

distribution of demand power can be related to the 

driver's demand torque, State Of Charge (SOC) of the 

battery, vehicle speed, etc. During running conditions, 

the batteries recharge by regenerative braking 

system/engine. The performance of the plug-in hybrid 

electric vehicle depends on the distribution of the 

demand power between the engine and the electric 

motor. Because of the enormous scope in energy 

optimization of plug-in hybrid electric vehicles, 

significant research has been done to improve the 

efficiency of plug-in hybrid electric vehicles.  
The plug-in hybrid electric vehicle consists of a 

complex power system with multiple sources and sinks. 

A sophisticated energy management system is required 

to maximize the efficiency of the plug-in hybrid electric 

vehicle. Summarized next are works by several 

researchers who have modeled the plug-in hybrid electric 

vehicle energy optimization problem in different ways.  

Improving the efficiency and performance requires a 

realistic model of the vehicle. In the majority of the 

cases, the researchers developed their own vehicle 

models and the used models were often purely 

theoretical in nature (Naderi et al., 2009; Bahar et al., 
2009; Kim et al., 2010).  



Sk. Khairul Hasan and Anoop Kumar Dhingra / Journal of Mechatronics and Robotics 2020, Volume 4: 236.253 

10.3844/jmrsp.2020.236.253 

 

237 

A significant number of studies have used the 

Advanced Vehicle Simulator (ADVISOR) vehicle 

simulator for performance evaluation of energy 

optimization algorithms (Kim et al., 2010; Meng and 

Langlois, 2010; Wipke and Cuddy, 1996; Slezak, 2004). 
ADVISOR was developed based on the simple laws of 

physics (Kilic et al., 2007). Most of the time, the real 

vehicle behavior deviates significantly from idealized 

vehicle models. A realistic vehicle model is essential for 

reliable performance evaluation.  
Boyali and Guvenc (2010) used the Ford Otosan 

Hybrid Electric Vehicle (FOHEV) for performance 
evaluation of their developed algorithms (Kilic et al., 
2007). FOHEV is a prototype vehicle (Majdi et al., 2009) 
that was developed through a collaboration between Ford 
Otosan, İTÜ and TÜBİTAK. It is not available to other 
researchers. As the vehicle model is not available to others, 
it cannot be used as a standard for performance evaluation. 

Many researchers have attempted to solve the energy 

optimization problem by using artificial intelligence 

techniques such as fuzzy logic, neural networks and 

genetic algorithms (Naderi et al., 2009; Kim et al., 2010; 

Wipke and Cuddy, 1996; Zhu and Yang, 2012; Xu et al., 

2010). Each of the three methods has its pros and cons. 

A fuzzy logic-based approach is attractive because of its 

simplicity and computational power requirements. It is 

based on capturing an expert's knowledge, often a small 

amount of data or no data required for development and 

implementation. The fuzzy logic is the best way to make 

a connection between a linguistic variable and a 

numerical variable. The neural network is another way to 

provide artificial intelligence to the system. This 

approach creates a mathematical model using 

approximate functions. The performance of the neural 

network depends on the training phase, which requires a 

considerable amount of data and computation. Collecting 

meaningful data for network training is challenging. As 

multiple layers and multiple neurons construct the neural 

network, it is difficult to explain how individual inputs 

influence the output. The genetic algorithm is another 

way to impart artificial intelligence to a machine. It 

requires significant computational times and may not 

reach the global optimum solution. For the reasons 

mentioned above, the fuzzy logic or modified fuzzy 

logic-based algorithms appear promising for solving the 

PHEV energy optimization problem and are used herein. 
Boyali and Guvenc (2010) used neurodynamic 

programming to solve the plug-in hybrid electric vehicle 
optimization problem. A use of dynamic programming is 
difficult for real-time applications because it needs a 
priori information about the environment; further, the 
method requires significant computational times. For this 
reason, the authors developed an artificial neural 
network and utilized dynamic programming based 
optimized solutions for its training. Boyali and Guvenc 
reported a significant improvement in the fuel economy. 

Bin et al. (2009) applied spatial domain dynamic 

programming to get the optimum solution for a given drive 

cycle. A precise vehicle model is needed for dynamic 

programming; further, the method works efficiently only on 

the predefined drive cycles. Kim et al. (2010) proposed a 
real-time optimal control strategy for the power split hybrid 

electric vehicle based on Pontryagin's minimum principle. 

The rate of fuel consumption and SOC of the battery were 

considered as the cost function.  

Meng and Langlois (2010) used an optimized fuzzy 

logic controller to minimize fuel consumption and 

emissions. For training the fuzzy rules, an adaptive 

neuro-fuzzy approach was used. Xu et al. (2010) 

proposed a control strategy based on fuzzy logic for 

controlling a parallel hybrid electric vehicle. Driver 

torque demand and battery SOC were considered as the 
input to the fuzzy logic controller with engine torque and 

motor torque considered as the controller outputs.  

Used an Adaptive Neuro-Fuzzy Inference System 

(ANFIS) for implementing the parallel hybrid electric 

controller. The ANFIS system utilizes optimal data sets 

for developing fuzzy sets and fuzzy rule base. Compared 

to the fuzzy logic based system, the performance of 

ANFIS is more dependent on training data. High-quality 

data needed for training the system is not readily 

available. The authors considered battery SOC and 

desired torque as the input of the fuzzy system and the 

output variable was the engine throttle control. 

Developed a fuzzy logic-based global power 

management system for a permanent magnet electric 

vehicle transmission. To maximize the performance of 

the vehicle, they developed three individual fuzzy logic 

controllers which (i) split the power between the engine 

and the electric motor, (ii) maximized the energy 

capture during the braking process and (iii) sustained 

the SOC of the battery. The battery SOC, vehicle’s 

velocity, traction torque and vehicle’s requested 

power were considered as the input variables. The 

authors used the ADVISOR vehicle model for 

simulation and performance evaluation of the 

developed controller. 

Developed a fuzzy logic controller for parallel hybrid 

vehicles considering the driver power demand, SOC of 

the battery and electric motor speed as the inputs for the 

fuzzy logic controller. They used the Powertrain System 

Analysis Toolkit (PSAT) for simulation and performance 

evaluation of the developed controller. The performance 

of the developed fuzzy logic controller was compared 

with the controllers that came with the PSAT package. 

Developed a fuzzy logic controller for maximizing 

the fuel economy of the vehicle and minimizing the 

emissions. They considered the desired driving torque, 

SOC of the battery as the inputs for the fuzzy logic 

controller and throttle angle as the output of the fuzzy 
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logic controller. For the performance evaluation 

ADVISOR vehicle modeling and simulation were used. 

Developed a fuzzy logic controller whose structure 

is similar to the fuzzy logic controller mentioned in 

reference. They also used the ADVISOR software for 

the simulation and performance evaluation of the 

developed controller. 

A review of the literature mentioned above reveals 

that most of the previous efforts are based largely on 

analytical models of the vehicle. Algorithms and 

controllers developed based solely on analytical models 

are of limited use on real vehicles. Some researchers 

used the dynamic programming method to solve the 

optimization problem in real-time, but the method 

requires prior knowledge about the trip making the 

solution specific to a particular route. Further, the 

method requires large computational power and 

significant computational times to arrive at a solution, 

which renders a real-time implementation quite 

challenging. Efforts have also been made that combine 

the geographical information and global positioning 

system data with dynamic programming. However, 

geographic information data is not available in all areas. 

Some researchers have used SOC of the battery and 

driver torque demand as the input variable, whereas 

others have used vehicle speed and SOC as input 

variables; often, two variables among three quantities are 

not enough to describe the state of the vehicle. The 

above literature also reveals that most of the previous 

works have been limited to simulations alone without 

any consideration of hardware implementation.  

To overcome these shortcomings, this paper 

addresses the modeling problem by using a reliable 

vehicle model based on the Autonomie vehicle 

simulation software developed by Argonne National 

Lab. Autonomie utilizes real data collected from an 

actual vehicle to construct a vehicle model. Until now, 

none of the research efforts have used this type of highly 

reliable vehicle model for controller development and 

performance evaluation. Three input variables are 

considered for the developed fuzzy logic controller: The 

state of charge of the battery, the vehicle speed and the 

driver's demand torque. Most of the previously 

developed fuzzy logic controllers used only two 

variables as the input. Vehicle speed can play an 

important role in optimum decision making. An expert's 

knowledge was gathered and transferred in the form of a 

total of 75 fuzzy rules and fuzzy set theories were used 

to help improve the efficiency of a fuzzy logic-based 

controller. Comparisons were also performed for 

evaluating vehicle performance using Autonomie's built-

in controller as well as the fuzzy logic controller 

developed herein. A processor in loop simulation was 

also performed to verify the controller feasibility in an 

embedded real-time application. Finally, an Arm Cortex 

M3 microcontroller-based controller prototype was built 

for the considered application. 

Methodology 

The solution approached adopted herein is briefly 

described next. This is followed by a detailed 

explanation of what actions were performed in each step. 

For energy optimization of the hybrid vehicle, a fuzzy 

logic controller was developed. The controller development 

involves defining fuzzy sets for the three input variables and 

two output variables. This was followed by a development 

of the fuzzy rule base. Next, the fuzzification and 

defuzzification approaches were established. The 

fuzzification method converts a crisp input to a fuzzy input 
and the defuzzification method converts a fuzzy value to a 

crisp output. It is important to mention that fuzzy sets, 

membership functions, fuzzy rule base and fuzzification 

and defuzzification methods completely depend on the 

designer’s/expert’s knowledge. A more detailed explanation 

of each of these steps is given in section 2.3. 

To verify the performance of the developed 

controller, a highly reliable vehicle model is used. The 

vehicle model is derived from the Autonomie software 

package developed by Argonne national lab. A detailed 

description of the vehicle model used for simulation is 

given in section 2.1. The developed fuzzy logic controller 

replaced the default controller in Autonomie. The 

performance of the designed controller was compared 

with the available controller in the Autonomie package. 

The simulation results are presented in section 3. 

Simulink was used for automatic code generation and 

hardware implementation. An Arm Cortex M3 

microcontroller was used as the prototype controller. To 

evaluate the performance of the developed controller, a 

processor in loop simulation was performed where the 
output of the simulation was compared with the output 

of the developed prototype hardware. The simulation 

results show that there is no difference between the 

simulation output and the actual controller’s output, 

demonstrating that the developed controller is 

performing as intended (section 4). 

Vehicle Simulation 

Autonomie is a Matlab/Simulink® based vehicle 

modeling and simulation software. It provides a realistic 

estimation of wheel torque demand, fuel economy and 

SOC of the battery. Additionally, it provides engine, 

electric motor efficiency curves and emissions 

information. The software includes a driver block to 

simulate engine start/stop, throttle control and braking 

action. The vehicle can also be run through different 

standard driving cycles.  
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Autonomie also provides flexibility to change any 

default parameters such as the mass of the vehicle, 

environmental parameters such as surrounding 

temperature and pressure, etc. It allows engineers 

system-level development and performance evaluation 
that includes replacing an existing propulsion controller, 

an engine or battery with a newly modeled one, etc. 

Figure 1 shows the internal power flow diagram of a 

hybrid vehicle. The engine and electric battery together 

supply the power to run the wheels. The regenerative 

braking system recharges the battery during the braking 

action. The whole power system runs based on the 

vehicle propulsion control algorithms. We used fuzzy 

logic algorithms to provide artificial intelligence to the 

vehicle propulsion controller. Each component in the 

model in Fig. 1 is based on a lookup table with table 
entries provided in the Autonomie software. 

Different dynamometer drive schedules are used for 

determining the fuel economy and vehicle emissions 

under various driving conditions. For instance, the 

Environmental Protection Agency (EPA) highway fuel 

economy testing drive schedule is used for measuring 
highway gas mileage and emissions. The Urban 

Dynamometer Driving Schedule (UDDS) cycle is used 

herein for the simulation and performance evaluation of 

the vehicle propulsion controller. 

The urban dynamometer driving schedule simulates 

the traffic and environmental effects on busy American 

city roads and highways. The UDDS cycle has the 

following specifications: total driving duration of 8219 

sec, traveled a distance of 44.27 miles with a maximum 

speed of 56.7 mph and an average speed of 19.58 mph. 

Figure 2 shows the vehicle speed during the UDDS 
cycle.  

 

 
 

Fig. 1: Hybrid vehicle power flow diagram 
 

 
 

Fig. 2: Vehicle speed along the UDDS cycle 
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Table 1: Vehicle simulation parameters  

Component  Specifications  

Engine  GM ECOTECH, four cylinders, cylinder volume 

 2.2-liter, power output 110 kilowatt  

Electric motor  PM DC motor, continuous power 7 kW, maximum torque 

 140 Nm, the coefficient of regeneration 1  

Transmission  5 speed manual transmission (ratios 2.563, 1.552, 

 1.022, 0.727, 0.52)  

Final drive  Gear ratio 4.438  

Wheel  Radius 0.3175 m  

Battery  Li-ion battery 555 amp-hrs.  

Coefficient of drag  0.30  

Vehicle mass  1630 kg  

Ambient pressure  1 bar  

Ambient temperature 20°C 

 

While the vehicle executes the UDDS cycle, the 

driver block takes necessary actions to follow the 

prescribed trajectory. Autonomie calculates the 

performance of individual components, fuel 

consumption and SOC of the battery. At the end of the 

simulation, it generates a detailed report on the 

performance and state of the components. Table 1 

shows the vehicle and environmental parameters used 

for the simulation. The developed fuzzy logic 

controller was simulated using the vehicle given in 

Table 1, but it is not necessary to use the same model 

or the exact specifications. The controller can be used 

for other configurations such as an automatic 

transmission, diesel engine, six-cylinder engine, 

different final drive gear ratios, etc. 

Autonomie Vehicle Model Propulsion 

Controller 

Autonomie vehicle model comes with a built-in 

vehicle propulsion controller. Figure 3 presents the 

state flow diagram of the default vehicle propulsion 

controller. It considers multiple factors while 

executing control actions such as the vehicle torque 

demand, the state of the battery, the state of the engine 
and the state of the gearbox. Based on the wheel 

torque demand and engine speed, it turns on/off the 

internal combustion engine. Depending on the engine 

speed and wheel torque demand, it switches system 

state between stop/braking and propulsion mode. 

Once the system is in propulsion state, it checks the 

state of the gearbox and the state of charge of the 

battery. Based on these two pieces of information, the 

controller switches between power-assist mode and 

battery charging mode. Finally, the system state 

switches between propulsion mode and performance 
mode. In the performance mode, if the battery state of 

the charge is above a certain threshold, it draws the 

maximum possible amount of torque from the motor, 

which leads to maximum energy efficiency and 

minimum pollution. Figure 4 presents the state flow 
diagram of the performance mode. 

Autonomie default controller is based on the state 

flow diagram where state switching occurs based on 

different conditions. Simply stated, it is based on a 

lookup table. A lookup table-based decision-making 

system is a commonly used approach. The main 

advantage of lookup table based algorithms is that 

they are easy to implement and require smaller 

computational times and processing power. The main 

drawback of this approach is that it does not ensure an 

optimum solution. To overcome this shortcoming, we 

proposed a fuzzy logic controller based approach to 

find an optimum solution. 

Development of a Fuzzy Logic-Based 

Controller 

Fuzzy logic is a well-established method for 

providing artificial intelligence to a machine. A set of 

well-defined mathematical procedures are used to 

convert approximate human reasoning capabilities to a 

knowledge-based system. The fuzzy logic-based 

control system gives precise output to a high 

bandwidth system. It does not require high 

computational power like a neural network or a 

genetic algorithm. Because of its ease of adaptability 

and high performance, nowadays, fuzzy logic is 

popular for prediction systems, modeling and control 

applications. Fuzzy logic-based systems are suitable 

where expert's well-documented knowledge is 

available. It shows excellent performance for systems 

with complex/unknown plant models, nonlinear and 

noisy sensor outputs (De Silva, 2018; Passino and 

Yurkovich, 1997). 
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Fig. 3: Autonomie default hybrid controller 

 

 

 

Fig. 4: Vehicle propulsion controller performance mode 
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The structure of the fuzzy logic-based 

control/decision-making system is shown in Figure 5. A 

fuzzy logic controller has the following major 

components: fuzzy knowledge base, fuzzifier, fuzzy rule 

base, inference engine and defuzzifier. The fuzzy 
knowledgebase captures the expert's knowledge required 

for fuzzification, defuzzification and the fuzzy inference 

engine. The fuzzifier converts crisp input to fuzzy values 

and contains fuzzy sets for every input. Each fuzzy set is 

described by fuzzy membership functions. For instance, 

Figure 6 shows the fuzzy set corresponding to the battery 

state of charge. It consists of three membership 

functions: Low SOC (SOC<40%), medium SOC (10% 

<SOC<90%) and high SOC (SOC>60%). Expert(s) 

specify the number, shape and size of the membership 

functions. These specifications are completely dependent 
on the expert’s knowledge. The fuzzy inference system 

enables approximate human reasoning capabilities to the 

fuzzy logic system. It consists of a series of if-then rules. 

The fuzzy inference system is also developed based on 

the expert’s knowledge. Two different experts may 

define the inference system differently. It is very difficult 

to say which rule sets will deliver better performance. 

The defuzzifier converts fuzzy values obtained from the 

fuzzy inference system into crisp values. Fuzzy sets and 

fuzzy membership functions used for defuzzification 

also come from the expert's knowledge. In a fuzzy logic-

based system, there are no fixed rules for defining the 

fuzzy sets and membership functions and for the 

fuzzification and defuzzification methods. 
A fuzzy logic controller was developed for the energy 

optimization of plug-in hybrid electric vehicles. The 

developed controller has three input variables: vehicle 

speed, wheel torque demand and state of charge of the 

battery and two output variables: Motor torque demand 

and engine torque demand. The controller was developed 

by considering that the battery can be recharged directly 

from the electrical power grid as well from the engine. 

Input-output fuzzy sets and fuzzy membership functions 

were built based on the expert's knowledge. Figure 6 to 8 

depicts the fuzzy sets and membership functions for the 
three input variables.  

The battery state of charge is represented using three 

membership functions, namely, low, medium and high (Fig. 

6). If the state of charge is less than 0.4, it is considered as 

low. If it lies between 0.10 to 0.90, then it is considered as a 

medium and if the state of charge is more than 0.6, then it is 

considered as high value. Similarly, fuzzy sets and 

membership functions for the wheel demand torque (Fig. 7) 

and vehicle speed (Fig. 8) were defined. 
 

 
 

Fig. 5: Fuzzy logic system architecture 
 

 
 

Fig. 6: Membership function of battery state of charge (SOC) 
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Fig. 7: Membership functions of wheel torque demand 
 

 
 

Fig. 8: Membership functions of vehicle speed 
 
Table 2: Fuzzy input variables and membership function  

Input variables  Membership function  

State of charge of the battery 0.33 μlow batt  = 0.20  
 μmedium batt  = 0.56  

Vehicle speed 10 m/s μlow speed = 0.20  

 μmedium speed  = 0.45  

Driver torque demand -195 Nm  μbraking  = 0.50  
 μvery braking = 0.22  

 

The fuzzy inference system maps fuzzy input to 

fuzzy output. Two fuzzy output sets were defined to 

convert the fuzzy output to crisp output. Figures 9 and 

10 show the fuzzy sets and membership functions of the 

two output variables. 

Fuzzification is the process of mapping the crisp 

input variables on the fuzzy set to determine the 
membership values of the fuzzy membership functions. 

For example, at some instant (Fig. 11), the battery SOC 

of 0.33 covers two membership functions – low SOC 

and medium SOC. The membership in low SOC is 0.20, 

whereas the membership in medium SOC is 0.56. 

Similarly, based on the crisp values of the other two 

individual inputs, the relevant fuzzy set's membership 

function's membership values were calculated. Figures 

12 and 13 show this calculation for wheel torque demand 

and vehicle speed, respectively.  

After the fuzzification process, every input comes 

with specific membership value for a membership 

function. Suppose the value of the state of charge of 

the battery is 0.33, the driver torque demand is −195 

𝑁𝑚 and the vehicle speed is 10 𝑚/𝑠, then for these 

input values, the corresponding memberships are 

given in Table 2. 

After fuzzification, the next step in the fuzzy logic 

system is the fuzzy inference system. Fuzzy inference 

rule base consists of a set of antecedent-consequent 

linguistic rules relating system inputs and outputs using 

fuzzy sets. The fuzzy inference system is a logical 

presentation of an expert's knowledge. For example, a 

rule may be stated as. 

Rule 1 

if STATE OF CHARGE is LOW, WHEEL TORQUE 

DEMAND is BRAKING and VEHICLE SPEED is LOW 

then MOTOR TORQUE is GENERATOR and ENGINE 

TORQUE is MEDIUM. 
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Fig. 9: Membership functions of engine torque demand 
 

 
 

Fig. 10: Membership functions of motor torque demand 
 

 
 

Fig. 11: Fuzzification of battery state of charge 
 

 
 

Fig. 12: Fuzzification of equivalent wheel torque demand 
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Fig. 13: Fuzzification of equivalent vehicle speed 
 

 
 

Fig. 14: Defuzzification process for engine output torque 
 

 
 

Fig. 15: Defuzzification process for motor output torque 

 

Rule 2 

if STATE OF CHARGE is MEDIUM and WHEEL 

TORQUE DEMAND is VERY BRAKING and VEHICLE 

SPEED is MEDIUM then MOTOR TORQUE is VERY 

GENERATOR and ENGINE TORQUE is LOW. 

A total of 75 such rules were developed for the 

proposed fuzzy logic controller. 

Determining the Firing Strength 

After fuzzification and fuzzy inferencing, firing 

strength is used for determining the membership of 

the output fuzzy sets. As the fuzzy sets are continuous 

with the "and" operation being equivalent to the 

minimum of the contributing membership function's 

membership, the firing strengths of rules 1 and 2 are 

determined as follows. 

If state of charge is low, wheel torque demand is 

braking and vehicle speed is low then motor torque is 

generator and engine torque is medium. 
Since the "and" operation is equivalent to the 

minimum of all memberships, so: 

 

μlow batt. and μlow speed and μbraking. 

= min(μlow batt.,μlow speed, μbraking.) 

= min(0.20,0.20,0.50) 

 

So, the firing strength of the first rule is 0.20. 
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Similarly,  

If state of charge is medium and wheel torque demand is 

very braking and vehicle speed is medium then motor 

torque is very generator and engine torque is low: 

 

μmedium batt. and μmedium speed and μvery braking. 

= min(μmedium batt., μmedium speed, μvery braking.) 

= min(0.56,0.45,0.22) 

 

So, the firing strength of the second rule is 0.22.  
 

Defuzzification is the process of getting the fuzzy 

output membership function to a crisp output value. The 

smallest of the maxima defuzzification method is used. 

 

 
 

Fig. 16: Output engine torque variation with respect to speed and driver torque demand 
 

 

 
Fig. 17: Engine output torque variation with respect to the State Of Charge (SOC) of the battery and driver torque demand 
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Fig. 18: Motor output torque variation state of charge (SOC) of the battery and vehicle speed 

 

 
 

Fig. 19: Motor output torque variation with respect to the State Of Charge (SOC) of the battery and driver torque demand 

 

From the fuzzy rule base, two membership 

functions from output variable Engine Torque 

contributed. Based on the smallest of the maxima 

defuzzification process, the crisp output is 101 Nm. 

Similarly, for the Motor Torque, the crisp output is -150 

Nm. Figures 14 and 15 show the defuzzification process. 

The fuzzy logic controller has a total of 75 rules with 

three input variables: State of charge of the battery, 

vehicle speed, wheel torque demand and two output 

variables, namely engine output torque and motor output 

torque. The variation of outputs torques with respect to 

changes in inputs are shown in Fig. 16 to 20. 
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Fig. 20: Motor output torque variation with respect to the speed and driver torque demand 

 

Simulation and Result Analysis  

The UDDS cycle simulates the traffic and 

environmental effects on busy American city roads and 

highways. We used the UDDS cycle to measure the fuel 

economy. Figure 21 shows the vehicle's tracking 

performance for the UDDS cycle. Since the tracking error is 

small, it is difficult to differentiate between the input 
trajectory and the vehicle output trajectory. Figure 22 shows 

the engine on/off states while completing the UDDS cycle. 

At the end of the simulation, Autonomie provides the 

performance characteristic curves of all the components, the 

fuel consumption and the battery state of charge. 

Table 3 and Fig. 23 show the variation of the SOC of 

the battery and fuel economy versus the total distance 

driven using the developed fuzzy logic controller.  

Figure 23 shows the variations of vehicle mileage to 

the state of charge of the battery. The user will get 42 or 

more miles per gallon for the first 150-miles. Figure 24 

shows the performance comparison between the 

developed fuzzy logic controller and the default 

controller that comes with the Autonomie package. At 

fully charged condition, the vehicle with fuzzy logic 

controller gave 16 more miles per gallon of fuel than the 

default Autonomie controller; this is equivalent to 48% 

additional mileage than the default mileage. Based on a 

2014 American survey of driving habits, Americans, on 

average, drive 32.60 miles per day (Triplett et al., 2015). 

From Fig. 24, it can be easily concluded that the average 

driver will get a mileage upwards of 50 miles per gallon. 

Figure 23 shows the variation of the fuel economy 

with the change of the SOC of the battery. The 

developed fuzzy logic controller gives very high mileage 

for the first 175 miles (35 miles/gallon or higher). Due to 

the high SOC of the battery, based on the developed 

fuzzy logic controller, the electric motor contributes 

more driving torque to fulfill the driver’s demand, 

resulting in a higher fuel economy. If the battery is not 

recharged, the vehicle constantly delivers 34.65 

miles/gallon. The vehicle performance in terms of fuel 

economy also decreases with the SOC of the battery. 
 
Table 3: total distance traveled, SOC of the battery and Fuel economy  

      Equivalent fuel  

Cycle #  Distance per cycle  Total distance  Initial SOC (%)  Final SOC (%)  Δ SOC (%) economy (mile/gal.) 

0  44.72  0.00 100.00 100.00 0.00 52.81  
1  44.72  44.72  100.00 73.38  26.62  45.19  
2  44.72  89.44  73.38  51.61  21.77  46.68  
3  44.72  134.16  51.61  38.15  13.47  41.61  

4  44.72  178.88  38.15  38.15  1.94E-05  34.71  
5  44.72  223.6  38.15  38.15  -5.76e-7  34.67  
6  44.72  268.32  38.15  38.15  -1.52e-5  34.65  
7  44.72  313.04  38.15  38.15  1.49e-5  34.67  
8  44.72  357.76  38.15  38.15  -3.69e-7  34.64  
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Fig. 21: UDDS cycle and vehicle output speed along the UDDS cycle 

 

 

 
Fig. 22: Vehicle engine On/Off simulation 

 

 

 
Fig. 23: State Of Charge (SOC) of the battery and fuel economy using the developed controller 
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Fig. 24: Comparison of fuel economy between developed and Autonomie’s default controller 

 

Processor in Loop Simulation  

The processor in the loop is a well-established 

technology for early problem detection and numerical 

performance evaluation of control algorithms in an 

embedded environment (MathWorks, 2019). The 

processor in the loop plays a crucial role in model-based 

controller development. It helps to reduce the 

dependency on physical hardware. Figure 25 shows the 

PIL simulation architecture.  

From Figure 25, we can see that for PIL 

simulation, the plant model and the control algorithms 

run on the host computer and another copy of the 
control algorithm runs on the external microcontroller 

or DSP chip. The same input is provided to both 

controllers and then their outputs are compared. We 

used Matlab-Simulink for code generation and PIL 

simulation. An ARM Cortex-M3 microcontroller was 

used as the target processor. The host computer (Intel 

Core i7 processor-based Windows PC) communicates 

with the target processor via a high-speed serial bus. 

The developed fuzzy logic controller runs in parallel 

on the host computer and on the Arm Cortex M3 

microcontroller. At every iteration, the output from 
the Arm controller is sent back to the host computer 

and compared with the output of the control algorithm 

running on the host computer. Figure 26 shows the 

difference between the simulated controller's output 

(running on the host computer) and the target ARM 

controller's output. As there is no difference (curve is 

zero throughout) between the simulation output and 

the controller’s output (Figure 26), this guarantees 

that the developed controller is behaving as expected 

in the embedded real-time application.  

Controller Prototype Development  

An ARM Cortex M3 microcontroller was used for 

developing a control prototype (Figure 25). ARM Cortex 

M3 Microcontroller has twelve analog inputs and two 

analog outputs. The battery state of charge, vehicle 

speed and driver torque demand were considered as the 

controller inputs. As the ARM Cortex M3 

microcontroller accepts a maximum input value of 3.3 

volts, all input sensor values were mapped between 0 to 

3.3 volts. Three analog input channels (A0, A1, A2) 

and two built-in analog output channels (DAC0, 

DAC1) were utilized for interacting with the sensors 

and delivering the output signals. The analog output 

voltage represents the engine torque demand and motor 

torque demand command. The microcontroller output 

voltage varies between 0.55 volt to 2.75 volts. 

Therefore, the engine torque demand and motor torque 

demand were expressed by 0.55 to 2.75 volts. The 

controller prototype is shown in Figure 27. For testing 

purposes, instead of using data from real sensors, three 

potentiometer based simulated sensors were used. 
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Fig. 25: Processor In Loop (PIL) simulation architecture 

 

 

 

Fig. 26: Performance verification of processor in the loop simulation 
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Fig. 27: Control hardware prototype 

 

Conclusion 

This paper presented the development of a fuzzy 

logic controller for a plug-in hybrid vehicle, which 

improved the fuel efficiency of the vehicle by up to 48 

percent compared to the default controller available in the 

Autonomie vehicle simulation software. The battery SOC, 

wheel torque demand, vehicle speed are considered as the 
input of the fuzzy logic controller. The expert's knowledge 

was captured to develop the fuzzy rule base (75 rules) and 

fuzzy sets for the controller. For vehicle modeling and 

performance evaluation of the designed controller, a 

highly reliable and real data based vehicle model from 

the Argonne National Lab was used. For hardware 

realization and performance verification of the 

developed fuzzy logic control algorithms, an Arm 

Cortex M3 microcontroller based prototype was 

developed. The processor in loop simulation was 

performed to evaluate the performance of the 
controller in an embedded real-time application. 

While we have done our best in capturing the expert’s 

knowledge in the form of 75 rules, it may be noted 

that a more precise and informative capturing of the 

expert's knowledge can yield further improvements in 

the controller performance. 
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