
 

 
© 2017 Relly Victoria Petrescu, Raffaella Aversa, Bilal Akash, Antonio Apicella and Florian Ion Tiberiu Petrescu. This open 

access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

Journal of Mechatronics and Robotics 

 

 

 

Original Research Paper 

Dynamic Elements at MP3R 
 

1
Relly Victoria Petrescu, 

2
Raffaella Aversa, 

3
Bilal Akash, 

2
Antonio Apicella and  

1
Florian Ion Tiberiu Petrescu 

 
1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania 
2Advanced Material Lab, Department of Architecture and Industrial Design, 

Second University of Naples, 81031 Aversa (CE), Italy 
3Dean of School of Graduate Studies and Research, American University of Ras Al Khaimah, UAE 

 
Article history 

Received: 30-10-2017  
Revised: 08-11-2017  
Accepted: 23-11-2017   
 
Corresponding Author:  
Florian Ion Tiberiu Petrescu 
ARoTMM-IFToMM, Bucharest 
Polytechnic University, 
Bucharest, (CE), Romania 
E-mail: scipub02@gmail.com 

Abstract: Mechatronic robotic systems are today widely used worldwide to 

ease human work, but especially where work is dangerous, in toxic, 

radioactive, chemical, explosive atmospheres, without air such as 

underwater or in the cosmos, or in places hard to reach the man. Robots can 

take the tedious repetitive work under any circumstances and they can 

perform a difficult operation for a long time, with no meal or rest breaks. 

Serial mobile mechanical systems are generally the most used mechatronic 

systems because they have good dynamics, high reliability and lower 

manufacturing cost with modest technologies. In general, anthropomorphic 

robotic structures are generally used in serial mechanical systems as they 

are more versatile, more economical, more reliable, more penetrating, faster 

and generally have a beautiful and innovative design. Anthropomorphic 

structures have been used for the first time in the automotive industry to 

facilitate human work, but also to replace it with repetitive, tiring, or toxic 

work. For this reason, the first anthropomorphic robots were manipulators 

and the following were dyeing robots in toxic environments, so that 

welding anthropomorphic, assemblies, those who checked technological 

lines and so on would still appear. Almost all operations in the automotive 

industry were automated based on anthropomorphic robots. For this reason, 

their study is today as necessary as ever for their continuous improvement. 

Anthropomorphic robots work at high speeds and therefore their dynamics 

is an extremely important issue. In this paper, we aim to present an original 

method of scientific, analytical study of the dynamics of the 

anthropomorphic mobile mechanical structures. Dynamics is the discipline 

that studies the real movement of a point, object, or a body, mechanical 

system ... The dynamic study attempts to capture the real movement of 

the studied object, as it is in reality. The movement of a body is derailed 

by the kinematic equations, the movement being generally studied by the 

kinematics, but when we are interested in the actual movements of a 

binding object, a dynamic motion study must be introduced. The 

dynamics besides the kinematics constrain the influence of the masses 

and forces on the movement of a body, as well as the elastic 

deformations, the inertial forces, or other external forces capable of 

influencing the movement of the body, including those caused by the 

bonds of the body, its object of that mechanism. 
 
Keywords: Dynamic, Cinematic of the MP-3R Systems, Geometry, Kinematic 

Parameters, Dynamics of MP3R 

 

Introduction  

Serial mobile mechanical systems are generally the 

most used mechatronic systems because they have 
good dynamics, high reliability and lower 
manufacturing cost with modest technologies. In 
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general, anthropomorphic robotic structures are 
generally used in serial mechanical systems as they 
are more versatile, more economical, more reliable, 
more penetrating, faster and generally have a beautiful 
and innovative design. 

Anthropomorphic structures have been used for the 

first time in the automotive industry to facilitate 

human work, but also to replace it with repetitive, 

tiring, or toxic work. For this reason, the first 

anthropomorphic robots were manipulators and the 

following were dyeing robots in toxic environments, 

so that welding anthropomorphic, assemblies, those 

who checked technological lines and so on would still 

appear. Almost all operations in the automotive 

industry were automated based on anthropomorphic 

robots. For this reason, their study is today as 

necessary as ever for their continuous improvement. 

Anthropomorphic robots work at high speeds and 

therefore their dynamics is an extremely important 

issue. In this paper, we aim to present an original 

method of scientific, analytical study of the dynamics 

of the anthropomorphic mobile mechanical structures. 

Dynamics is the discipline that studies the real 

movement of a point, object, or body, mechanical system 

... The dynamic study attempts to capture the real 

movement of the studied object, as it is in reality. The 

movement of a body is derailed by the kinematic 

equations, the movement being generally studied by the 

kinematics, but when we are interested in the actual 

movements of a binding object, a dynamic motion study 

must be introduced. The dynamics besides the 

kinematics constrain the influence of the masses and 

forces on the movement of a body, as well as the elastic 

deformations, the inertial forces, or other external forces 

capable of influencing the movement of the body, 

including those caused by the bonds of the body, its 

object of that mechanism (Fig. 1). 

Antonescu and Petrescu (1985; 1989; Antonescu et al., 

1985a-b; 1986-1988; 1994; 1997; 2000a-b; 2001; 

Aversa et al., 2017a-e; 2016a-o; Berto et al., 2016a-d; 

Cao et al., 2013; Dong et al., 2013; Comanescu et al., 

2010; Franklin, 1930; He et al., 2013; Lee, 2013;       

Lin et al., 2013; Liu et al., 2013; Mirsayar  et al., 2017; 

Padula and Perdereau, 2013; Perumaal and Jawahar, 

2013; Petrescu, 2011; 2015a-b; Petrescu and Petrescu, 

1995a-b; 1997a-c; 2000a-b; 2002a-b; 2003; 2005a-e; 

2011; 2012a-b; 2013a-b; 2016a-c; Petrescu et al., 2009; 

2016; 2017a-l). 

Materials and Methods  

In Fig. 1, the weight centers of the MP-3R system 

were represented. For each element, two elements 

were considered to be able to perform the calculations 

separately for the different directions of the parts of 

each element. 

 

  
 

Fig. 1: Geometry, kinematics and dynamics of an MP3R every elements' center of gravity 
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Thus element 1 was separated into two parts O0O1 with 

the center of gravity in G1 and O1A with the center of 

gravity in G1*. Element two was divided into two sub-

elements: AO2 with the center of gravity in G2 and O2B 

with the center of gravity in G2*. The last element (MP-

3R's third element) was also reconsidered and divided 

into two sub-elements: BO3 with the center of gravity in 

G3 and O3M with the center of gravity in G3*. All the 

centers of gravity positioned in the middle of the 

respective elements were considered to be the 

calculations, the elements being of the bar type 

(cylindrical or other shapes). 

The dynamics of any system requires knowledge of 

the mechanical kinetic energy of the system. It is the 

starting point for the number one of determining dynamic 

calculations and relationships of any mechanical system. 

The problem with MP-3R systems is that they work 

spatially, so the kinetic energy of the system includes 

spatial elements (it can't fit only in a plan). 
The Lagrange equation used has the known classical 

form (1): 
 

k

k k

d
Q

dt q q

ε ε ∂ ∂
− = 

∂ ∂ ɺ
 (1) 

 
With k = 1, 2, 3. 

The most normal dynamic determination of a system 

is made using the Lagrange equations. From system (1) 

three different equations will be written. For this it is 

necessary to determine the kinetic energy equation of the 

considered system beforehand ( )( , )
k k
q qε ε= ɺ . 

In space, kinetic energy has six components (in the 

most general case) for each element: Three for linear 

velocities and three for angular velocities. In the case of 

linear velocities, rather than writing three kinetic 

energies (the same mass of the halved element and 

multiplied separately with the square of each scalar 

velocity component in the center of the mass), it is 

simpler to write only one resultant equation, i.e., to 

multiply half of the mass of the element respectively (in 

this case, each sub-item will be quoted as an element so 

that three elements will result in six) with the square of 

the absolute velocity of the considered element, 

determined (absolute velocity), in the center of the 

element. Thus, we will determine the absolute velocities 

in the mass centers of the elements and the squares of the 

absolute velocities, then together with the mechanical 

inertial moments and the squares of the angular 

velocities of the element determined on three movable 

axes (movable element) in rectangular shape (virtually a 

mobile, rectangular, solidarity coordinate system with 

each element is chosen). In the most general case for 

each of the six resulting elements, we will have 

maximum four expressions for the kinetic 

(mechanical) energy of the system. 

Next, the absolute velocities (and their squares) for each 
of the six system outputs (MP-3R) will be determined. 

In the center of gravity G1, the absolute speed is null (2): 
 

1
1

0 0
G
v ω θ= ⋅ =  (2) 

 
In the center of gravity G1* the absolute speed has the 

value (3): 
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In the center of gravity G2, the absolute speed gets 

the expression (4): 
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In the center of gravity G2* the square of the absolute 

velocity takes the form (5): 
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(5) 

 
In the center of gravity G3, the scalar scoring 

coordinates take the form (6) and the square of the 
absolute velocity takes the form (7): 
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In the center of gravity G3* the scalar scoring coordinates take the form (8) and the square of the absolute velocity 
takes the form (9): 
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We can now recap the values of all squares of the determined speeds in the six center of gravity of the system 
(relationship 10): 
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In Fig. 1, the weight centers of the MP-3R system 

were represented. 

Further, the moments of mass (mechanical) inertia 

and the kinetic energy relations for each considered 

kinematic element (as already established there are six 

elements instead of three) will be determined. 

For element 1, O0O1, determine the moment of 

mechanical inertia on the main axis, the only one that 

allows a rotation of the element (relation 11): 

 

1

1

2

1 1

1

2

z

G
J m r= ⋅ ⋅  (11) 

 

The moment of mechanical inertia (mass) is denoted 

by J. It must be a special moment of geometric inertia, 

which is generally (correctly) noted with I. The moments 

of mass and geometric inertia always bind to each other 

through a physical-mathematical relationship. If the 

geometrical inertial moment is mainly used in the 

calculations of material resistance and machine tool 

design, mechanical mechanics, mechanics, mechanisms, 

robotics, motors, transmissions, (etc ...) the dynamic 

(physiological) study of the mechanisms and the 

components of the systems are made mandatory by the 

inertial masses in motion; the usual masses of the 

elements (denoted by m) are used in the translational 

movement and the inertial masses (denoted by J) have a 

determinant role in the rotation movement (of the system 

elements). There are mechanical (mass) inertial moments 

projected on a point, on an axis, or on a plane. The 

convention in mechanics and mechanisms is to generally 

use the moments of mass inertia projected at a point, 

usually the point being the center of gravity (mass or 

symmetry) of that element. For element 1, we use the 

center of gravity G1 which, for the main z-axis of the 

element (which is the main axis of rotation) has the same 

(mechanical) inertial moment at any point of the axis 

(relation 11). For two rectangular axes x and y the inertial 

mass moment has the half-value (relation 12), for the most 

commonly used cases, when we have a cylindrical radial 

r1 body. Another approximate relationship used for these 

inertial values when the body is long and very thin (when 

the radius is negligible in relation to the length) is the 

relation (13), where l1 would be a1 if the radius r1 would 

be negligible relative to the length a1. A more precise 

(general) relationship for this case would be (14): 
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Next, we will only use the relation (12) because the 

systems studied have cylindrical elements with 

significant diameters (the approximate rays of the cylinders 

are large enough). If the shape of the element is not 

cylindrical, it can also be approximated by a cylinder. 
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For element 1, we have no rotation except for the z-axis. 

The kinetic energy of element one gets the form (15) 

(it is considered to be twice the kinetic energy): 

 

1

1 1

2 2

1 1 10

2 2 2 2

1 1 10 1 1 10

2

1 1
0

2 2

z

G G
m v J

m r m r

ε ω

ω ω

⋅ = ⋅ + ⋅

= + ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

 (15) 

 

On element 1*, in the center of gravity G1* the kinetic 

energy is written (16): 
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On element 2 in center of gravity G2, the kinetic 

energy takes the form (17): 
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On the element 2* in the center of gravity G2* the 

kinetic energy takes the form (18 and 20): 
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Intermediate relationships (19 and 21) are also used 

to determine the kinetic energies on the rotating element: 
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Relationships (21) explain how to get expressions 

(19); Fig. 2, where you can see the two different 

rectangular triangles formed by the axes of point G2*. 

The moments of mechanical inertia J2* are known on the 

z2* and xb axes, the inertial moment J2 on the main axis 

of the element 2* and the inertial moment on the vertical 

axis y2* but inclined towards the angle element (the 

element is located along the axis G2*ya): 
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On element 3, in the center of gravity G3, the kinetic 

energy takes shape (22) and the final expression (26): 
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where, the double of kinetic energy due to translation has 

the expression (23): 
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The duplication of the kinetic energies due to the 

rotation of the element on the two axes is determined by 

the relations (24 and 25): 
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Fig. 2: Geometry and kinematic at G2* Inertial moments 
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On element 3*, in the center of gravity G3*, the kinetic 

energy takes shape (27) and the final expression (31): 
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where, double of the kinetic energy due to translation has 

the expression (28): 
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The double of the kinetic energies due to the rotation 

of the element on the two axes is determined with the 

relations (29 and 30): 
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Results  

The moments of the drive motors (variation of required 

moments of the three actuators) will be determined. 

The kinetic energy of the entire system is written first, 

comprising the three elements each dissected in two (32). 

The kinetic energy relationship of the entire system (32) is 

very long. Lagrange (1) Lagrange (course 07) is used to 

obtain practically three expressions corresponding to the 

three actuators, more precisely corresponding to the 

moments of the three actuators: 
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 (32) 

 

Lagrange equations of the second case have the 

known classical form (1): 
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 (1) 

The expression (32) of the kinetic energy of the 

whole system is used. The independent parameters (the 

generalized coordinates) are written as (33). Qk 

represents the generalized forces (in us are even motor 

moments of actuators): 
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The first derivative (relation 34) is the partial 

derivative of the total kinetic energy (of the whole 

system) to the independent parameter ω10 (i.e., the partial 

kinetic energy of the system at the angular velocity of 

the first actuator is derived): 

 

( )2 2 2

1 1 10 1* 1 1* 10

10

2 2 2 2 2 2

2 1 2 2 10 2* 1 2 2* 10

2 2 2 2

2* 10 2 20 1 2 20 2* 20

2

2* 2 2 20 20 3 10 1 2

1 1

2 4

1 1 1

4 4 4

1 1
cos cos sin

4 4

1 1
sin

2 2

m r m d r

m d a r m d a r

m d d d r

m a d m d a

ε
ω ω

ω

ω ω

ω φ φ φ

ω φ ω

∂
= ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅

∂

   
+ ⋅ + ⋅ + ⋅ ⋅ + ⋅ + + ⋅ ⋅   

   

 
+ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ 

 

+ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + +

( )

( )

2

2

3 3

2 2

3 10 2 20 1 2 20

22 2

3 20 2 2 3 20 3* 10 1 2 3 3*

2 2 2 2

3* 10 2 20 3 30 1 2 20

1 3 30 2 3

1

4

cos 2 cos

1 1
sin

2 4

1
cos cos 2 cos

4

cos cos

a r

m d d d

m d a a m d a a r

m d d d d

d d d d

ω φ φ

ω φ ω

ω φ φ φ

φ

  
 ⋅ + ⋅ 

   

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

   
+ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + + ⋅   

   


+ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅



+ ⋅ ⋅ + ⋅ ⋅

( ) ( )

2 2

20 30 3* 30

3* 20 2 2 3 20 3* 30 3 2 3 30

1
cos sin

4

1
sin sin

2

r

m d a a m d a a

φ φ φ

ω φ ω φ























 

⋅ + ⋅ ⋅ 



+ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅




(34) 

 

The expression (34) obtained derives absolutely with 

time and the relation (35) is obtained. Constant angular 

velocities have been considered over time: 
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There follows the partial derivative of the kinetic 
energy of the entire system with the independent 
parameter (36): 
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The first Lagrange equation (of the three) can now be 

written as (37): 
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By replacing the derivatives derived above in 

Equation (37), it takes shape (38). The expression (38) 
represents the required variation of the motor torque of 
the first actuator: 
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Next we repeat the previous procedure for the second 
element, partly deriving the total kinetic energy of the 
system in relation to the generalized coordinate 
(representing the angular velocity of the second 
actuator). The relationship is thus obtained (39): 
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 (39) 

The resulting relationship (39) is derived the 

second time, this time absolute, depending on time 

and the expression (40) is obtained. It is considered 

during this absolute derivation that the angular speeds 

of the actuators do not vary over time (they are 

approximately constant): 
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There follows a partial derivative of the kinetic 

energy of the system according to the angular 

displacement of the second actuator (41): 
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Using the relations (40) and (41) introduced in the 

Lagrange equation (42), the expression of the alternating 

motor moment of the second actuator is obtained: 
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The total kinetic energy of the system and the third 

element are now partially derived, partly deriving the 

total kinetic energy of the system from the generalized 

coordinate ω30 (representing the angular velocity of the 

third actuator). The relationship is thus obtained (44): 
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The absolute expression (44) obtained, considering the 

angular velocities of the actuators approximately constant 

over time, is obtained and the relation (45) is obtained: 
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The kinetic energy of the entire system is partly 

derived from the angular displacement of the third 

actuator and the expression (46) results: 
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 (46) 

Using the relations (45) and (46) by introducing them 

into the Lagrange equation (47), the expression of the 

motor moment variation of the third actuator is obtained. 
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Discussion  

By using the expressions (38), (43) and (48), the 

variations of the motor moments, actuator moments, can 

be determined for the entire operating range. It uses the 

angular displacements and angles determined in the first 

courses, values given in the form of functions (in direct 

kinematics), obtained from the studied relations (in the 

indirect kinematics), or determined by the conditions 

imposed on the end-effector to go through certain 

optimized trajectories preset), (review course 5). A 

dynamic synthesis can be made to optimize the choice of 

the three actuators. 

Interestingly, engine moments depend on the masses, 

shapes and dimensions of the elements, but also on 

kinematic actuator parameters: ω10, ϕ20, ϕ30, ω30; ϕ10 less. 

So the motors are not dynamically influenced by the 

position of the first element, or more clearly, by the 

angle of rotation of the first element (Fig. 1), the 

dynamic movement being influenced only by the 

positions of the second and third elements and by the 

angular velocities of the three actuators. 

Conclusion 

The work presents an analytical method for 
determination of dynamic parameters in a 3R robotics 
module. 

The dynamics of any system requires knowledge of the 
mechanical kinetic energy of the system. It is the starting 
point for the number one of determining dynamic 
calculations and relationships of any mechanical system. 
The problem with MP-3R systems is that they work 
spatially, so the kinetic energy of the system includes 
spatial elements (it can't fit only in a plan). 

The Lagrange equation used has the known 

classical form (1). 
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