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Abstract: Lung cancer is one of the world's leading causes of morbidity and 

mortality; improving patient outcomes requires an early and precise 

diagnosis. Lesion and tumor segmentation remains a challenging task in CT 

images due to their inherent imaging limitations, such as the small size of 
nodules, heterogeneous textures, blurry boundaries, and adjacent structures, 

leading to misclassification and difficulty in delineating boundaries. To 

analyse the severity of lung cancer in CT images, the Auto Weight Dilated 

Convolutional Ensemble Network (AWDCE-Net) was developed in this 

article. To extract features of multi-scale lung pulmonary nodules, we created 

the AD-Net, or auto-weight dilated convolution network. In particular, multi-

scale convolutional feature maps were employed by the Auto-weight Dilated 

convolutional (AD) unit to collect the MA features' auto-weight scales. Using 

a learnable set of parameters, the AD unit fused convolutional feature maps 

in encoding layers. The AD unit is a helpful design for feature extraction 

during the encoding process. We combined the advantages of the U-Net 
network for both shallow and deep features with the AD unit. AWDCE-Net's 

exceptional effectiveness in processing lung cancer CT images is 

demonstrated by experimental evaluation on the IQ-OTH/NCCD dataset, 

which yielded an accuracy of 99.12% and an F1-measure of 99.12%. With 

accuracy and F1-score improvements of 2.18 and 1.51%, respectively, these 

measurements show a significant improvement over popular models. 

 

Keywords: Lung CT Image, Classification, Self-Refinement, Feature Fusion 
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Introduction 

In scientific research, medical diagnosis, and 

treatment, medical imaging is essential. It gives 

physicians useful diagnostic information by displaying 

the patient's body structure and functions in an 

understandable manner. As medical imaging technology 

continues to advance (Lundervold and Lundervold, 2019), 

it has become an essential tool for disease diagnosis and 
the creation of individualized treatment regimens (Cheng 

et al., 2016). Additionally, inter-observer variability may 

have an adverse effect on the diagnostic consistency of 

manual examination. Artificial intelligence is used by 

Computer-Aided Diagnostic (CAD) systems to help 

increase efficiency in order to handle such issues. Because 

they can directly extract hierarchical features from the 

input data, convolutional neural networks in particular 

have shown excellent performance in picture 

classification. CNNs have been used more recently for 

tumor classification, segmentation, and detection. One of 

the primary benefits of these automated diagnostic 

systems is that they provide quicker interpretations, which 

lessens the workload for radiologists (Sluimer et al., 

2006). Additionally, transfer learning has shown promise. 

By capturing global information and long-range 
relationships, transformer-based architectures and 

attention mechanisms have started to outperform 

conventional CNN techniques. Nevertheless, their 

implementation is computationally costly (Tharwat et al., 

2022; Bade and Dela, 2020). 

Medical image classification plays a foundational role in 

computer-aided diagnosis systems, enabling automated 

disease detection, subtype differentiation, and clinical 

decision support (Lundervold and Lundervold, 2019; Cheng 

et al., 2016; Tharwat et al., 2022; Bade and Dela, 2020; Bray 

et al., 2024; Siegel et al., 2022). It serves as a critical 
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component in early-stage screening, pathological 

stratification, and outcome prediction across a wide range of 

imaging modalities. Despite rapid advances driven by deep 

learning, developing models that remain accurate and robust 

under clinical conditions continues to pose significant 
challenges. Medical images often suffer from three key 

issues: Blurred or diffuse lesion boundaries that obscure 

precise localization, heterogeneous textures and background 

noise that reduce discriminative power, and variations in 

resolution and scale that hinder cross-dataset generalization. 

Deep learning has brought significant breakthroughs 

in medical image classification, enabling more accurate 

and automated disease recognition across a wide spectrum 

of clinical scenarios such as colorectal cancer detection 

(Adams et al., 2023), gastrointestinal lesion diagnosis 

(Sluimer et al., 2006), and digital pathology analysis 

(Gould et al., 2013). Among the many architectures 
explored, Convolutional Neural Networks (CNNs) have 

long served as the cornerstone due to their strong 

inductive biases and hierarchical feature composition 

(Ciello et al., 2017). These properties make CNNs 

especially effective for capturing localized structures such 

as edges, textures, and gland boundaries, which are 

essential for recognizing most anatomical and 

pathological patterns. As a result, CNN-based models like 

ResNet (McDonald et al., 2015), DenseNet (Hanna et al., 

2018), and EfficientNet (De Margerie-Mellon and 

Chassagnon, 2023) have been widely adopted in tasks 
such as tumor grading and polyp classification. 

Lung cancer is one of the most common and deadly 

cancer diseases worldwide, with high morbidity and 

mortality rates. Research on Cancer’s most recent 

projections indicate that lung cancer is expected to be the 

leading cancer type in 2022, with nearly 2.5 million new 

diagnoses, representing 12.4% of all global cancer cases 

(Bray et al., 2024). In its early stages, lung cancer often 

has no obvious symptoms, and many patients are not 

diagnosed until they develop late symptoms such as 

persistent cough, chest pain, dyspnea, or weight loss, 

resulting in a lower overall survival rate (Siegel et al., 

2022). Pulmonary nodules are one of the early signs of 

lung cancer. Timely detection and monitoring of 

pulmonary nodules is very important for early 

identification of lung cancer. Imaging examinations can 

help detect nodules in the lungs, making early diagnosis 

possible, thereby significantly improving patient 

prognosis and survival rates (Adams et al., 2023). 
Lesion and tumor segmentation remains a challenging 

task in CT images due to their shadowing and indistinct 

tissue boundaries. CT is widely used for lung cancer 

screening, allowing radiologists to assess the risk of lung 

cancer by identifying and segmenting lung nodules 

(Sluimer et al., 2006). First, segmenting lung nodules can 

extract the morphological features of nodules and provide 

a basis for judging whether the nodules are benign or 

malignant by determining whether the nodules have regular 

shapes and clear boundaries. Moreover, as shown in Fig. 1, 

various lung nodule types, such as solid, partially solid, and 

calcified, exhibit distinct morphologies and characteristics, 

highlighting the need for prompt and precise screening and 
diagnosis (Gould et al., 2013). However, identifying lung 

nodules on chest CT is a tedious and challenging task 

(Ciello et al., 2017). Each chest CT image may contain 

hundreds of slices, and radiologists must spend a lot of time 

and energy to examine each set of images (McDonald et al., 

2015). As lung cancer screening advances, the number of 

chest CT scans is expected to rise, which could lead to an 

increase in diagnostic errors by radiologists due to the 

higher workload (Hanna et al., 2018; De Margerie-Mellon 

and Chassagnon, 2023).  

A brief explanation of Lung cancer subtypes is given 

below:  
 
• Adenocarcinoma: Making up to 40% of all cases, 

adenocarcinoma is the most common histologic 

subtype of non-small cell lung cancer (Adams et al., 

2023). Squamous Cell Carcinoma usually appears in 

the central airway, such as the left or right bronchus, or 

the central lung (Sluimer et al., 2006) 

• Large Cell Carcinoma: The third type of NSCLC, large 

cell carcinoma, affects the outer parts of the lungs. It 

only makes up about 10% of cases when compared to 
other forms of NSCLC (Gould et al., 2013) 

 
The overall flow diagram of the Ensemble model for 

severity analysis of lung cancer is given in Figure 2. 

Related Work 

Early detection and treatment of lung cancer is critical 

to saving lives. When malignant cells in one or both lungs 

grow out of control, it can lead to lung cancer, a 

potentially fatal condition that can spread to other organs 

if left untreated. An efficient Computer-Aided Diagnostic 

(CAD) system that can more accurately identify and 

categorize lung cancer is therefore desperately needed. 

This section will provide a thorough discussion of the 

methodologies, tactics, techniques, and phases of lung 

image processing used by different authors in the 

literature to detect lung cancer. 

Fully Convolutional Network (FCN) (Long et al., 

2015) pioneered a pixel-wise prediction architecture for 

semantic segmentation. U-Net (Ronneberger et al., 2015) 

introduced an encoder for capturing context and a decoder 

that supports precise positioning, with the advantage of a 

simple and efficient architecture that only requires a few 

data points for training. Subsequently, the U-shaped 

architecture was improved and applied to image 

segmentation in various ways. UNet++ (Zhou et al., 2020) 

Designed a new skip connection based on dense 

connections for more flexible feature fusion. Attention U-
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Net (Nitha et al., 2024) introduces the Attention Gate 

(AG) mechanism, which allows the model to focus on 

specific local regions and suppress the influence of 

irrelevant regions. Compared to the global attention 

mechanism, it is more suitable for dense small object 

segmentation. 

ResUNet++ (Jha et al., 2019) introduced Atrous 

Spatial Pyramidal Pooling and attention modules into the 

network, allowing context information to be captured at 

different scales and focusing on important areas of the 

feature map. Meanwhile, the proposed attention 

mechanism enables the model to focus more precisely on 

characteristic regions of lung nodules, thereby achieving 

higher segmentation accuracy in complex backgrounds. 

Through these enhancements, the proposed model aims to 

provide a more effective solution for lung nodule 

segmentation tasks. 

 

 

 
Fig. 1: Multi-class lung cancer CT images 

 

 

 

Fig. 2: Ensemble framework for prediction and 
classification of Lung cancer CT images 

In this study, a deep learning-based model is proposed 

to solve the lung cancer classification problem. The model 

combines multi-level features using parallel feature 

learning, while the parallel operation of dilated and 

deformable convolution layers effectively extracts 
features with different scales and shape variations. 

Specifically, dilated convolutions capture more contextual 

information over an expanded area, while deformable 

convolutions use dynamic receptive fields to adapt to 

variations in the shape and size of objects. The parallel 

integration of these two techniques enhances the model's 

ability to detect both small and large lung nodules, thereby 

optimizing classification performance. The success of the 

model was tested on different datasets obtained from 

public lung cancer datasets, IQ-OTH/NCCD, and LIDC-

IDRI. Using a variety of methods, these algorithms have 

demonstrated good accuracy and sensitivity rates. These 
investigations using a variety of AI and DL techniques 

have significantly improved the diagnosis of lung cancer 

and demonstrated encouraging outcomes in the areas of 

early detection and classification. 

Auto Weight Dilated Convolutional Ensemble Model  

Lung cancer has a high mortality rate and is a fatal 

disease. Computed Tomography (CT) image 

segmentation of the lung automatically is useful for the 

patient's subsequent diagnosis and therapy. The overall 

network structure framework is shown in Figure 1. The 

input image to be segmented is processed in the model for 

feature extraction. The Multi-Scale Feature 

Compensation Module (MFCM) integrates features 

between adjacent encoders. The features at different 

scales are extracted with pooling operations of different 

sizes and dilated convolutions of different expansion 

rates. The Subtraction Fusion Module (SFM) uses 

attention mechanisms to focus on target features in both 

channel and spatial dimensions. The feature differences 

are employed to help target localization, reduce feature 

redundancy, and enhance the robustness of the model. 

Additionally, a branch is introduced on the encoding path 

to extract the frequency domain features. The Wavelet 

Attention Enhancement Module (WAEM) is designed. 

The wavelet transform can better capture local changes 

and features. The wavelet transform extracts low-

frequency information by decomposing the signal into 

different frequency sub-bands. The low-frequency 

information extracted by the wavelet transform focuses 

more on overall structures, while the features extracted by 

max-pooling focus more on local features. By 

concatenating the features from the two branches, the 

diversity of features is enriched. 
Figure 3 shows the suggested design for a multiclass 

lung cancer classification system. The network is 

primarily composed of the linear up-sampling, the AD 

unit, the residual (Res) unit, the first and last convolution 
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units, and other components. During the down-sampling 

procedure (also called feature coding extraction), we 

generate multi-scale feature maps using 8 AD units. In the 

up-sampling stage (feature decoding), we combine the AD 

unit, the Res unit, and a linear up-sampling layer to create 
a primary decoding layer. After that, a convolution unit 

generates the output of the network model. For multiclass 

lung cancer classification, batch normalization and ReLU 

functions are also integrated into each convolution unit, 

AD unit, and Res unit. 

We used two convolution units to reduce and then 

increase the number of convolution kernels in the Res 

Unit layer for the Res block shown in Figure 4(b), in order 

to accomplish feature learning and feature map 

reorganization.  

We started with two convolution units (like the 
Res unit) for the AD Unit layer in Fig. 4(a). The 
network's feature extraction capabilities could be 
enhanced by utilizing the two kinds of convolutions. As 
shown in Fig. 5, we employed three neural networks 
(Block-R1, Block-R2, and Block-R3) and three 

alternative residual units in place of the AD unit in 
order to more precisely evaluate its performance. In the 
encoder step, every residual block is a dual-pathway 
structure. The current channel depth settings are 256, 
128, 64, and 32. The residual block is the most 
important component in downsampling. In the decoder 
stage, we upsample by connecting a convolutional and 
a deconvolutional unit. The kernel size is 3×33, and 
the stripe of the deconvolutional unit is 222.  

 

 
 

Fig. 3: An illustration of the proposed architecture for a multi-class lung cancer classification system 
 

 
 

Fig. 4: Detailed architecture of the proposed Ensemble model (a) AD unit. (b) Res block unit 



L. Sandhya and K. Marimuthu / Journal of Computer Science 2026, 22 (1) 162.170 

DOI: 10.3844/jcssp.2026.162.170 

 

166 

 
 
Fig. 5: The different residual convolution blocks 
 

Every convolutional and deconvolutional unit in this 

step is connected to the convolutional or deconvolutional 

units by batch normalization and ReLU activation 

functions. Similarly, we set the channel depth of the 

decoder stage to 32×64×128×256. The remaining blocks 

allow a deep neural network to generate deeper layers 

with more pronounced gradients when combined with the 
network. As a result, gradient vanishing is a very 

uncommon phenomenon that benefits from MAs' more 

useful characteristics. The gradient propagation formula, 

which can be defined in the convolutional layer, is 

specified by Equation (1): 
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Gradient in Block-R1, Block-R2 and Block-R3 can be 

defined as per Equation (2):  
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Where f means the activation function, 𝛿1and 𝛿2 

represent the first and second convolution calculations, 

respectively.  

Results and Discussion 

Data Sets and Evaluation Indicators 

Two datasets were used in this study, the IQ-

OTH/NCCD lung cancer dataset and the Kaggle Chest CT 

image dataset. 

The IQ-OTH/NCCD dataset contains CT scans of 

lung cancer patients at different stages as well as 
healthy individuals. There are 1197 CT images for 110 

instances. Fifty-five of the cases were categorized as 

normal, forty as malignant, and fifteen as benign 

(Alyasriy, 2020).  

Kaggle Chest CT: Lung cancer CT scans can be found 
in the Kaggle Chest CT dataset. The dataset is organized 
into three folders: Training, test, and validation. There are 
four types of CT scans: Normal, squamous cell 
carcinoma, adenocarcinoma, and big cell carcinoma. 
There are 1000 CT scans of the chest that show lung 
cancer. These pictures are a publicly accessible dataset 
that has been annotated by qualified radiologists. There 

are 1000 cases, with normal being 215 CT scans, 
Squamous Cell Carcinoma is 260, Large Cell Carcinoma 
is 187, and Adenocarcinoma is 338 (Hany, 2024).  

Evaluation Metrics 

For a thorough quantitative study, the segmentation 

model's performance was assessed using Accuracy, 
Precision, Recall, and Specificity. In order to verify the 
efficacy of our suggested approach, thorough comparisons 
are made with both traditional and cutting-edge techniques. 
These methods include UNet, AttUNet, VNet, 
SwinUNETR, U2-Net, APAUNet, MGNet, and UNet++. 

Performance of Proposed Methods 

To validate the effectiveness of our proposed 
method, comprehensive comparisons are performed 
with both classical and state-of-the-art methods. This 
paper compares the performance of our proposed 
model, AWDCE-Net, to other leading lung cancer 
classification methods. In terms of feature extraction 
and segmentation accuracy, the precision, recall, F1-
score, and accuracy metrics of each model demonstrate 
their differences. CNN-based models, such as SegNet, 

ResUNet, UNet, and UNet++, have demonstrated 
consistent performance in medical picture 
segmentation and are widely used in real-world 
applications.  Table 1 displays the experimental results 
of the IQ-OTH/NCCD data set; Tables 2 display the 
Kaggle Chest CT data set, respectively. 

The confusion matrix of multi-class lung cancer CT 

images of the IQ-OTH/NCCD dataset results of our 
proposed method is given in Fig. 6, and the KAGGLE 

CHEST CT data set is given in Fig. 7. The proposed method 
outperforms other models in its ability to capture details and 

global features, which helps segment lung nodules more 
accurately. One may also observe that some methods exhibit 

high recall but low precision, indicating that these models 
tend to over-segment and generate excessive false positives. 

This characteristic behavior is commonly observed, 
particularly in images with imbalanced foreground-to-
background ratios and high similarity between target 

structures and their adjacent tissues. Our approach 
overcomes these limitations by integrating multi-scale 

feature refinement with a multilevel attention mechanism, 
enabling superior boundary awareness and enhanced 

contextual understanding. 
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Table 1: Experimental results of AWDCE-Net and Other models on the IQ-OTH/NCCD Dataset  

Models  Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-measure 

(%) 

U-Net 86.40 82.52 86.32 83.20 
Att-U-Net 

98.11 97.67 97.89 97.78 
V-Net 97.85 98.81 97.60 97.45 

SwinUNETR 97.98 96.67 97.67 97.23 

U2-Net 98.05 97.81 98.22 97.81 

APAUNet 96.35 96.03 97.13 96.11 

MGNet 98.40 98.0 98.56 98.1 

UNet++ 98.89 98.67 98.78 98.78 
Proposed Method (AWDCE-Net 99.12 99.18 99.14 99.19 

 
Table 2: Experimental results of AWDCE-Net and Other models on the KAGGLE CHEST CT dataset 

Models  Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-measure 

(%) 

U-Net 87.63 82.11 86.34 83.34 

Att-U-Net 
88.11 87.67 87.67 87.78 

V-Net 87.85 88.81 86.81 87.45 

SwinUNETR 87.98 86.67 88.91 87.23 

U2-Net 88.05 87.81 88.25 87.56 

APAUNet 91.35 91.03 91.81 91.11 

MGNet 88.40 88.0 88.11 88.19 

UNet++ 88.89 88.67 88.97 88.78 

Proposed Method(AWDCE-Net 98.11 98.98 98.67 98.12 

 
Ablation Experiment 

In AWDCE-Net, some functional modules were created 

and utilized in the network to enhance segmentation in order 

to make up for the performance loss brought on by the 

decrease in trainable parameters as a result of network light 

weighting. In this work, the AD module modulates the 

weight of each pixel by learning local and global 

relationships between the primary phase (venous phase) and 

the supplementary phases (non-contrast and arterial phases). 

The Res block is used to establish global cross-modality 

associations. This transformer adaptively extracts refined 

tokens, facilitating more effective feature representation, and 

the Fuzzy skip connection utilizes fuzzy processing to 

formulate high-level semantic features and suppress 

redundant background information, thereby obtaining high-

precision lung nodules segmentation results. Figure 8 

displays the outcomes of the experiment. After the functional 

modules are removed, Baseline serves as the network 

framework's backbone model. Figure 8 shows that the 

introduction of upgraded convolutional blocks led to varied 

degrees of overall performance improvement on all three 

datasets when compared to the backbone network Baseline. 

Qualitative segmentation results for all comparison 

approaches are shown in Figure 8. Visual examination shows 

that for all three datasets, our suggested approach reliably 

generates segmentation masks that nearly match the ground 

truth annotations. Our solution outperforms current 

approaches in border delineation in the Lung dataset, 

especially when dealing with intricate morphological 

structures with variable shapes. The majority of approaches, 

on the other hand, have a tendency to provide fragmented 

forecasts and deal with the over- or under-segmentation 

problem. 
 

  
Fig. 6: Confusion matrix for IQ-OTH/NCCD dataset 
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Fig. 7: Confusion matrix for the Chest CT dataset 

 

 

 

Fig. 8: Visual comparison of ablation experiments. (a) 

The original CT image of the lung nodule, (b) 

ground truth, (c) AWDCE-Net, (d) Baseline, (e) 

Baseline + R1, (f) Baseline + R2, (g) Baseline + 

(R1+R2) 

 

Grad-Cam Analysis 

A key interpretability tool in deep learning is 

gradient-weighted class activation mapping, or Grad-

CAM, which makes it possible to visualize the areas of 

an input image that most strongly influence the model's 

predictions. Grad-CAM generates heatmaps that 

clearly illustrate the model's focal regions by 

calculating the gradients of a target class in relation to 

the final convolutional layer. This approach guarantees 

that the model's decision-making process is in line with 

clinically significant aspects, promoting transparency 

and reliability, which makes it especially useful for 

medical imaging applications like lung cancer 

diagnosis. Grad-CAM heatmaps for three 

representative CT scan scenarios benign, malignant, 

and normal are shown in Figure 9. 

 
 
Fig. 9: Grad-Cam Heat Maps for Lung Cancer CT Images 

 

Conclusion 

In this paper, we introduced a novel framework for 
CT image analysis that combines attention-aware 

aggregation modules with hierarchical feature fusion. 

Our method's better capacity to capture discriminative 

characteristics was demonstrated through extensive 

testing on three public ling datasets, consistently 

outperforming state-of-the-art techniques in both 

quantitative and qualitative evaluations. The ablation 

trials demonstrate how well the suggested modules 

work to improve segmentation performance and feature 

representation. These results demonstrate the potential 

of our methodology for quantitative lesion analysis in 
ultrasound imaging and clinical diagnosis. A feature 

refinement module with dense connections was created 

to mitigate the effects of image noise. It was then 

applied to additional skip connection paths to 

maximize feature details and enhance model 

segmentation performance overall. AWDCE-Net has a 

high reference value and performs well on a variety of 

datasets when compared to other top network models 

in the same field. Although the model has achieved 

good performance, due to the low overall parameter 

count of the model, there may be certain limitations in 

segmentation ability. This approach has the potential to 
improve early diagnosis of lung cancer, which is 

important for improving patient outcomes and survival 

rates. Scalability and viability for practical clinical 

applications are guaranteed by its lightweight design. 

To optimize its clinical impact, future work will 

concentrate on improving the model, expanding its 

application to different imaging modalities, and 

evaluating its generalizability across other 

demographics and datasets. 
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