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Abstract: An Accurate prediction of outbreaks is extremely crucial for
taking proactive public health interventions, distributing limited resources,
and controlling a disease. This paper assesses and also compares the
performances of the available deep learning models, namely, Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM) networks, and
Bidirectional Long Short-Term Memory (BiLSTM) networks, in predicting.
CNNs are best for feature extraction from medical data, while LSTMs and
BiLSTM take care of temporal dependencies in sequential epidemiological
data. These models have been shown to struggle at the integration of spatial,
temporal, and contextual factors at once, yielding lowered predictive
efficiency. A hybrid model, CNN-Transformer, leverages the spatial feature
extraction ability of CNNs and the self-attention mechanism of Transformers
to identify long-range dependencies and multi-source epidemiological
patterns. Our approach integrates feature fusion techniques for abroader
understanding of diseases' spread. Experimental results demonstrates that the
proposed CNN-Transformer hybrid model outperforms standard CNN,
LSTM, and BiLSTM architectures halfway through predicting outbreaks of
diseases like COVID-19, Tuberculosis, Influenza, Dengue, and Measles.
This study clearly illustrates the promise of hybrid deep learning models
towards improving the accuracy of prediction of epidemics and the
advancement of epidemic disease-surveillance systems. The time-series
epidemic dataset is used for outbreak forecasting, and the hybrid model
achieves an overall accuracy of 98.0%.

Keywords: Epidemic Prediction, Deep Learning Models, CNN-Transformer
Hybrid Model, Self-Attention Mechanism, Feature Fusion

Introduction

The Infectious disease emergence and reemergence
around the world provide major obstacles to global public
health systems' ability to forecast these diseases and take
suitable measures to eradicate them (Sankalpa et al.,
2024). The unpredictable nature of those epidemic
outbreaks makes it necessary to create reliable predictive
models that can predict and mitigate the effects of these
medical emergencies. Timely identification and
prediction of epidemic patterns are essential for efficient
distribution of resources, public health response, and
disease prevention strategies. In previous periods, public
health authorities have predicted illness outbreaks using
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statistical and epidemiological models (Rahman et al.,
2023). But these approaches frequently fall inadequate in
integrating large, complex information, which are
essential for precise forecasting. Diagnostics for medicine
has seen a transformation in recent years due to the
development of deep learning or machine learning
(Santangelo et al., 2023). With their exceptional ability to
process and analyze the vast volumes of visual data, it
facilitates implicit illness identification from medical
imaging modalities like CT scans and X-rays (Abdollahi
and Mahmoudi, 2022), however they are not particularly
effective at capturing contextual information and
temporal relationships, which are critical for predicting
epidemic outbreaks.
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The primary contributions of this study are threefold.
First, it provides a focused investigation into established
deep learning models, namely CNN, LSTM, and
BiLSTM, for epidemic outbreak prediction, reviewing
their respective strengths and weaknesses in capturing
complex spatiotemporal dynamics. Building upon this
analysis, we propose a novel hybrid CNN-Transformer
model designed to more effectively contend with the
intricate interplay of spatial, temporal, and contextual
features, aiming to significantly improve prediction
accuracy. Finally, to rigorously assess its performance, we
conduct a comprehensive comparison of the proposed
hybrid model against these existing deep learning
architectures

This work demonstrates the potential for combining
new architectures with existing models. The ability to
interact efficiently in the sequential data using the new
mechanisms can lead to significant successes in many
domains, including healthcare. Some of the drawbacks of
conventional approaches that have occurred in the past
can be avoided by combining the multiple powerful
approaches, which may enhance performance related to
complex data interactions, and provide better
performance (Chharia et al., 2022). This research argues
that the implementation of advanced deep learning
architectures can improve epidemic prediction accuracy
as a step towards better disease prevention and control.

Related Work
Epidemic Outbreaks

A sudden outbreak of an epidemic can be very
dangerous as it begins with an alarming rise in infectious
disease prevalence that can be found across the globe.
These epidemics, in addition to adversely affecting health,
also create great pressure on healthcare systems which
may result in lack of staff, resources and treatment
options. Increased tension and widespread terror, reduced
productivity and lack of finances are some of the
undesirable effects on social and economic systems and
the response of health authorities needs to be appropriate
and within a less time to lessen the impact of the
epidemics (Pramod et al., 2023). Public health officials
must respond in a timely and an efficient way to limit the
spread of the outbreaks. Correct estimates are crucial as
they assist in deciding the timing of preventive
interventions and awareness raising activities to prevent
diseases from spreading across and to protect the targeted
communities. Healthcare overloads are avoided due to
precise prediction enabling better use of healthcare
system resources and more effective management of
community impact initiatives these predictions are
necessary as they prevent unwanted situations.

Epidemiological Overview of Selected Diseases

This study emphasizes several infectious diseases that

receive much focus because of their impact on public
health. These diseases include COVID-19, Tuberculosis,
Influenza, Measles, and Dengue, which constitute high-
impact infectious diseases. Because of the infectious
nature and fast rate of spreading through various modes,
the diseases pose challenges that have been continuous to
date. Thus, each disease necessitates special public health
approaches and the detection at the right time to ensure
outbreak control. Below is the overview of the selected
disease and relevance in epidemic forecasting.

COVID-19

COVID-19 is a respiratory illness caused by the virus
SARS-CoV-2, is highly contagious, first reported in late
2019. It has caused extreme socioeconomic and
healthcare damage because of its wide spread all over the
globe. Early and accurate prediction of the outbreak of
COVID-19 is important for carrying out timely public
health responses such as the locking down of the area,
rollout of vaccination, and resource allocation. The model
combines COVID-19 data to analyze patterns of spread
and potential future outbreaks (Aslani and Jacob, 2023).

Tuberculosis (TB)

Tuberculosis (TB) is an infection caused by
Mycobacterium tuberculosis; this infection majorly
affects the lung and results in more deaths in many parts
of the world despite some advances in treatment. Due to
its form of transmission through the air route, early
detection through medical images can help in averting the
infection process, thus reducing its rapid spread. The slow
yet steady comeback where some strains are multidrug
resistant is testimony to the relevance of this disease for
inclusion in epidemic prediction models, particularly of
image-based diagnostics (Mirugwe et al., 2025).

Influenza

Influenza, also known as flu, is an acute viral infection
of the respiratory system. Influenza viruses cause
epidemics every year and infect millions, hospitalizing
millions more worldwide. Since influenza is very
contagious and causes epidemics or pandemics, there is a
strong case for building correct predictive models. Our
model with influenza data concentrating on
spatiotemporal dynamics which will help predict patterns
of spread and predict seasonal outbreaks is discussed
below (Watmaha et al., 2024).

Dengue

Another of the well-known viral diseases is Dengue,
caused mainly by the Dengue virus and transmitted
mainly via Aedes mosquitoes. Its impact on health is
strong and has vast effects in tropical and subtropical
regions. Certain factors such as climate, urbanization, and
population dynamics of mosquito have been amplified
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with the added complexity of prediction of any outbreak.
This model uses the incidence data of Dengue using
environmental factors like temperature and humidity for
the betterment in predicting an outbreak and classifies
vector-borne disease dynamics from other infectious
diseases (Manoharan et al., 2023).

Measles

Measles is a highly contagious viral disease that has
been eliminated through immunization, yet it recurs
periodically and primarily in those regions where
immunity levels are low. It causes widespread outbreaks
with explosive severity, bogging down the health delivery
system where vaccination programs are inappropriate.
The model reconciles historical records of measles
outbreaks for assessing the potential of early warning
systems and vaccination campaigns using forecasting
methods (Kujawski et al., 2024).

CNN in Epidemiology

Convolutional Neural Network (CNN) algorithms are
highly efficient in analyzing visual data, like as CT scans
and chest X-rays, and are designed to automatically learn
spatial hierarchies from input data (Chimmula and Zhang,
2020). CNNs are used in epidemic prediction scenarios to
detect patterns of disease that might point to the onset or
spread of infections like COVID-19, Tuberculosis,
Influenza, Dengue, Measles. CNNs have proven to
classify the presence and severity of a disease accurately,
which has reduced the time taken to diagnose it and
helped track the rate of infections in populations.
However, while CNNs work extremely well when we
have image data in hand, they are incomplete for
integrating other non-image sources necessary for
epidemic prediction, like environmental or demographic
data (Meraj et al., 2019). Therefore, the limitations by the
former define a critical requirement for hybrid models
where the architectures from the CNN can be combined
with sequential models such as transformer architectures
to better capture trends in epidemiology or increase the
accuracy of prediction.

LSTM in Epidemiology

Long Short-Term Memory (LSTM) networks are a
type of recurrent neural network (RNN) particularly adept
at modeling temporal dependencies within sequential data
to generate accurate predictions. The LSTMs have been
great for using time-series to forecast some diseases very
early and to provide advice on disease control (Wang et al.,
2021). LSTMs have the advantage of capturing long-term
dependences in disease data over time with rich history,
environmental impacts, and human factors taken into
account. The models that have been introduced show the
accurate results in the prediction of the epidemic. This
leads to earlier warnings and smarter decision-making

about public health measures. Models have been applied
to multivariate time-series collected from the WHO,
CDC, and Google Trends datasets for the purpose of
forecasting disease surges with low delay. However, the
LSTMs can be limited in their ability to capture
interactions between complex features so that hybrid models
like using LSTMs incorporated with attention-based
structures such as Transformers or CNNSs are essential.

BiLSTM in Epidemiology

Bidirectional Long Short-Term Memory (BiLSTM)
networks have the advantage over simple LSTMs as they
can process the information both in the forward direction
and in the backward direction, thus can capture both past
and future dependencies in time series data. BiLSTMs are
very useful to predict the inception, transmission, and the
height of the infectious diseases like COVID-19,
Influenza, Dengue, and Malaria. BiLSTMs outperform
the standard LSTMs in cases where the correct reading of
the previous and the next situation is the point of the task,
such as disease transmission modeling, hospitalization
forecasting and mortality rate prediction (Roster and
Rodrigues, 2021). They have been up to now mainly
utilized in datasets from sick public records, mobility
data, and environmental factors to make the outbreak
forecasts more accurate. Even though they are useful,
BiLSTMs can face certain limitations, such as high
computational costs and long training times, especially for
large datasets.

The epidemiology examines patterns of diseases and
their causes to predict and contain disease outbreaks,
using algorithms, accuracy in trend detection, disease
spread forecasting, and aiding early intervention and
public health policies is improved. Figure 1 shows the
performance accuracy of the existing models through a
line graph of three algorithms; it shows the changing
predictive accuracy of the algorithms and offers an insight
into their comparative performance in epidemic
prediction.

Performance Accuracy for CNN, LSTM, and BiLSTM Models Over Epochs

== CNN
== |STM
e BILSTM

2 4 6 8 10
Epochs

Fig. 1: Performance Accuracy of the Existing Model
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Strengths and Weaknesses Using Deep Learning
Models

Forecasting of epidemics using deep learning models
has witnessed a significant boost, due to the fact that these
models can be able to capture the intricate temporal
dependencies that exist in the disease outbreaks. While the
traditional time-series models like LSTM and BiLSTM
effectively learn the sequential patterns, the CNN-
Transformer hybrid model that the authors are presenting
in this paper can improve the predictive accuracy through
self-attention mechanisms. This enhances the capacity to
model long-range dependencies, which is crucial for
understanding epidemic trends. In contrast, CNNs are
focused on spatial features, transformers more efficiently
process the sequential data and for this reason the
combination of it is more adaptable to the evolving
outbreaks and the inclusion of more factors such as
climate, mobility, and population density data improve
the precision of the forecasting (Ariansyah et al., 2023).
This model practicability guarantees its use for real-time
epidemic surveillance and early intervention. This tool
thus guarantees more flexibility and better coping with the
constantly changing outbreak situation, hence, the higher
epidemic prediction and the track of timely public health
responses.

Although progress has been made, there are still issues
in predicting epidemics using deep learning. Lack of
standardized metrics for evaluation is one of the most
significant issues that make it complicated to compare
models to each other and validate them. Other aspects of
data, including missing, imbalanced, and biased datasets,
can further decrease models' generalizability and
contribute to models risking overfitting written in this and
other literature. CNN-based models can be impressively
advanced, but their reliance on high resource-intensive
computation limits their real-time deployment capacity in
regions where resources are constrained. Variations of
characteristics of disease and population behaviours can
affect the steadiness of anticipating the disease, thereby
affecting reliability in the forecasting process (Chae et al.,
2018). The studies may also be limited by rapid data
collection times, narrow regional forecasting, and narrow
consideration of deep learning model parameters. Despite
varied and ample amounts of data, it must be integrated
from many sources, into a single prediction. The
collective lack of consistent and uniform frameworks to
develop and validate models will limit reproducibility,
which is also an important aspect of comprehension and
to resolve these conflicts, in order to deliver the quality
and eventual scalability.

Limitations in Epidemic Prediction

Epidemic prediction struggle with issues related to
data quality and availability (Ajith et al., 2020).

Prediction is dependent on the availability of timely,
comprehensive, and high-quality data, especially
healthcare. Even if high-quality data were available,
inconsistencies, imbalances, and delays would each have
their consequences on the ability of the model to be useful.
Even in cases where deep learning models (LSTM,
BiLSTM) were useful for making time-series forecasts,
but still not able to make predictions that are easily
interpretable for health officials (Shahid et al., 2020). As
such, trust and practical implementation in health
decision-making have continued to be impeded in
practice. Also, the dynamics of epidemic spread usually
include nonlinear dependencies between the factors of
climactic conditions, population density, and behavioral
changes. It is often the case that traditional models have
had difficulty capturing model these interdependencies
sufficiently. This was evident when considering COVID-
19 models in predicting cases, as variable health policies,
and varying population behaviors, made the predictions of
models ineffective in several countries where models
worked effectively elsewhere. Effectively addressing these
issues is key to developing reliable epidemic prediction
model that can be made applicable (Ivanov, 2020).

Table 1 shows comparison of epidemic prediction
models and summarizes these models in various diseases
and suggests the need for better approaches to forecast
epidemics.

Research Gap and Motivation

Despite the fact that deep learning models including
Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, and Bidirectional
LSTMs (BiLSTM) have proven efficacious in predicting
outbreak domains across a range of spatial temporal
properties, most efforts have been limited in
simultaneously capturing both the spatial and temporal
dependence of the space-time data. CNNs can effectively
detect spatial features from medical images and geospatial
data, but are limited by their ability to incorporate longer-
term temporal dynamics. LSTM-based models can learn
temporal sequences well, yet they are limited in their
ability to include spatial context and interactions between
complex features. Likewise, while Transformer
architectures have recently achieved state-of-the-art
performance across natural language processing and time-
series forecasting domains, they have been little explored
in terms of predictive epidemic modeling. Finally, there is
an evident gap within the research landscape of
methodologies that can jointly study the underlying spatial
and temporal patterns of space-time data for more accurate
epidemic forecasts. The present research proposal aims to
minimize this gap by hybridizing CNNs and Transformer
structures. The goals of present study are to achieve better
predictive performance and robustness in forecasting
epidemic trends using multimodal, time-series data.
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Table 1: Overall Insight of Existing Systems

Reference Disease Algorithm Deep Learning  Remarks
Models
Limited to univariate models; using
LSTM, ensemble methods and multi-source
Sankalpa et al. (2024) COVID-19  LSTM Network BiLSTM, : usou
data could improve forecasting
LSTM-AE
performance
Class imbalance in the dataset may
Deep Learning (CNNs cause biased predictions;
Pramod et al. (2023) COVID-19 with Transfer Learning) 2D/3D CNNs augmentation and hybrid techniques
could improve generalization
Pre-trained models may not
. . . Multiple CNN  generalize well; fine-tuning with
Aslani and Jacob (2023) Tuberculosis ~ Transfer Learning architectures task-specific datasets and self-
supervised learning could help
Struggles with long-term
- CNN with climate and Custom CNN,  dependencies; adding real-time
Mirugwe et al. (2025) Influenza spatio-temporal data LSTM surveillance data and hybrid models
could enhance prediction
Lacks deep spatial representation;
Hybrid CNN-TLSTM CNN with exploring graph-based models and
Watmaha et al. (2024) Dengue with ATLBO TLSTM optimizing real-time inference could
enhance performance
Transfer learning may not be
optimal for lesion detection;
Manoharan et al. (2023) Measles Transfer Learning, CNN VGG-16 alternative architectures and
ensemble models could improve
robustness
External factors like vaccination and
. mobility are missing; integrating
Chimmula and Zhang COVID-19  LSTM Network LSTM them with attention-based
(2020) .
architectures could enhance
accuracy
Custom Multi-  High computational cost and
. Deep Spatiotemporal Granularity potential overfitting; regularization
Meraj et al. (2019) Influenza Neural Network Network, and real-time data integration would
LSTM improve efficiency
_ _ Various CNN No comparative analy51§ of feature
Systematic Review of selection; a meta-analysis of
Wang et al. (2021) Dengue models .
Neural Networks preprocessing and hyperparameter
(LSTM) :
tuning could add value
Traditional models may not capture
Roster and Rodrigues Measles Machine Learning CNN models spatial-temporal trends; deep

(2023)

learning with geospatial embeddings
could enhance predictions

Hybrid CNN — Transformer Model for Enhanced
Epidemic Outbreak Prediction

Architecture Overview

Hybrid model of CNNs and Transformers can be
proposed over the existing frameworks for epidemic
prediction, which tries to combine spatial Convolutional
features with self-attention-based time modeling, As
CNNs process the timeseries epidemiological data very
efficiently from the local level of spatial relations. They
often extract meaningful, short-term spatial patterns
related to disease transmission but are not ideal for long
dependencies and complex sequential relationships in an

outbreak's dynamic. Then the Transformer module is
incorporated to model global temporal dependencies, and
self-attention is used to dynamically highlight critical
epidemiological trends.

Multi-head  self-attention  mechanism in the
Transformer allows adaptive feature weighting that
includes a diversity of multimodal data sources: clinical
reports, environmental factors, mobility data, and social
media signals. Fusion of these heterogeneous inputs
enables a context-aware predictive framework, elevating
outbreak forecasting beyond traditional epidemiological
models. The architecture aims to capture both short-term
fluctuations (via CNN) and long-range dependencies (via
Transformer) to ensure robust and interpretable epidemic
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forecasting. It further enhances the temporal dynamics
refinement model that improves predictive accuracy for
real-time outbreak detection. The framework presented
here is found to greatly improve early warning capabilities,
supporting resource allocation and planning interventions
on time by public health officials. Spatial and temporal
deep learning fusion gives a novel approach to epidemic
surveillance, and in comparison, with the conventional
machine learning and time-series models, the precision of
forecasts and efficiency in response have improved.

Figure 2 illustrates a combined CNN-Transformer
model that relates the processes of using CNNs for feature
extraction of image datasets and Transformer's role with
complex temporal relations.

The architecture of the proposed CNN — Transformer
model for epidemic forecasting is designed to effectively
process and analyze diverse datasets, thereby enabling
accurate predictions of disease outbreaks.

Algorithm 1: CNN and Transformer Hybrid Model for
Epidemic Prediction

Input: Temporal and contextual data (X, y), CNN and
Transformer parameters

Output: Trained hybrid model (cnn_transformer_model)
Begin Algorithm
Initialize Parameters

Set CNN and Transformer parameters (e.g., layers,
attention heads).

Define training epochs (10), batch size (32), and
optimizer (Adam).
Preprocess Data

Normalize features with MinMaxScaler.

Split the data into training (80%) datasets and testing
(20%) datasets.

Reshape data for CNN (3D) and Transformer (3D).
Build Models

CNN: Convolution layers, pooling, fully connected.

Transformer: Self-attention layers with multi-head
attention.
Train Hybrid Model

Train the hybrid model for 10 epochs with the Adam
optimizer and MSE loss.
Evaluate Model

Compute loss (MSE) and MAE on the test set.
Save Model

Save the trained model to a file
(cnn_transformer_model.keras).
Return: Trained hybrid model.

End Algorithm

Algorithm 1: CNN and Transformer hybrid model for
epidemic prediction shows the step-by-step process for
combining the CNN for spatial feature extraction and the
transformers  for capturing long-range temporal

dependencies then it improves the accuracy of the
epidemic outbreak predictions. CNN and Transformer
model improves accuracy of epidemic forecasting via the
integration of both spatial and sequential data.

Input Layer
____________ -
COVID-19 JHU CSSE | Data Cleaning & Normalization
Dataset Time-Series Structuring

Data Processing

1 A 4 |
| S ] CNN-Based Spatial Feature !
1 Dependencies Extraction |
| I | L ettt !
I - tn.enuon scha Short-term Spatial Patterns |
1 B Convolutional Layers |
. Positional Encoding - |
1 |
A 4

dense layers with non-linear

Merging CNN & Transformer

Adaptive Feature Weighting activation functions
Y
Output Model Evaluation & Prediction

Loss Functions (MSE/MAE)

Predicted Outhreak Trends s
Early Warning Signals

Fig. 2: CNN - Transformer Model Diagram

Input Layer

The CNN — Transformer hybrid model takes in time-
series data, including epidemiological records (daily
infection counts, recovery rates), environmental factors
(temperature, humidity), and social mobility data. This
allows for a comprehensive view of epidemic outbreak
disease transmission dynamics.

CNN Feature Extraction

The CNN model architecture starts with an input layer
that accepts the time series of epidemic outbreak cases.
This input is passed through two Convolutional layers: the
first has 64 filters and the second method has 128 filters,
both of which employ the ReLU (Rectified Linear Unit)
activation function to learn spatial features in the data and
local patterns in the data. max-pooling is applied after
every Convolutional layer, which down samples the
feature maps and makes them smaller in terms of
dimensionality while also retaining all the really
important features. The final output of the last
Convolutional layer is then flattened into a one-
dimensional vector, which is integrated into a fully
connected dense layer which contains 64 units with ReLU
activations for learning and representing abstract higher-
level features.
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The output layer is a single unit layer with linear
activation to predict the continuous value of the epidemic
case count. The architecture's design is for the task of
regression, which captures spatial dependencies in time
series data for epidemic prediction. The features are then
flattened and presented to the transformer module. Figure
3, shows how CNN extracts spatial features from the time
series data which is combined with the transformer
module for accurate epidemic prediction.

Transformer - Based Temporal Learning

The Transformer-based model is used for epidemic
outbreaks prediction of diseases in this model starts with
an input layer processing time-series data as sequences.
This input is passed through a 1D Convolutional layer of
128 filters and ReLU activation to extract the most
relevant temporal features. The extracted feature
representations are fed into a multi-head self-attention
mechanism with four attention heads and a key dimension
of 128, so that the model captures long-range
dependencies and temporal correlations in epidemic
trends. By using, the self-attention mechanism, the model
exploits the long-range dependencies in the time series by
learning different temporal patterns through each
attention head, such as gradual surges in cases or sudden
outbreaks. The output of attention dimensionality is
reduced by a global average pooling operation but retains
important information. The transformation layers
aggregate temporal dependencies from several sources
that increase the robustness to forecast further. The
processed features are further passed through dense layer
that contains 64 units and a ReLU activation, which
enhances the non-linear feature extraction.

Finally, this model makes a single prediction using a

ConvlD

INPUT

fully connected output layer with a linear activation to
enable effective forecasting of epidemic case counts. The
self-attention mechanism is applied in this architecture to
model complex time-dependent patterns and realize
improved predictions of epidemic trends. Figure 4 shows
the Transformer-based model, where time-series data is
processed through a 1D convolutional layer and multi-
head self-attention to capture temporal dependencies for
accurate epidemic case forecasting.

Fusion Layer

The outputs from the CNN and the Transformer
modules are concatenated such that spatial and temporal
features can be fused to improve epidemic trend
recognition at different timescales.

Fully Connected Layers

In order to improve the prediction of epidemics, these
features are fed into the dense layers with non-linear
activation functions. In order to improve prediction
performance, it learns complex relationships of
interactions of multiple variables.

Output Layer

The final output layer gives output as the estimation of
number of cases per day, the probable arrival times of
epidemic peaks and the trend over a given time, weekly
or monthly.

Loss Function

To decrease the deviation from real epidemic data, an
MSE-based loss function that minimizes error for
maximum outbreak prediction has been applied.

Dense Layer

Flatten

OUTPUT

f——— - - - - - — —

64 filters
Activation: ReLu

Activation: Rel.u

v v

[—

64 filters
Activation: ReLu

128 filters

Fig. 3: Convolutional Neural Network (CNN) Module Diagram
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Fig. 4: Transformer Module Diagram

The Mean Squared Error (MSE) is a loss function, that
is employed to optimize a regression model developed to
predict epidemic outbreaks. The main goal is to predict a
continuous numerical value like future COVID-19 cases.
Thus, MSE is suitable for quantitatively measuring the
model’s prediction accuracy in a regression type model.
The definition of Mean Squared Error (MSE) calculated
by averaging the squared difference of the actual vs.
predicted value, Where will be the actual value, will be
the predicted value, and is the total observations as in
Equation (1). By using the MSE loss function, it means
that larger errors are weighted heavier than smaller errors
to promote a more stable learning experience. This is
particularly valuable in epidemic forecasting, where
robust predictions are necessary for early intervention and
accurate decision-making:

MSE = + 3, (4 - §)’ @)

Mean Absolute Error (MAE) is similarly used to
evaluate model the performance by calculating the
absolute error (distance) between the actual values and the
predicted values: MAE also treats all the error linearly,
making it more resistant to outliers as with Equation (2).
The combination of MSE and MAE allows the evaluation
framework to perform an even-handed assessment of the
model’s forecasting characteristics. These allow the
evaluation framework and not lose sight of both minor
variation in the values and the extreme value that may lie
outside the system. This robustness improves the
reliability of epidemic forecasting, allowing for better
public health decisions:

MAE = -1, Y — il (2)

This hybrid architecture enables both the short-term
oscillations and the long-term dependencies in the
dynamics of the epidemic to be assimilated for improved
forecast accuracy and even the execution of proactive
public health measures. In this context, hybrid models
outperform epidemic forecasting with the utilization of
both sequential and spatial patterns of disease
progression, which contributes to the improvement of
prediction accuracy and robustness.

Model Training and Evaluation

The epidemic prediction model is then trained with
mean squared error loss, as the task involves regression
forecasting of COVID-19 cases. The training will occur
on a dataset that is time-series based on a collection of
past disease data features, weather data features, and the
collected demographics data features such as age and
gender profile. The CNN-Transformer hybrid model will
be trained on the train set, and each model will be
evaluated on the validation set. Mean Absolute Error
(MAE), Mean Squared error (MSE), are used as primary
evaluation metrics for predictive performance. In
addition, classification-style metrics such as accuracy,
precision, recall, F1-score, and confusion matrices are
analyzed as supplementary measures to provide
interpretability for outbreak detection. Finally, to evaluate
model robustness, cross-validation is performed on the
trained models. Hyperparameters such as learning rate,
batch size, number of layers, and dropout are tuned using
grid search. It is dependent on the hypothesis that by
employing the self-attention mechanism inherent to
transformers, the CNN-Transformer hybrid model will
yield improved prediction accuracy by utilizing the
temporal and contextual features.

Materials and Methods

The Epidemic Outbreak Prediction Model is tested on
a time-series epidemic dataset. The whole implementation
is done with the Scikit-learn and TensorFlow/Keras
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libraries in Python, on a machine with an Intel i5
processor and 8GB RAM. This section provides an
overview of the dataset and compares the performance of
the hybrid model on the dataset provided.

Dataset Description

The model that has been employed in this research is
currently focused on only Predicting COVID-19, as the

dataset utilized
(Time_series_covid19_confirmed_global,

Time_series_covid19_deaths_global, and
Time_series_covid19 recovered_global from Johns

Hopkins University) is specifically tailored for COVID-
19. Consequently, the model has been trained and
validated exclusively on COVID-19 data, demonstrating
strong performance in forecasting trends and predicting
subsequent waves of the disease. Thus, the evaluation in
this research has been carried out exclusively on
COVID-19 datasets. Three time series datasets give
daily cumulative counts of COVID-19 cases, deaths, and
recoveries around the world. Each dataset is in a time-
series format with columns representing case numbers
reported on specific dates and geographical identifiers
such as country, province/state, latitude, and longitude.
The information is updated daily and provides facts at
both the state/provincial level as well as national level,
depending on where possible. Researchers will be able
to look into trends of infections and mortality and
allocations of healthcare resources with the application
of these datasets, which are mostly used in
epidemiological modeling, trend analysis, and outbreak
prediction using machine learning. This will also include
confusion matrices from all deep learning architectures
that show the classification achievements for various
outbreak circumstances.

The proposed framework has significant flexibility,
making it possible to extend it to other epidemic diseases
such as Tuberculosis, Influenza, Dengue and Measles
(datasets are currently available for all of these). This
compliance highlights the broader applicability of this
hybrid model, ensuring its relevance not only for COVID-
19 forecasting but also for epidemic prediction tasks in
general. Future editions of this model may be upgraded to
include a variety of additional datasets for diseases that
emerges, thus significantly expanding its ability to apply
toward broader epidemic forecasting tasks.

Figure 5 displays the accuracy of the Transformer-CNN
hybrid model, highlighting its improved performance in
predicting epidemic case counts compared to existing
models.

Figure 6 shows the enhanced accuracy of the proposed
Transformer-CNN model, demonstrating its effectiveness
in predicting epidemic outbreaks through confusion
matrix. This also includes all deep learning architectures
that show the classification achievements for various
outbreak circumstances.

Performance Accuracy for CNN-Transformer Model Over Epochs

=g= CNN-Transformer

Accuracy

2 4 6 8 10
Epochs

Fig. 5: Performance Accuracy of the Proposed Model

Confusion Matrix for CNN-Transformer 8
l 27

- 26
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- 25
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- 24
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Fig. 6: Performance Accuracy of the Proposed Model

Results

The efficiency of the CNN-Transformer hybrid model
proposed for epidemic outbreak prediction evaluated by
utilizing the following standard metrics.

Evaluation Metrics: The proposed model is evaluated
by using accuracy, precision, recall, and F1 score. Also to
be analyzed are the results from the confusion matrix and
classification report. The formulas for all said metrics are
described here in below.

Accuracy: A measure of the number of correctly
predicted cases over the actual number of cases as in
Equation (3); more of it means that performance is better.
Where TN = True Negatives and FP = False Positives.
High accuracy is a guarantee of good results for various
outbreak circumstances from the model:

TP+TN (3)

Accuracy = ———
Y = Tr+TN+FP+FN

Precision: Indicating what proportion of equally
predicted positives was actually correct, precision can
optimize the occurrence of the false alarms as in Equation
(4). A good precision value implies were few false
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positives implying that only those cases pertinent to the
outbreak are flagged:

TP ( 4)

TP+FP

Recall: Recall is indicated by the total number of true
positives the model predicts correctly as in Equation (5).
A recall value of one means all true positives have been
detected, essentially reducing the number of false
negatives and Where TP = True Positives and FN = False
Negatives. This is a well-heeled metric in epidemics free
cases:

Precision =

TP (5)

= TP+FN

F1 Score: The F1 Score can be measured as a harmonic
mean between precision and recall, and thus it can reflect
a balanced quality evaluation as in Equation (6). And
therefore, having a good F1 ensures that there is a good
balance between the precision and the recall; hence, it
becomes a wonderful performance indicator for epidemic
outbreak prediction:

Precision XRecall
FlScore =2 X ————— (6)

Precision+Recall

Discussion

The dataset used for this
(Time_series_covid19 confirmed_global,
Time_series_covid19_deaths_global, and
Time_series_covid19_recovered_global, contains
infection case reports, deaths rates, and recovery counts
gathered from public health agencies, JHU CSSE. The
data was first split into training datasets and testing
datasets following normalization and formation of time-
series sequences. When combined with CNNs, the
proposed transformer-based method enhances epidemic
predictions by uncovering complex patterns and long-
range correlations in temporal data. The CNN method
efficiently extracts the hierarchical features of the input
data, while in the transformer multi-head attention
method, the multiple time segments may be analyzed
simultaneously, hence there is a probable increase in
identification of critical events of outbreak, and for its
training, history data of the epidemics are used. This
performance was then tested by using Mean Squared
Error, MSE and Mean Absolute Error, MAE along with
classification metrics such as accuracy, precision, recall,
F1-score, and confusion matrices, which together yielded
an overall prediction accuracy of 98.0%. It is highly accurate,
but it's also heavily dependent on the quality of the input data;
the potential challenges of inconsistent data collection,
reporting biases, and emergence of new pathogens pose
significant limitations. The model was assessed through
regression and classification metrics in order to give a
comprehensive assessment of performance and this
highlights the potential for valuable predictive capacity for
outbreaks. Emerging diseases data and epidemiological data

study

in near-real time can be utilized to focus in all efforts made
towards continuing public health protection.

Table 2 provides comparisons of models utilized for
epidemic prediction. Among other models the CNN-
Transformer model outperformed all the other models
with in capturing complex epidemic patterns.

Figure 7 illustrates the accuracy differences among
CNN, LSTM, BIiLSTM, and the CNN-Transformer
model, with the CNN-Transformer achieving the highest
accuracy at 98% and providing better performance.

Table 2: Performance Metrics of Algorithms

Model Accuracy  Precision Recall F1 Score
CNN 85% 0.4483 0.5909  0.5098
LSTM 90% 0.4286 0.5455 0.4800
BILSTM 88% 0.4783 0.5000 0.4889
CNN - 98% 0.8690 0.8000 0.8471
Transformer

Model Performance Metrics Comparison

478 -5 0.489

BiLSTM CNN - Transformer
Models

Fig. 7: Model Accuracy Comparison

Conclusion

This novel transformer-based approach for epidemic
forecasting can be used to provide an effective framework
for predicting the dynamics of infectious diseases. The
model, in effect, taps the abilities of transformers and
aggregates various datasets to convey an overall idea of what
drives the spread of the disease. Data quality and
unprecedented outbreak are current issues that might arise;
however, the design of this architecture enables it to learn
from previous patterns and give reliable predictions for
future outbreaks. With multimodal data sources and
temporal dynamics, the method is one of utmost importance
for both public health officials and researchers to implement
timely intervention strategies. The ever-changing nature of
infectious diseases makes improvement in this model to
predict and enhance the epidemic worthwhile; hence this
model becomes a focus of attention in all efforts made
towards continuing public health protection.

The scope of this research is very broad and promises
much for the future. Further explorations of improving on
the transformer model can be considered through
integration with ensemble methods, thus integrating the
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strength of various predictive algorithms in order to
strengthen forecasting accuracy and power across
different epidemiological contexts. The model can also be
opened to real-time feed from organizations with sources
on health and social media to allow for dynamic updates
and predictions. Perhaps one of the future directions of
this work would be to extend the application of the
transformer approach to other infection diseases aside from
those at hand. The model would then have to be adapted to
differing epidemiological contexts and factors according to
disease peculiarities, and it could then explain much about
the spread of other pathogens. Furthermore, implementation
of complex visualization tools would help to present
predictions to public health officials and policymakers in
such a manner that would come to intuitive decisions
concerning better intervention strategies.
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