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Abstract: Remote sensing technologies, especially Unmanned Aerial
Vehicles (UAVs), become crucial for Precision Agriculture (PA) to perform
different tasks such as crop detection, yield prediction, leaf disease
diagnosis, weed detection, and harvest forecasting to ensure higher
productivity. Therefore, using various image analytics methods feature
detection from the UAV-captured images plays a vital role for conducting
these PA tasks. To enhance the effectiveness of the UAV-based image
analysis, this study investigates the performance of various classical feature
detection algorithms on the UAV-captured images of tomato fields. This
study also identifies the standard benchmarks of the evaluation metric used
in the feature detection methods. The evaluation considers challenging
conditions such as rotation, illumination variation, and scaling. Results show
that Oriented FAST and Rotated BRIEF (ORB) and Speeded Up Robust
Features (SURF) among the classical methods demonstrated better
performance under all these environmental conditions. However,
considering the limitations in existing feature detection techniques this study
also suggests that integrating classical feature detection with deep learning
approaches could significantly improve real-time feature detection
efficiency.
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Introduction
Farming is a complex sector that considers factors

like soil, crop types, weeds, temperatures, etc. to
maximize the yield. It requires planting, watching the
weather, and applying the required amounts of water,
nutrients, and pesticides, manually inspecting fields for
sights of stress or pest infestation. In general, farmers are
unsure about which type of fertilizer to use (organic or
conventional) to meet the needs of their land. Soil
degradation caused by insufficient and unbalanced
fertilization results in nutrient mining and the emergence
of second-generation nutrient management issues.
According to a study by the Associated Chambers of
Commerce and Industry of India crop yield fluctuates so
often that these conventional (ASSOCHAM), annual
crop losses due to pests amount to Rs. 50,000 cores
(Swati, 2014). Furthermore, resources and time.

To boost quality crop productivity, remote sensing
techniques such as satellite and the UAV offer an
effective way to serve small to large-scale operations and
assess crop health. Such remote sensing techniques can
be used to pinpoint areas of crop stress to determine

when, where, and how much water, fertilizer, and
pesticides are needed to produce a healthy crop
(Fawakherji et al., 2021). PA analytics and relevant
research bring efficiency to agriculture by producing
healthier crops. This helps to minimize losses and
maximize production to boost profits. UAV-based
photogrammetric is becoming a popular field, especially
in PA as it has the following advantages over traditional
ways of inspecting fields for sights of stress (Cheng et
al., 2010; Pacot and Marcos, 2018; Rokhmana, 2015).

The adoption of Unmanned Aerial Vehicles (UAVs)
for precision agriculture systems offers numerous
compelling advantages. First, there are significant cost
savings from reduced expenses in constructing the
platform infrastructure. Operationally, UAVs provide
adaptable and swift responsiveness to changing field
conditions. From a data perspective, they offer the
capability to acquire high-resolution images and accurate
positioning information essential for precision farming.
Technologically, UAVs enable the implementation of
missions that involve high risks and advanced
technology without endangering human operators.
Regulatory advantages include the fact that most
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countries do not require airspace control permits for low-
altitude flights, as seen in nations like China and
Bangladesh.

Due to these benefits, building PA systems using the
UAV has become a hot topic worldwide. However,
utilizing the UAV-captured raw images in developing PA
systems does not always provide fruitful results. It
requires preprocessing of images before using them as
input in the PA system. However, in the last couple of
years, several initiatives have been presented. These
initiatives can be categorized into two groups: (i)
classical methods and (ii) Convolutional Neural Network
(CNN)-based methods. CNN-based methods are more
suitable when huge volume of data is required to be
processed to train the analytical model. On the other
hand, in situations when computational resources are
restricted, datasets are tiny, or there are particular
applications that need accurate feature matching,
classical feature detection algorithms like Scale-invariant
feature transform (SIFT), SURF, etc. may perform better
than CNN-based methods. Classical methods offer
explicit feature descriptors that are simpler to
understand, demand less computing power, and do not
require a lot of training data. Classical methods provide
high precision and reliable performance under various
conditions, making them suitable for specific
applications where CNNs might not be optimal.

In case of feature detection algorithms, the main
challenge lies in the Keypoint (it is notable that Key
Points, Keypoints and Feature Points can be used
interchangeably) identification or feature detection in the
UAV-captured image. Keypoints provide a substantial
quantity of crucial information in an image. Since it may
reduce misalignment faults in the final stitched image,
accurate extraction of these Keypoints - is necessary for
image stitching (Lindeberg, 2012; Bay et al., 2006;
Lavin and Gray, 2015; Alahi et al., 2012; Calonder et al.,
2010; Leutenegger et al., 2011; Alcantarilla et al., 2012;
Rublee et al., 2011). However, a comprehensive
comparative study on feature detection is lacking in the
literature. To address this gap, we conducted an
exploratory study of existing state-of-the-art feature
detection methods. This paper outlines several notable
contributions, including a meticulous comparison of
contemporary, cutting-edge feature detection methods,
specifically those employed for detecting features in
images captured by UAVs. Furthermore, this paper
concludes by delineating the limitations observed in
some existing feature detection algorithms, emphasizing
their challenges in handling image overlapping analysis
in UAV-captured imagery.

This paper aims at researchers and academics, as well
as both non-commercial and commercial entities with a
vested interest in exploring, developing, or choosing
feature detection methods for the PA and the UAV-based
technology, focusing on comparative analyses of
classical feature detection methods under varied
agricultural conditions.

The remainder of the paper is organized as follows.
Section Research Methodology describes the research
methodology we followed to conduct this review study.
Section Feature Detection Approach illustrates the
classical feature detection algorithms. Section Classical
Approaches vs. Deep Learning Approaches highlights
the influence of classical feature detection methods and
the deep learning-based methods. Section Data
Collection and Preprocessing details the data collection
and preprocessing approach used in this investigation.
Section Evaluation Metrics illustrates the evaluation
metrics to compare the performance of feature detection
methods. Section Experimental Data presents the
experimental framework. Results and discussions of this
review study are explained in Section Results and
Discussion. Finally, Section Conclusion states the
concluding remarks and future research direction of
feature detection methods for PA.

Methodology
This review study has been carried out by the steps

shown in Figure 1.

Fig. 1: Steps of the methodology followed in this study

Image Collection: Using a UAV to gather high-
resolution aerial images of a target region, such as a
tomato field or an agricultural field, is the first stage of
this study. A UAV fitted with an RGB camera was used.
Image capturing follows predetermined flight routes to
guarantee constant and thorough coverage of the region.
Neutral density (ND) filters are also used for controlling
lightning conditions. Raw aerial images with crucial
metadata, such as timestamp, exposure, resolution, focal
length, etc., are the result of this stage and are necessary
for further processing and analysis.

Image Preprocessing: The main goal of the Image
Preprocessing is to improve image quality for precise
annotation and analysis. Image preprocessing is
performed in several steps including cropping, resizing,
or tiling of the images to make them uniform and
consistent. Other improvement tasks such as contrast
correction and noise reduction are also performed to
increase visual clarity. Image normalization or grayscale
conversion processes are also applied to make all images
in a standard and consistent form to make them ready for
next steps of the processing pipelines.

Image Annotation: In this stage, specific Keypoints
or areas of interests within the preprocessed images

http://192.168.1.15/data/13525/fig1.jpg
http://192.168.1.15/data/13525/fig1.jpg
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(such as crops/fruits, leaves, stems, crop disease, weeds,
landmarks, etc.) are labeled using any suitable annotation
tool. Common image annotation tools are Roboflow,
LabelImg, or CVAT. In this review study, Roboflow is
used for image annotation, as it is user friendly and the
annotated image can be downloaded in different formats
such as Pascal VOC, YOLO TXT, TF Record and COCO
JSON. In our experiment, we converted our annotated
images as COCO JSON.

Feature Detection: In this stage, classical feature
detection methods such as SIFT, SURF, ORB, Binary
Robust Invariant Scalable Keypoints (BRISK), BRIEF,
FREAK, KAZE, and AKAZE have been applied to the
processed image dataset to identify recognizable and
repeating keypoints in all images. Tools such as Python
and OpenCV are used to implement this step. This
process results in a collection of keypoints for each
image aligned with the corresponding descriptor. These
collection of keypoints are ultimately used for feature
matching and localization.

Feature Matching and Localization: This stage is
used to understand the spatial linkages and to facilitate
precise localizations for identifying similarity between
features across the images. Matching techniques such as
Brute Force matcher or FLANN are frequently used in
conjunction with RANSAC to remove outliers and to
increase the match reliability. This step results in
matching keypoint pairs and calculated transformation
matrices (such as affine or homography) that characterize
the spatial alignment of images.

Performance Evaluation: The goal of the sixth phase,
performance evaluation, is to quantitatively evaluate the
efficacy of feature detection methods. This involves
computing a number of metrics, including precision,
recall, matching robustness, false positive rate, detection
rate, repeatability rate, mean localization error (MLE),
and matching robustness. These measurements offer a
detailed understanding of the precision, consistency, and
dependability of the algorithms. Usually OpenCV,
custom Python scripts, or Pycocotools are used for
evaluation, especially compared to object detection tasks,
to ensure the system satisfies the performance
requirements for the intended use.

Comparative Analysis: The last stage of this review
study is to compare the performance of the feature
detection methods applied to our collected UAV-captured
tomato image dataset. In this step, all feature detection
methods are simulated on different sets of datasets based
on different environmental scenarios. In this study, we
consider three factors, such as rotation, scaling, and
illumination. Performance are evaluated 8 evaluation
metrics.

Classical Feature Detection Approaches

For feature detection, several feature detection
algorithms have been introduced such as SURF (Bay et
al., 2006), SIFT (Lindeberg, 2012), and BRISK

(Leutenegger et al., 2011), and Maximally Stable
Extremal Region (MSER) (Cen et al., 2019). The feature
detection algorithms that are evaluated in this study are
summarized in the following sections.

SIFT

SIFT is a computer vision method that finds and
describes distinctive features in images (Lindeberg,
2012). It works by detecting key points that are invariant
to changes in scale, rotation, and lighting conditions.
These key points are then described by their local image
gradients, creating unique representations that can be
matched across different images for tasks such as object
recognition and image stitching. SIFT is widely used as a
result of its robustness and effectiveness in various
applications.

SIFT performs in several steps: Identify keypoints at
multiple scales by detecting local extrema; Keypoint
Localization, which refines the keypoint positions and
scales using a 3D quadratic function; Orientation
Assignment, which assigns a dominant orientation to
each keypoint based on gradient magnitudes and
orientations; Descriptor Generation, which creates
robust descriptors by capturing the gradient distribution
around each keypoint; and Descriptor Matching, which
compares keypoint descriptors using distance metrics
like Euclidean distance for tasks such as image
alignment and object recognition.

Fig. 2: Generation of descriptor array from a sample set of
gradients (Lowe, 2004)

The left portion of Figure 2 shows the image
gradients produced in the orientation assignment. During
the orientation step, the grids are partitioned into four
segments. Later, all segments of the gradients were
merged on the basis of the individual direction of these
segments. The right part of the image shows the
descriptors measured using the gradients (Lowe, 2004).
Two parameters such as the peak threshold and the edge
threshold control the SIFT (Lindeberg, 2012) detector.
The peak threshold eliminates too-small (in absolute
value) peaks from the DoG (i.e. Difference of Gaussian)
scale space. For increasing the peak threshold, fewer
features are obtained. On the other hand, the edge
threshold removes DoG scale space peaks with very
small curvature (these peaks generate poorly localized
frames). By increasing the edge threshold, more features
are obtained.

http://192.168.1.15/data/13525/fig2.jpg
http://192.168.1.15/data/13525/fig2.jpg
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SURF

Speeded Up Robust Features (SURF) is an algorithm
for detecting and describing local features in images,
designed to be faster than SIFT. This algorithm detects
keypoints using the Hessian matrix for quick detection. It
employs box filters to efficiently handle different scales,
approximating Gaussian smoothing. For rotation
invariance, it determines the dominant orientation of
each keypoint using Haar wavelet responses. It then
generates robust descriptors by computing Haar wavelet
responses in subregions around each keypoint. Finally, it
matches keypoints between images by comparing their
descriptors using distance metrics as the Euclidean
distance.

Fig. 3: Wavelet responses over the sub-region (Bay et al.,
2006)

As illustrated in Figure 3, dx, and dy represent pixels
in each subregion. The absolute values of dx and dy,
respectively, are summarized at the same time to reflect
the intensity change of the descriptors. A four-
dimensional vector feature V serves as a representation
of each sub-region.

BRISK

Autonomous Systems Lab at ETH Zurich,
Switzerland introduced Binary Robust Invariant Scalable
Keypoints (BRISK) which is a point-feature detector and
descriptor (Leutenegger et al., 2011; Bojanic et al.,
2019). BRISK can achieve minimum processing
complexity by deploying a special scale-space FAST-
based detector (Lavin and Gray, 2015; Tyagi, 2019). It
uses binary descriptors for feature description, which
makes it highly efficient in terms of memory usage and
computational speed. This is particularly useful for real-
time applications and large-scale image processing. The
steps of the BRISK (Leutenegger et al., 2011) algorithm
are described in the following.

BRISK identifies the interest points or keypoints in
an image. These keypoints are distinct locations in the
image that can be reliably found in different images of
the same scene, despite changes in viewpoint, lighting,
or occlusion. BRISK generates a bit-string description

through intensity comparisons collected by targeted
sampling within each keypoint neighborhood (Cen et al.,
2019). BRISK constructs a scale-space pyramid as
shown in Figure 4, which involves creating a series of
images at different levels of detail (scales). This allows
BRISK to detect keypoints at multiple scales, making the
algorithm robust to changes in object size or distance
from the camera. Once the keypoints are identified,
BRISK computes a binary descriptor for each keypoint.
Unlike SIFT and SURF, which use floating-point
descriptors, BRISK uses binary strings to represent the
local image patch around each keypoint. This binary
representation makes BRISK more memory-efficient and
faster to compute.

Fig. 4: Scale pyramid space with n number of octaves and n
number of intra-octaves for keypoints detection at i
represents the level

BRISK aims to be invariant to changes in rotation
and scale, meaning that the same keypoint should be
detected even if the object is rotated or scaled. This is
achieved by employing a scale-invariant detector and
descriptor that adapt to the local image structure. BRISK
is designed to be restrained to noise, occlusion, and other
image distortions. It achieves robustness through a
combination of its detection and description methods,
which are designed to handle various challenging
conditions.

ORB

The Oriented FAST (Huang et al., 2018) and Rotated
BRIEF (Calonder et al., 2010) (ORB) algorithm is
presented by enhancing the integration of the FAST
(Lavin and Gray, 2015) and BRIEF algorithms (Calonder
et al., 2010; Huang et al., 2018). This makes ORB a
feature detection as well as a feature description
algorithm. The main aim of ORB is resource
conservation. ORB computes oriented BRIEF (Calonder
et al., 2010) characteristics and adds a quick and accurate
orientation component to FAST (Lavin and Gray, 2015).
However, ORB uses the centroid approach to determine

http://192.168.1.15/data/13525/fig3.jpg
http://192.168.1.15/data/13525/fig3.jpg
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FAST’s orientation (Lavin and Gray, 2015). A de-
correlation method for BRIEF (Calonder et al., 2010)
features under Rotation Invariance is also suggested by
the authors of ORB, which might enhance performance
in nearest-neighbor applications (Tian, 2013).

ORB performs image-matching in three steps:
Feature Point Extraction, Orientation Assignment,
Generating Feature Point Descriptors, and Feature Point
Matching. In Feature Point Extraction, ORB algorithm
uses the improved FAST (Lavin and Gray, 2015)
algorithm to detect feature points. In this method, a pixel
is more likely to be a corner point if it differs greatly
from its neighboring pixels. The process begins by
selecting a pixel in the image (as it presented by p in Fig.
5) and assuming its brightness. A brightness threshold is
set, and 16 surrounding pixels are chosen within a small
radius. The brightness of these surrounding pixels is
compared to the center pixel. If a specific number of
consecutive surrounding pixels are brighter or darker
than the center by a defined threshold, the center pixel is
considered a feature point. Initially, only four specific
pixels are tested for efficiency. If at least three of these
pass the threshold, all 16 surrounding pixels are
evaluated to confirm if the pixel is an interest point.
Every pixel in the image undergoes this iterative process.
This method is optimized by starting with a subset of
pixels to reduce unnecessary calculations and improve
speed.

After this, ORB detects the keypoints in two sub-
steps such as Feature Point Detection (ORB uses the
FAST (Lavin and Gray, 2015) algorithm to quickly
detect keypoints in an image.) and FAST (Lavin and
Gray, 2015) Corner Point Computation (it refers only to
comparing differences in brightness between pixels.
Therefore, the number of corner points becomes large
and uncertain).

In the step of Orientation Assignment, ORB assigns
an orientation to each keypoint by computing the
intensity centroid around the keypoint. This makes the
features rotation-invariant. Feature Point Descriptors are
generated in the third step. After extracting oriented
FAST (Lavin and Gray, 2015) keypoints, the ORB
algorithm uses an improved version of the BRIEF
(Calonder et al., 2010) algorithm to compute a descriptor
for each keypoint. BRIEF (Calonder et al., 2010) is
characterized by a binary vector descriptor, with its
vector composed of multiple 0 and 1. Finally, ORB
performs Descriptor Matching steps. Binary descriptors
are matched between images using the Hamming
distance, which counts the number of differing bits.

FREAK

The Human visual system, specifically the retina,
serves as the source of inspiration for FREAK (Fast
Retina Keypoint) (Alahi et al., 2012). First of all, a
cascade of binary strings is created by effectively
comparing picture intensities over a retinal sample

pattern. FREAK (Alahi et al., 2012) is a dual descriptor
that is computed based on brightness comparison
experiments conducted over a significant amount of
samples on an interesting point (Alahi et al., 2012).
FREAK algorithm performs the feature detection in a
number of steps.

Fig. 5: Feature Detection in Image Patch (Lavin and Gray,
2015)

The first step of the FREAK algorithm involves
generating a sampling pattern. At this stage, a Gaussian
kernel is used to smooth N points in a sample around a
particular keypoint. To simulate human retina behavior
that is identical to the behavior of the human visual
system, the kernel size is varied depending on the
position of the sampling point. The centroids of the
receptive fields are thus illustrated by the FREAK (Alahi
et al., 2012) descriptor sampling sites.

Creating the descriptor is the next step in the FREAK
algorithm (Alahi et al., 2012). This descriptor is built via
intensity comparisons between various pairs of smoothed
sample locations, such as the centers of receptive fields.
Later in the Orientation Normalization step (Alahi et al.,
2012), descriptors are evaluated using several selected
sampling pairs that are symmetrically arranged around
the sampling pattern’s center. The total of the differences
between two component’s identical elements can be used
to compute their Manhattan distance from one another.
This distance presents the distribution of the intensity
difference of each keypoints. This orientation makes
FREAK rotationinvariant.

Freak utilizes binary descriptors that are compact and
convenient for the application with a constraint of low
memory and bandwidth. It performs faster feature
detection compared to other conventional descriptors
such as SIFT or SURF.

BRIEF

BRIEF, or Binary Robust Independent Elementary
Features, was introduced by Calonder (Calonder et al.,
2010). BRIEF uses a sampling pattern with 128, 256, or
512 comparisons, with sample points randomly selected
from an isotropic Gaussian distribution centered at the
feature position (equating to 128, 256, or 512 bits).
Researches (Alahi et al., 2012) influenced by BRIEF
(Calonder et al., 2010) demonstrates that image patches
can be efficiently identified based on a sizable number of

http://192.168.1.15/data/13525/fig5.png
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pairwise intensity comparisons. This serves as the basis
for BRIEF (Calonder et al., 2010).

BRIEF uses straightforward binary comparisons
between pixels in an image patch (Calonder et al., 2010).
We know that image patch refers to the surroundings of a
pixel. The dimension of a patch is a square of pixels’
height and width. The first pixel in each random pair is
chosen at random from a Gaussian distribution with a
Stranded Deviation or spread that is centered on the
keypoint (Figure 6). Each comparison is a binary test (0
or 1), resulting in a compact and efficient binary string.
A Gaussian distribution centered on the first pixel with a
standard deviation or spread of sigma by two is used to
generate the second random pixel in the pair. A value of
1 is attributed to the relevant bit if the brightness of the
first pixel exceeds that of the second one. Conversely, a
value of 0 is assigned.

In many ways, the performance of BRIEF (Calonder
et al., 2010) is comparable to SIFT (Lindeberg, 2012),
including its resilience to lighting, blur, and perspective
distortion. However, it is highly vulnerable to in-plane
rotation.

KAZE

KAZE (Accelerated Segment Test with K-means and
Enhanced Descriptors) (Alcantarilla et al., 2012)
algorithm is a complex feature detection and description
algorithm used in computer vision. Initial step of KAZE
is Scale Space Construction. In order to detect features at
different scales, KAZE (Alcantarilla et al., 2012)
constructs a nonlinear scale space. This scale space is
formed by convolving the image with Gaussian kernels
at different scales, a fundamental operation in image
processing. To identify the local structure, KAZE
(Alcantarilla et al., 2012) algorithm computes the
gradient of the image. Using partial derivatives, the
gradient is created to show how the intensity of the
image varies in different directions.

Fig. 6: Keypoints detection by Binary comparison between
pixels in image patches (Tyagi, 2019)

After that Extremal regions in the nonlinear scale
space are identified by KAZE (Alcantarilla et al., 2012).
A region in the image where the gradient magnitude is at
its maximum or smallest is known as an Extremal region
(Matas et al., 2004). Extremal regions are measured
using scale-normalized Laplacian as a base. The
extremal regions maximize or minimize the determinant
of the Hessian matrix (AL-Rammahi, 2007).

Keypoint descriptors are computed by KAZE
(Alcantarilla et al., 2012) after keypoints have been

located and identified. These descriptors are essential for
feature matching because they capture the local image
information around each keypoint. By choosing extremal
regions and extracting their coordinates and scale, KAZE
(Alcantarilla et al., 2012) localizes keypoints. To express
the local image structure, KAZE (Alcantarilla et al.,
2012) employs a descriptor that is similar to the Local
Binary Pattern (LBP) code. In a neighboring region, this
descriptor reflects patterns of intensity variations. For
each sample point, LBP code is measured for every
sample.

To organize related LBP-like descriptors into clusters,
KAZE (Alcantarilla et al., 2012) employs K-Means
clustering. The feature vectors’ dimensionality is
decreased by substituting cluster centers for the
descriptors. The scale-space construction demonstrates
how KAZE (Alcantarilla et al., 2012) achieves scale-
Invariance by taking keypoints into account at various
scales. Although KAZE (Alcantarilla et al., 2012) does
not naturally offer rotation Invariance, extra methods can
be used, including an estimate of the orientation of
keypoints and keypoints matching across multiple
orientations.

AKAZE

Accelerated KAZE (AKAZE), which constructs a
scale space via nonlinear diffusion, is regarded as one of
the first algorithms to discover features (Kalms et al.,
2017). Contrast factor computation, non-linear scale-
space construction, and feature detection make up three
components of the AKAZE algorithm. Scale-space
representation using 3 octaves and 4 levels is illustrated
in Figure 7 based on non-linear diffusion. This image
illustrates how an image is blurred gradually in various
scales and octaves.

Fig. 7: AKAZE’s scale-space representation (Kalms et al.,
2017)

Contrast Factor Computation enhances keypoint
detection by evaluating the local contrast around each
keypoint. This involves calculating the intensity
differences between the keypoint and its surrounding
pixels, often derived from the gradient magnitude, which

http://192.168.1.15/data/13525/fig6.jpg
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measures the change in intensity. Keypoints with higher
gradient magnitudes indicate more significant features.
AKAZE uses this contrast factor to apply a threshold,
discarding keypoints with lower contrast to retain only
the most prominent and reliable ones. This process
improves the algorithm’s robustness and accuracy,
especially in challenging conditions like varying lighting
or noisy environments.

On the other hand, Nonlinear Scale-Space Building
for AKAZE algorithm refers to a process that involves
creating a multi-scale representation of an image using
nonlinear diffusion filtering. This is different from the
traditional linear Gaussian scale-space used in other
algorithms like SIFT. This diffusion technique enhances
the preservation of edges and important details, leading
to more accurate and robust feature detection. AKAZE
(Kalms et al., 2017) uses a pyramidal framework for its
scale-space (Figure 7). It consists of octaves, with each
octave containing sub-levels. Each successive octave is
one-fourth size of the previous octave.

Classical Approaches vs. Deep Learning
Approaches

Image features such as local features and global
features are important in selecting either classical
algorithms or deep learning algorithms of feature
detection. Global features represent characteristics of an
entire image (Chen et al., 2021). These features capture
information about the overall content and structure of the
image. Examples of global features include color
histograms, texture descriptors (e.g., Gabor filters)
(Mehrotra et al., 1992), shape descriptors (e.g., Hu
moments) (Huang and Leng, 2010), and deep learning
features extracted from the entire image using CNNs
(Purwono et al., 2023; Krizhevsky et al., 2012). Global
features are useful for tasks such as image classification,
scene recognition, and image retrieval. On the other
hand, local features represent distinctive regions or
keypoints within an image. These features capture
information about specific parts of the image, such as
corners, edges, or blobs, and are often invariant to
changes in scale, rotation, and illumination. Examples of
local feature descriptors include SIFT, SURF, ORB, and
BRISK. Local features are commonly used for tasks such
as image matching, object detection, image registration,
and panorama stitching. Local features typically
outperform global features, as they excel in identifying
significant visual characteristics within an image.
Similarly, methods based on local features offer
improved classification or retrieval performance and
possess strong discriminative power in addressing most
computer vision challenges compared to global features
(Utomo et al., 2021).

Moreover, deep learning-based techniques for real-
time feature detection from images leverage deep
learning models to extract meaningful features or
patterns from visual data in real time. Some widely used

neural network techniques used for real-time feature
detection from images are CNNs (Purwono et al., 2023;
Krizhevsky et al., 2012), Region-Based CNNs (R-
CNNs) (Girshick et al., 2016), Single Shot MultiBox
Detector (SSD) (Liu et al., 2016), You Only Look Once
(YOLO) (Redmon et al., 2016), Feature Pyramid
Networks (FPNs) (Lin et al., 2017), MobileNet (Howard
et al., 2017), and so on. These neural network techniques
enable real-time feature detection from images across a
wide range of applications, from surveillance systems
and autonomous vehicles to augmented reality and
medical imaging. They provide the capability to analyze
and understand visual information rapidly and accurately,
facilitating intelligent decision-making and automation
in diverse domains.

In PA, real-time image analysis is crucial for some
tasks such as crop monitoring, disease detection, yield
estimation, and irrigation management. To perform real-
time image analysis effectively, it is essential to use
image feature detection algorithms that are
computationally efficient, robust to environmental
variations, and capable of detecting relevant features for
agricultural applications. Here are some image feature
detection algorithms that can be used for real-time image
analysis in PA: classical algorithms like FAST (Lavin
and Gray, 2015), ORB (Rublee et al., 2011), SURF (Bay
et al., 2006), SIFT (Lindeberg, 2012) and CNN-based
approaches. FAST (Lavin and Gray, 2015) can be used
for crop monitoring and plant identification. ORB
features can be used for tasks such as recognition of
plant species, detection of weeds, and estimation of crop
yield. SURF (Bay et al., 2006) features can be used for
tasks such as crop disease detection, soil moisture
estimation, and crop health monitoring. SIFT (Lindeberg,
2012) can be used for real-time image analysis tasks in
PA, such as plant phenotyping, leaf counting, and fruit
detection. While these algorithms excel in detecting and
describing local features in images, they are not directly
integrated into CNNs due to their handcrafted nature and
fixed feature extraction process. Madhuri et al., presents
a hybrid model combining Multi-Head Attention-based
Bi-Directional Gated Recurrent Unit (M-Bi-GRU) with
CNN. In this algorithm method, the Adaptive Reptile
Search Optimization (ARSO) algorithm is employed for
feature selection to enhance prediction accuracy. Lin
Fudong et al., in their research proposed a deep learning
model called MMST-ViT. This model uses a multi-modal
spatial-temporal vision transformer to combine satellite
imagery and meteorological data. As a result of this
combination, the authors claim that this model can
accurately detect the impact of agricultural yields
influenced by both short-term and long-term climate
change.

In their research paper, Yewle and Karakus introduce
the RicEns-Net model (Yewle and Karakus, 2024). Using
a deep ensemble structure, this model integrates weather
measurements, optical remote sensing data, and synthetic
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aperture radar (SAR). By narrowing down more than 100
predictors to 15 essential traits, feature selection
improved prediction accuracy. Lei Zhang presents
another deep learning model in their article (Zhang et al.,
2024). This model improves the accuracy of yield
estimation by processing multi-source data, such as
climate, EVI, LAI, and solar-induced chlorophyll
fluorescence (SIF), by combining CNN and Bi-
Directional Long Short-Term Memory (BiLSTM)
networks. Vignesh et al. (2023) in their study proposed a
model for predicting agricultural yields considering crop
and environmental parameters. This proposed model
used a Discrete Deep Belief Network (DBN) with a
VGG Net classifier. They also used the Tweak Chick
Swarm Optimization technique to improve it. Zhou et al.
(2023) present an alternative algorithm for the prediction
of the wheat yield. In this model, agronomic variables
are incorporated with multi-temporal spectral
information from the UAV-captured images using
Random Forest method.

However, classical feature detection algorithms can
still complement CNNs in several ways, such as
prepossessing, data augmentation, fine tuning, hybrid
architecture, and transfer learning. There are several
attempts (Utomo et al., 2021; Tsourounis et al., 2022;
Chen et al., 2021) in the last couple of years for a hybrid
approach by combining the classical algorithm and deep
learning algorithm for efficient real-time feature
detection. The choice of image feature detection
algorithm depends on factors such as specific task
requirements, computational resources, and
environmental conditions. By selecting the appropriate
algorithm and optimizing its implementation, real-time
image analysis can be achieved effectively in PA
applications.

Data Collection and Preprocessing

Data Collection

In our study, we used a custom image dataset
captured by the UAV. After collecting, blurry and poor
quality images were filtered out and formed a dataset of
750 raw images along with another 3000 images
captured using ND filters (750 images for each filters) of
the UAV. The details of the image data set collected are
illustrated in Table 1.

Image Augmentation

Since captured image dataset is smaller
comparatively, we augmented the images to increase the
size of the dataset. This is required to improve the
performance, generalization and robustness of the
models. To augment the raw dataset, we consider three
factors, such as rotation, illumination, and scaling for
image augmentation.

We consider clockwise 900, clockwise 1800, and
counterclockwise 900 rotations for rotation-based image

augmentation.

We scaled up the raw images by 2× and 3×, and
scaled down by 2× for scaling-based image
augmentation.
Table 1: Data Collection Details

Item Description
Image Type Tomato Field
Number of Images 750 raw images (Images are captured by the

UAV both from the above and from the
side) 3000 images using the UAV filters

Number of Augmented
Images

4500 (using scale and brightness as
augmentation factors)

Location Tomato Fields located in Terokhada,
Khulna District, Bangladesh. Coordinates:
Latitude: 22◦57′35.24′′ N, Longitude:
89◦40′2.39′′ E.

Data Collection Medium DJI 2S UAV
Diversity Condition Illumination, rotation, scaling, and

occlusions.
Illuminance Conditions It was a regular sunny day (7 February,

2024) in the Winter season. Illuminance
levels during capturing images were:
28570±150LUX(8 : 00AM −11 : 00AM),
46810± 90LUX(12 : 00PM −1 : 30PM), and
24560±110LUX(2 : 00PM −3 : 30PM).

Filtering Term Dataset consists of 90% or more annotated
images. ND4, ND8, ND16, and ND32 are
used to reduce light by factors of 1/4, 1/8.
1/16, and 1/32 during image capture.

Photo Resolution 750 pixels X 750 pixels
Image Type RGB
Auto Orient Applied

Image Annotation

Roboflow was used for image annotation. Roboflow
was selected for image annotation because of its easy-to-
use web interface, support for various annotation types
(including polygons and bounding boxes), and integrated
tools for format conversion and data augmentation. By
facilitating effective labeling, tracking dataset versions,
and exporting in formats compatible with widely used
machine learning frameworks, it streamlines the process
of preparing datasets. We use 7 classes to label the
images. These classes are “tomato”, “weed”, “water”,
“soil”, “stem”, “leaf”, and “other” (Figure 8).

Image Normalization

All annotated and raw images are normalized using
Min-Max Normalization. OpenCV was used for
normalization of all images before using the images as
input.

Evaluation Metrics

In this study, eight of the widely used existing feature
detection algorithms were investigated. To understand
their feature detection capacity and compare their
performance, 8 evaluation metrics such as number of
matching keypoints, percentage of consistent keypoints,
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repeatability rate, matching robustness, detection rate,
false positive rate, mean localization error, and standard
deviation of mean localization error (MLE) were
evaluated. These evaluation metrics are illustrated below:

Consistent Keypoints

If keypoint Ki from the image Ii needs to be extracted,
it must be required to identify keypoints that are
consistent in all images I1, I2, I3, ...., In of the same class.
In this case, following formula can be used to measure
the consistent keypoints:

where, Di,Dj = descriptors of keypoints Ki,Kj , ε = a
threshold, pi, pj are coordinates of keypoints, T is a
transformation matrix aligning image j to image i and δ
is a spatial threshold.

Repeatability Rate

In feature detection, the repeatability rate measures
how reliably a detector detects the same physical points
(also known as keypoints or features) in several images
of the same scene, particularly when subjected to various
transformations (such as scale, rotation, illumination,
etc.).

where, Nrepeatable = number of matching keypoints
between an original image and its transformed images.

N1 and N2 = number of keypoints in the original
image and the transformed images, respectively.

Matching Robustness

The ratio of correct matches to total matches under
various circumstances is known as Matching Robustness
(Edstedt et al., 2024).

where, Ncorrectmatches = Number of keypoint matches
that are geometrically correct. Ntotalmatches = All matches
returned by the descriptor matching algorithm.

False Positive Rate

The False Positive Rate (FPR) in feature detection
measures the frequency with which a detector
misidentifies a feature that should not be matched or
detected (Padilla et al., 2020).

where, Nfalsematches = keypoints that are incorrectly

matched,

Ntotalmatches = Total keypoint pairs returned by the
matcher.

Detection Rate

In the context of feature detection, the Detection Rate
quantifies the ability of a feature detector to correctly
identify true keypoints in an image, often in comparison
to ground truth (Padilla et al., 2020).

Ntruepositives = number of correctly detected
keypoints Nfalsenegatives = number of ground truth
keypoints that are not detected correctly.

Mean Localization Error

A widely used evaluation metric in feature detection
is the Mean Localization Error (MLE), which calculates
the average separation between the identified keypoints
and their matching ground truth keypoints (Dai et al.,
2025; Frigieri et al., 2017; Oksuz et al., 2018). MLE can
be represented by the following formula:

where, N =Number of matched keypoints, pi =
position of the ith detected keypoints, pgt

i = position of
the corresponding ith ground truth keypoints, and 

= Euclidean distance ei.

Standard Deviation of Mean Localization Error

The variance in the localization accuracy of identified
keypoints in relation to ground truth positions is
measured by the standard deviation of MLE which is
calculated by the following formula (Frigieri et al.,
2017):

Fig. 8: Sample annotated image
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Experimental Data

In this experiment, three influential factors such as
Rotation, Scale, and Illumination are considered.
Additionally, to conduct the experiment we have used a
system with 16 GB of RAM and a Quad-Core Intel CPU
with a 3.0 GHz clock speed.

Classical feature detection methods are evaluated
using Python and the OpenCV library. Hyper-parameters
of the algorithms are also fine-tuned to identify
consistent accuracy. Besides, the consistency threshold
value of 20-100 is used in this investigation. The
consistency threshold is a criterion that measures how
consistent a match is across multiple views or frames.
The consistency threshold is often defined on the basis of
geometric constraints or similarity measures between
keypoints. In this research, we have investigated
Rotation Invariance, Illumination Invariance, and Scale
Invariance to identify the value of evaluation metrics.

Rotation Invariance: In computer vision and image
processing, Rotation Invariance is vital for tasks like
object recognition, where an algorithm must identify an
object regardless of its orientation in an image. This
allows for more robust and versatile PA applications,
ensuring that the system’s performance is not hindered
by the orientation of the objects it analyzes. Therefore, in
our experiment, we have used the rotated image with
different angles such as 900, 1800, and 2700. For
example, Fig. 9 and 10 represent the keypoint matching
for the rotated images using SIFT.

(a) SIFT Regular

(b) SIFT: 90° clockwise

Fig. 9: Keypoint matching between rotated paired images using
SIFT

(a) SIFT: 180° clockwise

(b) SIFT: 270° anticlockwise

Fig. 10: Keypoint Matching between rotated paired images
using SIFT

Each row represents a distinct rotation angle, while
columns present corresponding feature detection
performance metrics. Notably, Rotation Invariance
proves pivotal, as it ensures consistent feature
identification regardless of object orientation. The values
in Table 2 underscore the algorithm’s robustness across
various rotations, emphasizing its ability to maintain
reliable feature detection under different angular
perspectives. This comprehensive analysis in the table
reaffirms the significance of Rotation Invariance in
bolstering the overall efficacy of feature detection
algorithms in complex visual environments.

Scale Invariance: The Table 3 elucidates the
significance of Scale Invariance in feature detection,
showing performance metrics across different scales.
Rows represent varied scales, while columns display the
corresponding feature detection results of the contending
algorithms. The values in Table 3 underscore the
algorithm’s consistent ability to identify features across
diverse scales, ensuring reliable performance in scenarios
where object dimensions may vary. Fig. 11 represents
images with different scales.

Since Feature Detection involves identifying and
extracting meaningful patterns or structures from data,
Scale Invariance ensures that these features can be
reliably detected regardless of changes in their size or
scale. This property is essential in scenarios where the
size of objects or patterns within an image may vary and
a consistent detection approach is desired. Therefore, we
have tested the algorithms on different scales to check

http://192.168.1.15/data/13525/fig9.jpeg
http://192.168.1.15/data/13525/fig9.jpeg
http://192.168.1.15/data/13525/fig10.jpg
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their robustness. We scaled the images (Figure 11) to
(−)30% (3 times scaled down), (+)200% (2 times scaled

up) and (+)300% (3 times scaled up) in our investigation.
The results of our experiment are stated in Table 3.

Table 2: Comparing Feature Detection Methods Using Rotated Images (Bold Values Signify Desirable/Near-Desirable Metrics)

Rotation Inv. Evaluation Metrics SIFT SURF ORB FREAK BRIEF BRISK KAZE AKAZE
Base Matching Keypoints (Unit: count) 3437 4458 234 3666 1174 5040 3437 2917

Consistent Keypoints (%) 58.85 61.5 63.33> 50.34 49.41 36.4 58.85 42.2
Repeatability Rate (%) 73.78 82.09 70.6 60.45 69.87 58.5 53.79 51.97
Matching Robustness (%) 58.85 67.5 64.6 49.4 51.12 62.4 58.85 42.2
Detection Rate (%) 58.85 65.25 60.6 50.34 49.42 56.4 65.85 55.2
False Positive Rate (%) 41.18 39.2 29.4 49.66 50.58 43.6 41.15 47.8
Std of Localization Error (%) 2.07 1.2 0.022 2.06 0.12 0.03 4.08 0.007

0° clockwise Matching Keypoints 3485 4126 234 2839 655 5022 3485 2771
Consistent Keypoints (%) 59.67 61.0 64.01 40.03 42.2 31.02 59.67 42.2
Repeatability Rate (%) 74.82 75.5 71.6 55.22 60 61.35 54.5 64.82
Matching Robustness (%) 59.67 72.22 63.16 50.93 42.5 51.02 59.67 57.06
Detection Rate (%) 59.67 63.33 61.6 55.5 50 38.98 40.33 59.94
False Positive Rate (%) 40.35 46.11 38.4 55.5 47.7 38.98 40.33 39.94
Std of Localization Error (%) 7.64 7.1 4.63 6.09 9.6 4.6 7.64 4.92

180° clockwise Matching Keypoints 3459 4089 234 2455 870 5005 3459 2862
Consistent Keypoints (%) 59.23 67.12 68.7 44.05 50.43 40.97 59.23 48.43
Repeatability Rate (%) 69.26 74.49 71.0 58.16 67.12 61.29 47.26 49.78
Matching Robustness (%) 59.23 70.9 62.6 59.15 39.5 60.97 59.23 40.43
Detection Rate (%) 59.23 58.05 67.9 60.015 54.5 60.97 59.23 54.43
False Positive Rate (%) 40.77 44.89 39.4 39.99 53.54 49.03 40.77 39.57
Std of Localization Error (%) 4.95 4.56 0.44 3.0 1.05 9.09 2.95 4.43
90° anti-clockwise Matching Keypoints 3327 3802 234 2768 110 5024 3327 2773

Consistent Keypoints (%) 56.97 58.26 57.45 50.00 47.03 31.35 34.45 57.21
Repeatability Rate (%) 71.43 72.44 64.6 60.25 66.49 41.78 69.43 68.88
Matching Robustness (%) 56.97 64.57 65.6 50.06 49.1 61.35 56.97 57.21
Detection Rate (%) 56.97 64.88 63.16 50.06 55.2 61.35 56.97 57.21
False Positive Rate (%) 51.5 43.03 39.4 49.99 52.45 38.65 43.11 42.8
Std of Localization Error (Unit: pixels) 4.85 5.57 0.57 5.0 2.12 5.52 4.85 7.95

Table 3: Comparing Feature Detection Methods Using Scaled Images (Bold Values Signify Desirable/Near-Desirable Metrics)

Scale Inv. Evaluation Metrics SIFT SURF ORB FREAK BRIEF BRISK KAZE AKAZE
Base Image Matching Keypoints (Unit: count) 3982 4817 2927 1174 4746 240 3380 2779

Consistent Keypoints (%) 58.85 61.5 63.33 50.34 49.41 36.4 58.85 42.2
Repeatability Rate (%) 68.1 75.11 71.4 55.83 60.14 52.15 49.17 49.88
Matching Robustness (%) 59.04 60.91 61.11 52.51 48.33 57.79 58.02 54.45
Detection Rate (%) 63.33 70.25 62.8 54.41 50.55 60.9 66.0 61.87
False Positive Rate (%) 38.7 33.9 32.32 52.07 56.29 41.19 47.99 44.19
Std of Localization Error (%) 0.81 0.52 0.024 2.0 1.05 0.044 0.66 0.24

(+200% Image) Matching Keypoints 2196 4125 1442 516 2946 235 1777 1231
Consistent Keypoints (%) 50.3 47.15 55.0 42.39 40.15 29.6 41.0 46.71
Repeatability Rate (%) 71.50 72.91 73.9 62.05 59.91 61.5 57.05 49.88
Matching Robustness (%) 61.11 69.15 70.6 59.12 56.6 61.73 66.33 57.13
Detection Rate (%) 66.33 70.92 71.3 59.52 58.34 62.7 64.22 56.19
False Positive Rate (%) 54.23 51.4 46.66 55.23 61.33 60.32 61.34 59.9
Std of Localization Error (%) 0.081 0.073 0.057 0.15 0.116 0.46 2.41 2.04

(+300% scaled-up Image) Matching Keypoints 8972 9676 7298 2923 20869 500 10228 10177
Consistent Keypoints (%) 81.56 86.6> 87.91 82.2 80.78 89.2 85.33 79.3
Repeatability Rate (%) 70.0 74.4 82.33 79.3 80.86 80.0 81.19 72.8
Matching Robustness (%) 86.8 87.32 89.06 82.0 80.23 83.77 80.65 72.3
Detection Rate (%) 86 87.2 90.06 82.1 79.86 85.5 88.01 84.66
False Positive Rate (%) 20.0 18.5 12.94 22.3 19.14 20.11 24.52 30.0
Std of Localization Error (%) 4.22 3.94 0.2 0.41 5.98 10.0 3.13 5.23

(+33% scaled-up Image) Matching Keypoints 7549 8881 5283 2959 10776 153 5718 7763
Consistent Keypoints (%) 41.57 46.5 48.3 22.61 33.52 28.2 25.91 21.48
Repeatability Rate (%) 32.9 27.18 30.99 36.16 34.241 30.26 29.9 30.6
Matching Robustness (%) 32.9 39.52 45.99 16.16 26.09 22.2 26.1 20.71
Detection Rate (%) 32.9 35.02 38.99 16.16 17.241 10.2 29.91 23.59
False Positive Rate (%) 67.09 61.88 69.01 75.84 71.76 79.8 70.1 79.4
Std of Localization Error (Unit: pixels) 4.22 3.94 0.2 0.41 5.98 10 3.13 5.23
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Fig. 11: Average Scale Invariance of feature matching for
different scales-up image

Illumination Invariance: Illumination Invariance is a
pivotal aspect of feature detection in computer vision and
image processing. The challenge arises from the fact that
lighting conditions in an environment can significantly
affect the appearance of objects, which makes feature
detection algorithms crucial to be robust to variations in
illumination. Illumination Invariance ensures that these
algorithms can reliably identify and extract features from
images, regardless of changes in lighting intensity or
direction.

To address illumination variations, feature detection
algorithms incorporate techniques that normalize or
compensate for changes in brightness, contrast, and
shadows. In our investigation, we have captured images
under different lighting conditions, as shown in Figure

12. Table 4 shows our experimental result based on
different lighting conditions such as (+)50% high,
(−)25% low, and (−)50% low exposures. This
investigation was simulated for 50 epochs. Overexposed
and highly underexposed images were consistently found
to result in lower accepted values of the evaluation
metrics. However, moderately underexposed images (in
this investigation, images captured using ND4 filters)
were found to result in consistent accepted values of the
evaluation metrics.

Fig. 12: Sample images (tomato) with different brightness for
identifying illumination invariance

Table 4: Comparing Feature Detection Methods Using Illuminated Images (Bold Values Signify Desirable/Near-Desirable Metrics)

Illumination Evaluation Metrics SIFT SURF ORB FREAK BRIEF BRISK KAZE AKAZE
Base Image Matching Keypoints (Unit: count) 3982 4889 2927 1118 4746 240 3380 2779

Consistent Keypoints (%) 78.1 81.42 83.9 77.1 75.6 74.1 80.4 77.6
Repeatability Rate (%) 37.16 30.9 39.96 27.76 30 .59 32.6 28.2 28.29
Matching Robustness (%) 37.16 45.23 48.96 27.76 39.59 32.6 28.2 25.31
Detection Rate (%) 37.16 41.14 43.36 27.76 30.59 32.6 38.2 38.28
False Positive Rate (%) 62.84 47.9 39.04 72.24 89.41 77.4 41.8 61.72
Std of Localization Error (%) 0.81 0.52 0.024 0.4 0.05 0.043 2.66 4.1

25% Low Exposure Matching Keypoints 2221 4077 1636 581 3144 280 1821 1433
Consistent Keypoints (%) 63.6 64.2 71.14 39.64 44.77 42.6 52.34 50.15
Repeatability Rate (%) 33.018 22.05 38.15 21.18 20.99 20.6 26.9 30.35
Matching Robustness (%) 29.35 46.55 50.76 41.12 40.2 30.6 42.59 40.34
Detection Rate (%) 29.35 41.05 47.6 40.12 40.0 40.6 35.72 30.34
False Positive Rate (%) 50.65 49.08 39.27 59.88 59.91 49.4 44.28 49.7
Std of Localization Error (%) 5.08 3.073 2.011 5.0 6.036 7.047 7.29 6.11

50% Low Exposure Matching Keypoints 3089 9823 2771 630 250 193 1897 1678
Consistent Keypoints (%) 38.26 41.2 46.94 38.3 33.98 31.0 28.79 30.99
Repeatability Rate (%) 37.79 30.0 42.34 26.45 20.66 31.0 32.59 27.8
Matching Robustness (%) 33.12 39.6 41.34 26.45 23.66 31.0 32.59 37.8
Detection Rate (%) 37.79 41.5 52.34 26.45 40.66 44.3 48.59 47.8
False Positive Rate (%) 62.21 60.09 59.28 73.55 66.34 65.3 47.41 52.2
Std of Localization Error (%) 0.16 0.25 0.02 0.75 0.37 0.189 1.44 0.55

50% High Exposure Matching Keypoints 1890 8909 1360 168 1524 171 909 892
Consistent Keypoints (%) 45.69 48.5 51.15 46.84 40.26 40.2 36.32 41.69
Repeatability Rate (%) 29.48 28.88 28.57 21.71 30.36 30.2 35.19 32.53
Matching Robustness (%) 39.48 42.38 42.6 25.30 28.26 29.2 36.32 37.7
Detection Rate (%) 30.48 35.7 38.58 26.71 27.26 20.2 35.9 37.7
False Positive Rate (%) 60.52 60.09 57.21 57.29 54.74 57.8 63.68 68.3
Std of Localization Error (Unit: pixels) 2.56 3.94 0.24 5.63 6.072 9.6 3.03
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Results and Discussion
Evaluating feature detection algorithms requires

accounting for various factors, such as scale changes,
rotation, illumination variations, noise, blur, and
occlusions. In this study, we focus specifically on scale
changes, rotation, and illumination variations, as these
factors significantly impact object detection in
overlapping images. In the following, we present the
experimental results based on the three key aspects.

Table 2 presents the measured values of various
evaluation metrics for the base images, as well as 90 ◦

clockwise, 180 ◦  clockwise, and 90 ◦  counter-clockwise
rotated images. When clockwise-rotated images were
considered, the impact of rotation invariance on the
evaluation metrics in SIFT was minimal. while the
impact on the SURF, AKAZE, KAZE, BRISK, BRIEF,
and FREAK was higher and their performance was
sharply dropped. For example, the evaluation metric,
such as repeatability, detection rate, matching
robustness, and consistent keypoints decrease
dramatically. In contrast, false positive rate and MLE
increases for clockwise rotated images. However, ORB
performs moderately and consistently in all simulations.

In contrast , for counter-clockwise rotated (900and
1800) images, SIFT performed consistently for all
evaluation metrics, while SURF, AKAZE, BRISK, and
KAZE performed moderately. In this case, when counter-
clockwise 1800 rotated images were considered, ORB
performance was dropped more than 50%.

Similarly, Table 3 provides the measured values of
different evaluation metrics for base images and scaled
images, including (−)33% scaled-down, +200% scaled
up, and (+300%) scaled-up images. In this investigation,
the evaluation results show that the values of
repeatability rate, detection rate, consistent keypoints,
and matching robustness decreased sharply for down-
scaled images for all of the feature detection algorithms.
In contrast, the false positive rate and MLE were
increased for down-scaled images. Although the values
of the evaluation metrics were better for SIFT and SURF
compared to the values of other feature detection
algorithms, ORB demonstrated consistent and moderate
values for all scaling levels.

Additionally, Table 4 displays the measured values of
the evaluation metrics of the feature detection algorithms
on the illumination invariance influenced by variable
brightness exposures. Our experiment shows that a
higher illumination invariance offers better repeatability,
matching robustness, and lower false positives for
feature detectors. That means, detection rate,
repeatability, and consistent keypoints were dropped
while false positive rate and MLE were decreased for
both underexposed and overexposed images. Finally, it
can be concluded that gradient-based feature detectors
(e.g. SIFT, SURF) are better illumination-invariant
compared to the binary feature detectors (e.g. ORB,
BRIEF). However, in this investigation, ORB performed
consistently in all scenarios and factors considered.

Table 5: Benchmarks of Evaluation Metrics Required by Object Detection Techniques

Features Requirements
Consistent Keypoints The consistent keypoints metric means the reliability of keypoints detected under various scenarios including

changes in scale, rotation, and illumination. Usually, a higher level of consistent keypoints is preferable. For
object detection algorithms
High: >75%, Moderate: 50%-75%, Low: <50%.

Repeatability A Repeatability Rate of 80% or more is typically regarded as good performance in practice. However, the
application parameters, the type of data, and the particular difficulties presented by the surroundings or objects
being identified can all affect the allowable range of repeatability rate. For object detection algorithms
High: >80%, Moderate: 60%-80%, Low: <60%.

Matching Robustness A higher Matching Robustness is preferable since it shows that the algorithm can construct feature
correspondences with accuracy and dependability. The range of acceptable Matching Robustness can change
depending on the particular objectives of the feature-matching assignment. For object detection algorithms
High: >80%, Moderate: 60%-80%, Low: <60%.

Detection Rate Generally, a higher Detection Rate of keypoints is desirable, as it indicates that the algorithm effectively
captures a larger proportion of true positive instances in image data. For object detection algorithms
High: >80%, Moderate: 60%-80%, Low: <60%.

False Positive Rate A lower False Positive Rate is generally preferable since it shows that the feature detection algorithm being used
is less likely to identify things incorrectly. For object detection algorithms
High: >10%, Moderate: 5%-10%, Low: <5%.

Mean Localization Error This metric evaluates the degree to which the identified keypoints correspond to their actual location within the
image. Usually, the Mean Localization Error is between one and three pixels. For object detection algorithms
High: >3 pixels, Moderate: 1-3 pixels, Low: <1 pixels.

Std of MLE Since it shows that the mean localization errors are less variable and more constant, a lower standard deviation is
preferred. A low standard deviation indicates that the algorithm delivers accurate and reliable feature localization
consistent across various scenarios. The mean localization error standard deviations are commonly given as
pixel values, with a standard deviation of less than 1 pixel typically regarded as satisfactory performance. For
object detection algorithms
High: >15%, Medium to High: 05%15%, Medium: 5%-10%. Low: <5%.
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Table 6: Metrics-wise evaluation results

Approaches
Metrics
Matching
Keypoints

Detection
Rate

False
Positive Rate

Consistent
Keypoints

Repeatability
Rate

Matching
Robustness

Mean
Localization Error

SIFT (Lindeberg, 2012)

SURF (Bay et al., 2006)

ORB (Rublee et al., 2011)

FREAK (Alahi et al., 2012)

BRIEF (Calonder et al., 2010)

BRISK (Leutenegger et al., 2011)

KAZE (Alcantarilla et al., 2012)

AKAZE (Kalms et al., 2017)

Based on the above experimental analysis, we find
that the ideal value of the evaluation metrics for
measuring the performance of the feature detection
algorithms depends on some particular requirements of
the application and the quality of the data being
processed. Widely used benchmarks of different
evaluation matrices for object detection is stated in the
Table 5. From our investigation, we find the performance
of these metrics for different algorithms stated in Table 6.
This table shows that the ORB performed better
compared to other algorithms. In Tables 2, 3, and 4, bold
faced values show the first and second best values of the
evaluation metrics for the algorithms in our
investigation. This investigation also found that SURF is
the second best performer following the ORB algorithm.

Limitations of Feature Detection Approaches

Despite the growing popularity of the use of the UAV,
there are still some significant issues with the UAV-
captured image data processing (Pacot and Marcos,
2018; Rokhmana, 2015; Mizotin et al., 2010). In this
study, we find the following significant limitations in the
UAV-captured image data processing, especially in the
field of PA. Since the UAV takes images from various
angles, the number of matching keypoints for
overlapping images could differ. Rotation invariance,
illumination invariance, and scale invariance must
therefore be further investigated in order to determine the
comparable number of matching keypoints from the
overlapping images.

The quality or informativeness of each keypoint may
degrade as the number of keypoints increases. Finding
the right balance between quantity and quality can be
difficult. In this study, it was found that if the number of
keypoints (nfeatures) for ORB is set to 2000 or more, it
floods the image with keypoints including less
informative, noisy, and redundant regions. Similarly,
decreasing the parameter hessianThreshold (threshold for
keypoint detector response) to 400 allows SURF to
detect fewer but higher-quality keypoints, while setting it
to 100 detects more but lower-quality keypoints.

When keypoints are difficult to distinguish in a scene
with repeating patterns, feature detectors may have
trouble matching, causing ambiguities. In our
experiment, ORB identified several similar corners on
leaves, stems, or tomatoes in a row by assigning similar
binary descriptors but failed to detect unique features,
leading to false matches. Further research on feature
detection algorithms is needed to improve repeatability.

Existing feature detection algorithms lack robustness
in diverse environmental scenarios with variations in
lighting, airflow, weather, and clutter. For instance, in
this study, ORB was unable to detect matching keypoints
under shadowed and overexposed images.

There is an absence of occlusion-aware feature
identification algorithms that can identify only occluded
features, determine their significance, and distinguish
occluded from unoccluded features. In this study, when a
ripe tomato was partially covered by a leaf, SIFT did not
always detect the tomato’s keypoints.

There may be very little forward overlap since the
attitude angles (Hirakoso et al., 2016) between adjacent
UAV-captured images are substantially larger than those
in conventional aerial images. Feature matching in this
scenario presents a significant challenge for detectors
dealing with PA-related issues.

The lateral overlap degree may not be sufficient for
image mosaicing since flight paths are curved.

To make feature detectors more robust in real-world
scenarios, data augmentation techniques must be
improved. These techniques involve training detectors
with synthetic data that include occlusions and
overlapping objects.

Feature detection algorithms should ensure temporal
consistency in feature detection and the ability to track
features across temporarily occluded or overlapped
frames.

Parameter sensitivity is a key challenge in feature
detection. Some algorithms require fine-tuning of

Highly Desirable Medium to High Desirable Medium Desirable Low Desirable
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parameters, and their sensitivity affects performance. For
example, ORB performance may vary significantly due
to nfeatures (number of keypoints to retain) and
scaleFactor (pyramid decimation ratio), which affect
detection density and robustness. Finding optimal
parameters for diverse datasets is challenging.

Feature detection algorithms may lack semantic
understanding, leading to the detection of keypoints in
irrelevant or non-informative regions. Improving
semantic relevance remains an ongoing challenge.

Ensuring that feature detection algorithms generalize
well across diverse datasets remains a persistent
challenge.

Algorithms that perform well on one type of data
may struggle when applied to different scenes or
domains.

Addressing these limitations is crucial to advancing
feature detection algorithms to perform effectively in
complex and dynamic real-world environments, where
occlusions and overlapping objects are common
challenges. Solutions to these problems can significantly
impact various applications, including object
recognition, tracking, augmented reality, and robotics, to
improve PA performance.

Hence, various preprocessing should be carried out
before image processing to prevent the aforementioned
issues and ensure that the images are suitable for
mosaicing and mapping. The overlapping image analysis
and current approaches to solve the overlap problem for
the UAV-captured images are kept open for future work.

Combined Use of Classical and DL-Based
Approaches

Although classical feature detection algorithms are
highly effective and robust, they are not typically used as
a deep neural network for real-time image feature
detection in PA. Since these classical algorithms
themselves are not typically used directly within deep
learning models, their feature descriptors can be
incorporated into deep learning architectures for tasks
such as image retrieval, image classification, and object
detection. Here is how these algorithms can be used in
conjunction with deep learning for image feature
detection algorithms:

Feature extraction: Classical algorithms extract
keypoint locations and feature descriptors from images.
These keypoints and descriptors capture important
information about distinctive regions in the image, such
as corners, edges, and texture patterns.

Feature Matching: Once keypoints and descriptors
are extracted from multiple images, they can be matched
to find the corresponding points between images. This is
useful for tasks such as image registration, where the
goal is to align different views of the same scene.

Training Data Generation: Descriptors generated
from these approaches can be used to generate training
data for deep learning models. For example, we can
extract SIFT descriptors from an image dataset and use
them as input features for training a deep neural network.

Feature Fusion: These descriptors can be used with
other types of features (e.g., deep learning-based features
such as CNN activation) to improve the performance of
tasks such as image classification or object detection.
Fusion techniques can include concatenating feature
vectors, using attention mechanisms, or combining
feature maps at different network layers.

Fine-tuning Pretrained Models: Descriptors extracted
by the classical Computer Vision approaches can be used
to fine-tune pre-trained deep-learning models for specific
tasks. For example, we can use SIFT descriptors as
additional input channels to a CNN and fine-tune the
network’s weights on a new dataset with limited labeled
data.

Hybrid Approaches: Researchers have explored
hybrid approaches that combine handcrafted feature
descriptors like FAST with deep learning architectures.
These approaches leverage the complementary strengths
of handcrafted and learned features to improve
performance in tasks such as image matching, object
tracking, and visual localization.

Conclusion
Remote sensing technology like the UAV is being

popular in PA especially crop detection, crop yield
predition, leaf disease detection, weed detection,
forecasting harvesting period, etc. Therefore, increasing
the efficiency of the UAV-based image analyzing
methods is crucial. In line with this goal, this study
explored the feature detection algorithms (as depicted in
Section 2) to analyze their performance using the UAV-
captured images of the tomato field. In this review study,
standard benchmarks (Table 5) are also identified for the
evaluation metrics of these feature detection methods. In
our experiment, we have considered three factors such as
rotation, illumination, and scaling for selected images. In
the future, we shall also deploy different machine
learning algorithms (Adnan and Islam 2016, 2017;
Adnan et al., 2021) for the purpose of parameter tuning
in different application contexts. After evaluating these
methods, we have identified their ability (Table 6) and
limitations (stated in Section 7.1) to detect features in the
images of a tomato field. We found that ORB and SURF
among the classical feature detection methods performed
better in feature detection in all three scenarios (i.e. for
rotated, scaled, and illuminated images). Our
investigation also found that fusion of the classical
feature detection methods with deep learning methods
may enhance the efficiency in feature detection,
particularly in the real-time process. Therefore, further
studies are required to resolve these limitations.
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