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Abstract: The economy of Tanzania is mostly driven by agriculture.
Disease is one of the reasons that contributes to the low production of staple
foods like cassava and maize, alongside climate change. Loss of income and
food security are the results. In order to detect the diseases early,
preventative measures are required. A potential option for farmers could be
the use of image processing tools to identify plant diseases on leaves.
Implementing the existing method of disease detection, which involves an
expert using their naked eyes, on a large farm is a laborious and time-
consuming process. This study provides a comprehensive overview of recent
research in image processing by reviewing methods for identifying plant
diseases in their leaves or fruits and the corresponding machine learning
models for disease classification. This study examines issues in the
identification of plant diseases, pertinent to agriculture-dependent nations
like Tanzania and India. Presenting the present state of the art, elucidating
the steps done during the image processing stage, and assessing the pros and
cons of each technique as well as the effectiveness of the machine learning
model used for disease classification are the primary goals of the work.
Among the preprocessing and resampling techniques, the evaluation's results
show that GIN-based approach for resampling, in conjunction with contrast
limited adaptive histogram equalization (CLAHE), achieved the best results,
with an average F1-score of 95.65% and a classification accuracy of
95.62%. The study concludes with a generic process for a disease detection
system, which may be broken down into individual components as needed.

Keywords: Graph Isomorphic Network (GIN), Graph Neural Network
(GNN), Plant Disease Detection, PlantDoc Dataset, Image Processing,
Adaptive Histogram Equalization (AHE)

Introduction
Agriculture has played a significant role in India's

economic progress. If agricultural damage significantly
reduced productivity, the economy would suffer. Leaves
are the first to display symptoms of illness due to their
fragility (Sharma et al., 2023). It is important to keep an
eye on crops for signs of disease from the time they are
seedlings all the way to harvest. Historically, plant
disease monitoring relied on the time-consuming and
error-prone practice of naked-eye inspection, which
required experts to physically oversee crop fields. In

recent years, numerous approaches have been employed
to develop automated and semi-automatic systems that
can identify plant diseases. Compared to the traditional
method of farmers' manual observation, these methods
are faster, cheaper, and more accurate so far. As a result,
there is a pressing need to provide technical solutions
that can identify plant diseases more independently
(Khalid & Karan, 2023). Whether on enormous
commercial farms or small subsistence farms, crop
production is essential to human survival. Pathogens
such as bacteria, fungi, viruses, and others have persisted
throughout the history of this vital sector. By persistently

Journal of Computer Science



D. Sumathi et al. / Journal of Computer Science 2025, 21 (9): 2065.2073
DOI: 10.3844/jcssp.2025.2065.2073

2066

endangering the very essence of agriculture, these
invisible enemies erode food security and sustainability.
On a worldwide basis, plants are largely responsible for
providing food (Sunil et al., 2022). However, they are
susceptible to infections due to a variety of
environmental factors, which greatly reduces their
productivity. The increase in plant diseases has a
detrimental effect on agricultural production. Failure to
promptly detect plant diseases will exacerbate food
shortages. Crop failure is directly caused by plant-eating
pests, weeds, and diseases, which in turn lead to
economic and production losses.

The host plant, an ideal surrounding environment,
and the infectious agent all have a role in the
development of plant diseases. The plant disease triangle
seen in Figure (1) is a result of these variables. When a
plant gets sick, the symptoms usually start at the base
and work their way up. After infecting a crop, many
plant diseases spread to other parts of the crop. Thus, it is
crucial to keep an eye on crops on a frequent basis, as
early disease treatment can help stop their spread.

Fig. 1: Proposed model architecture

Improving agricultural yields and quality is difficult
due to a multitude of other factors, such as the increase
in greenhouse gas emissions and the use of chemical
fertilizers in modern farming methods. Infected plants
often show apparent symptoms, such as lesions, on their
leaves, trunks, flowers, and fruits. It is common practice
to use a single visual template for all insect or disease
habitats when evaluating abnormalities (Sharma, 2024).
It is common for plant diseases to spread through the
leaves of infected plants, and it is often the leaves that
show the earliest signs of a disease's prophetic
significance. Experts in agricultural and plant pathology
sometimes make house calls to farmers to provide
connection-based diagnoses of pests and diseases
affecting their crops. All at once, this approach is lofty,
useless, and modest. Less experienced farmers may
apply pesticides and insecticides recklessly during
screening because they make bad decisions. Because of
this, there have been catastrophic losses in terms of
money (Kartikeyan & Shrivastava, 2021). A key
component in addressing these challenges is the use of
automated image processing methods for the detection of

plant leaf diseases. Timely perception is essential for the
effective monitoring and interdiction of plant leaf
diseases and choices of agricultural products. Using the
PlantDoc dataset and the GIN model, this paper aims to
establish a viable approach for predicting leaf species
and diseases in thirteen different types of plants. An
extensive library of plant leaf photos annotated with
disease and species names is available in the PlantDoc
dataset. A multi-tasking object detection model, GIN is
state-of-the-art. This research concentrates on utilizing
Graph Isomorphic Networks (GIN) for the early
detection of plant diseases, tackling significant
agricultural issues. This study focuses on scalable
methods for the efficient identification of various plant
diseases, leveraging recent breakthroughs in machine
learning. The purpose of this study is to assess how well
the GIN model can identify plant diseases and species
using leaf photos. The study's findings will shed light on
the feasibility of disease and species prediction in leaves,
as well as its potential uses in forestry and agriculture.

Literature Survey

Recent advances in machine learning and image
processing have enabled autonomous agricultural disease
detection. Jadhav et al. (2021) suggested identifying
plant diseases with a Convolutional Neural Network
(CNN). This method detected soybean plant diseases
using pre-trained CNN models. GoogleNet and AlexNet
were used for transfer learning. Despite improved results,
the model's classification variety was weak. Huang et al.
(2019) developed the Efficient Net model to categorize
input into multiple labels using a CNN. CNN had hidden
layers before. Plant diseases are now better identified.
The model yielded poor results when evaluated using
reference datasets and strong, efficient, loss-free CNN.
Panchal et al. (2023) suggested a CNN-based Deep
Learning (DL) model for accurate plant disease
categorization. First, preprocessing, and then
segmentation. An Artificial Neural Network (ANN)
classifies things. The model recognized 93.6% of classes,
but it misclassified several later on. Insufficient data also
hampered the model. A hybrid CNN by Lakshmi
Narayanan et al. (2022) improved banana plant disease
classification accuracy. Kiani and Mamedov (2017)
automated the detection and categorization of plant
diseases using a Genetic Algorithm (GA) as the image
segmentation method. The SVM classifier attained an
accuracy rate of 86.55%, and the Minimum Distance
Criterion with k-mean clustering had a rate of 95.72%
when it came to disease classification. Maximum
Distance Criterion classifier integration with
evolutionary algorithm improves accuracy to 93.64%.
Benzothiadiazole (BTH) prevented powdery mildew
infection in wheat by interfering with many stages of the
pathogen's life cycle (Zhou et al., 2013). To make sure it
lasts, we use a machine learning method called support
vector machine (SVM). This section mostly focuses on
wheat plants and strategies for disease prevention. In
Wang et al. (2012), image processing algorithms and an
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(ANN) are used to identify plant diseases early and
accurately. ANNs with capacity lists for order execution
performed better in trials, with 91.9% accuracy. The
assessment reveals several key characteristics that
require a basic method of disease detection in plants to
improve the agriculture industry (Gavhale & Gawande,
2014). Plant disease detection methods include
Stochastic Gradient Descent with Momentum (SGDM),
K-implies bunching, SVM, and Back Propagation Neural
Network (BPNN). SVM classifier for plant disease
detection (Kaur & Kang, 2015). In a single unhealthy
image, the background and black pixels are divided at
the start with a value of 5.55. This ground-breaking
investigation will identify plant pollution. This study
evaluates early plant rust detection strategies (Naikwadi
& Amoda, 2013). Large c-insulins Wheat leaf implanted
highlights are retrieved via clustering, infection
detection, sort recognition, and ID computing, (ANNs)
help us do this. Similarly, (Ferentinos, 2018) designed a
CNN model for illness detection in plants; they found 57
distinct groups of easy-to-understand plant-problem
combinations. The findings for these classes were
99.55%, which led to the suggestion of using them for
early plant disease diagnosis in real time. This study's
proposed method automatically predicted treatment
response for diseased plants by using GIN, a deep
learning algorithm, to learn discriminative characteristics
from functional connectivity. This study also attempted
to find the most discriminative sick regions for treatment
response prediction, which could be a predictive imaging
biomarker for early treatment efficacy identification in
plants.

Materials

Proposed Methods

Plants are vital for human energy generation and have
nutritional and therapeutic benefits. Plant diseases can
harm crop yield and economic value at any point during
the farming process. In the farming industry, identifying
leaf disease is vital. However, it requires significant
labor, preparatory time, and extensive plant pathogen
expertise. Researchers have created and tested several
Machine Learning (ML) and Deep Learning (DL)
algorithms for detecting plant diseases, yielding
considerable results in both. This article examines the
performance of GNN, GNN-LSTM, BiGRU, ELM,
DNN, BiGRU-Att, LSTM-DNN, and GIN for detecting
plant diseases.

Digital signal processing is an approach for obtaining
fast and precise results about plant leaf diseases. It will
reduce numerous agricultural issues while increasing
productivity by detecting the relevant diseases. Figure
(2) depicts the conceptual structure of the plant disease
detection pipeline, emphasizing essential components
such as preprocessing, feature extraction, and disease
classification via GIN. This framework displays the
orderly progression from raw picture input to disease

prediction. For disease detection, an image of an infected
leaf should be examined using a set of methods. Figure
(2) indicates that the input image should be preprocessed
before its features are retrieved based on the dataset
(Dagwale & Adakane, 2023). Following that, certain
classifier techniques should be applied to categorize
diseases based on the specific data set.

Fig. 2: Proposed model architecture

Table 1: Summary of PlantDoc dataset

Crop Classification Images
Blue Berry Healthy 117
Graph Healthy

Black Rot
69
64

Apple
Healthy
Scab
Rust

91
93
89

Cherry Healthy 57

Corn
Leaf Blight
Grey Leaf Spot
Rust

192
68
116

Strawberry Healthy 96
Bell Pepper Healthy

Leaf Spot
61
71

Peach Healthy 112
Squash Powdery Mildew 130
Potato Early Blight

Late Blight
117
105

Soybean Healthy 65
Raspberry Healthy 119
Tomato Healthy

Early Blight
Late Blight
Spider Mite
Bacterial Spot
Yellow Virus
Septoria Leaf Spot
Mosaic Virus
Leaf Mold

63
88
111
2
110
76
151
54
91

Plant Doc Dataset

The PlantDoc dataset (Uddin, 2024) shares similar
classes and illnesses with PlantVillage. It is also
publically available. However, the PlantDoc dataset is
substantially smaller. This study employed Images from
PlantDoc datasets. Table (1) summarises the datasets
used in this investigation.  There are a total of 2598
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photos (Leygonie et al., 2024; Ahmad et al., 2023a). The
PlantDoc collection includes images of plant  illnesses
collected in the field. However, the majority of the
images  were obtained from online sources, making the
dataset very volatile. The PlantDoc collection contains
images of leaves collected in their natural habitat and
retrieved via internet scrapping. The collection includes
2578 pictures from 13 plant kinds, with 30 classes
indicating healthy and sick leaves (Figure 3). The dataset
contains 67% of photos with abnormalities.

Fig. 3: Example images of PlantDoc dataset for both training
and testing

Images of plant illnesses collected from the field and
annotated for the purpose of training models to detect
crop diseases from field condition photos are housed in
PlantDoc (Ahmad et al., 2023b). Figure (3) shows that
several of the images in the dataset featured leaves that
did not appear to have been captured on plants and
instead looked more like images taken in a lab and that
the images were generally of low quality due to being
obtained from the internet. The PlantDoc collection,
while globally sourced, encompasses crops and illnesses
prevalent in India, rendering it relevant to actual
agricultural issues in these areas.

Preprocessing

It is possible to make more accurate prediction
judgments using raw photos with high-resolution (HR)
images. Improved disease prediction for plants is often
possible with higher-resolution images compared to
lower-resolution ones (Ojo and Zahid, 2023). The
creation of automated diagnostic tools is made feasible
by HR pictures, which aid farmers in spotting problems
early and making informed decisions.

Object detection and picture segmentation are both
improved by this. When there are a lot of variances in the
input photos, it might be difficult for non-learning-based
deterministic image preprocessing methods, such as
high-pass filters, to maintain the same level of
enhancement across a wider range of images. The
methods can be enhanced by making the input adaptable.
Raw photos, where a high degree of unpredictability is
common, may be ideal for this.

Adaptive Histogram Equalization

AHE is a method for enhancing picture contrast that
selectively modifies a small area of the image (the tile).
An enhancement to histogram equalization is computed

and applied for each tile in order to increase contrast
(HE), acting as a contrast transform function. When there
are areas of a picture that are noticeably lighter or darker
than the rest of the image, this method also fails to
properly adjust the contrast. For photographs of plants,
this could be helpful because the contrast in different
parts of the image is likely to be different. Using the
AHE approach, on the other hand, boosts contrast and
introduces additional noise to regions of the image that
are otherwise rather stable.

Image Sharpening

An essential technique for improving the overall
visual impact of photographs is sharpening, which does
this by raising the contrast between the image's edges.
By increasing the image's high-frequency components, a
high-pass filter is used to acquire a sharpening mask
before sharpening the image. Following the sharpening
process, the edge's gradient will be amplified. Image
noise has increased, which is definitely an issue, even
when very minor imperfections are shown.

CLAHE + Sharpening (CL + SH)

Applying CLAHE first and then performing an image
sharpening phase is an example of a combination method
that works. This method of composite picture preparation
was motivated by two main ideas. Firstly, CLAHE
enhances images without noise by utilizing a clip limit;
however, this also restricts CLAHE’s image-improving
capabilities, which leaves space for future improvements.
Secondly, an unrestricted comprehensive improvement is
nevertheless compromised by noise when it comes to
picture sharpening. Therefore, CLAHE may be able to
improve and decrease noise in the image by sequentially
using these two steps. The next step is to apply
sharpening to the image to make it even better without
distorting it.

Segmentation and Feature Extraction of Image

Pattern recognition relies heavily on feature
extraction. Features selected for identification through
classification play a pivotal role in pattern recognition.
By comparing the intensity of photos of sick plants,
researchers were able to identify the pattern of symptoms
caused by the disease. What makes up the digital image
is the data included in the image, which comprises the
pixel-by-pixel values of color intensity. The three
primary colors, red, green, and blue, make up the
apparent value of a color. As a result, specific hues
represent a vector system with orthogonal axes in
accordance with the color space's established norms. In
order to determine the efficacy of intensity-based
statistical features for plant disease identification, it
employed a decision tree.

The feature extraction method presented in Algorithm
1 is one such procedure. First, the algorithm creates
feature vectors, which are subsequently fed into the

http://192.168.1.15/data/13261/fig3.png
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

decision tree for classification (Sabrol & Kumar, 2016).
Prior to proceeding, the images are adjusted to a standard
of 256 × 256. The next thing to do was alter the hue of
standard images using Otsu's segmentation. Make the
switch to the CIE W Z and Y color space after that. Using
the images of healthy and sick plants then computed a
total of ten statistical characteristics. It includes three
means, three standard deviations, and three skewnesses
when it comes to the exacted components W, Z, and Y, in
addition to related features of the W and Z components.
The final feature vector is composed of:

Here are the color descriptions:

Where,  is the image's pixel count, and  is the
value of the  color component of pixel .

Here is the description of the color correlation
coefficient:

Where, , and . The
color feature space offers a variety of correlation vectors,
which are represented by the  and . Before sending
the features to final classification, they are normalized.
Images of diseased or uninfected plants can undergo
processing normalization, which alters the intensity
value range of individual pixels and applies the change to
feature vectors (Sabrol & Kumar, 2016). The goal was to
improve the categorization capabilities of the newly
created feature vectors by focusing on their individual
components. Applying Zero-Mean and Unit-Variance
Normalization (MV) to an n-dimensional feature vector

 obtained from the provided images of diseased or non-
infected plants allowed us to normalize the features.

The normalized feature vector  is produced by MV
by scaling all the  and  components

 of  in the colour
space using the following expression:

Where ,  and  denote
the mean value of the feature vector and standard
deviation, respectively. By applying the MV approach,
the feature vector  is converted into a random variable
with a mean of zero and a variance of one. At last, we
generated the vector of normalized features.

GIN Model Training

In recent times, the graph convolutional network has
arisen as an attractive and potent paradigm for handling
data from non-Euclidean graphs. Brain regions can be
thought of as nodes in a network and connections
between them as edges; this representation is a perfect fit
for the human brain. The  binarized functional
connectivities (FCs) served as the edges connecting
nodes, and the connections between other brain regions
were the present node's characteristic (Liu & Wang,
2021). with a feature vector  per node
can thus be used to depict the human brain for any node

 Within this study,  stands for the subject's
created brain network,  for brain areas, and  for the
correlation between them. Our objective is to create a
representation vector  that can anticipate the label of
graph  given a collection of graphs 

 and their labels 

The robust GNN models learn the graph 's
representation or the node feature  from the
topological structure and the node feature. Most GNNs
employ the neighborhood aggregation method (Duan et
al., 2023). By combining the representations of nearby
nodes, this method iteratively updates the node
representation. With iterations, one can learn the
structure of the hop neighbors of a node. The
following is one representation of the th layer of a
GNN:

For node  on the th layer, the feature vector is
represented as d.  represents the neighbor node
set with , and we started with  The readout
function culminates in the following transformation of
the graph's node characteristics into graph features:

Brain regions with similar topologies in a network
are likely to share functional characteristics. Therefore,
correctly identifying brain regions with similar
architecture is crucial for investigating brain disorders.
However, GNNs reach their limit when it comes to
distinguishing graph structures, and the WL test method
finds isomorphism between two graphs depending on the
number of nodes with edges and the connectedness of
edges in the two graphs. Since it is not feasible to map
two separate neighborhoods to the same representation,
an injective aggregation pattern is necessary for a GNN
to have the same degree of power as the WL test
procedure. Because it gathers neighbor nodes through the
action of multiset injector functions, GIN improves the
performance of graph convolutional neural networks on
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(9)

(10)

homomorphic graphs. Specifically, it iteratively gathers
and updates node characteristics using the following
formula:

The value of  can be either fixed or learnable. The
human brain is like a graph, with various regions serving
as nodes. In order to get the graph-level representation
for the treatment response prediction, we used the
following readout function:

In which  stood for the graph characteristic of each
subject. The last step was to use linear layers and the

 algorithm to classify the features.
Although crop-specific datasets are optimal for targeted
applications, the GIN model's capacity to generalize
across many crops and diseases illustrates its potential as
a scalable solution for areas with varying agricultural
practices.

Results and Discussion
The importance of conducting relevant research to

sustainable agricultural development is highlighted by
the increasing usage of artificial intelligence in plant
disease diagnosis and other advancements in agricultural
technology. Manually interprweting the symptoms of leaf
diseases, such as early blight and late blight, is a
laborious and time-consuming process that has a
significant impact on potato yield and quality. Automated
and effective diagnosis of these diseases during the
budding phase can help improve potato crop output, even
though it needs a high level of skill. A number of models
for identifying plant diseases have been put forward in
the past. This study introduces a technique that extracts
useful characteristics from a dataset by fine-tuning
(transfer learning) pre-trained models such as GIN.

The data was divided into an 80-20% ratio for
training and testing purposes. The models Area Under
the Curve (AUC), Classification Accuracy (CA),
Precision (P), Recall (R), and F1-Score are displayed in
Table (2).
Table 2: Comparison of Models

Models Precision F1 Score AUC CA
GNN 93.8 93.8 98.7 93.4
CNN-LSTM 90.9 90.9 98.4 90.9
BiGRU 92.6 92.7 98.6 92.7
ELM 91.5 91.5 98.8 91.5
DNN 93.6 93.7 98.3 93.8
BiGRU-Att 94.1 94.1 98.7 94.2
LSTM-DNN 90.6 90.6 98.2 90.6
GIN 95.6 95.6 98.9 95.6

The GIN model outperformed all other models in
plant disease identification with a top-1 error rate of only
0.48% and a classification accuracy of 95.63%. This
impressive precision demonstrates the model's strong

capacity to correctly detect plant diseases. Looking at
how the GIN model fared on the testing dataset during
training compared to other models is shown in Figure
(4). The findings confirm that the GIN model is the best
option for jobs involving plant disease identification due
to its efficiency and accuracy. More accurate and
automated disease identification is now possible thanks
to this huge leap forward in applying cutting-edge
machine-learning techniques to agricultural applications.

Fig. 4: Accuracy and loss values at different levels

Examining the potential for CL + SH to enhance the
performance of different deep learning classifiers (GNN,
CNN-LSTM, BiGRU, ELM, DNN, BiGRU-ATT,
LSTM-DNN, GIN) when combined with a GIN-based
method is the goal here. Consequently, using the data set
in Table (3), compare the results of 8 weighted deep
learning classifiers trained on both raw pictures and CL +
SH, two forms of preprocessed input. With its ability to
improve the functioning of deep learning classifiers, CL
+ SH substantially beats raw pictures in terms of ACA,
as shown in the Table.

The mean F1 score over a 30-epoch training period
was analyzed across all experiments, with experimental
configuration parameters aggregated together. The
intensity of a certain class at any given point indicates
the level of uncertainty across experiments using that
specific setup. Figure (5) depicts a comparison of the
progression of the mean F1 score across all experiments
organized by the deep learning architectures utilized.
This analysis sheds light on how different model
configurations affect both performance and stability
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during training. The full study shows how some
configurations regularly reduce uncertainty, resulting in
higher F1 ratings. By visualizing these trends, the
analysis provides a thorough knowledge of the
interaction between experimental parameters, uncertainty
levels, and overall model performance across a variety of
configurations.
Table 3: Different Preprocessing Techniques for GIN Classification

Preprocessing
Technique

Indices Healthy Diseased Overall Performance

AHE Precision 87.2 83.6 85.4
Recall 86.1 84.3 85.2
F1-Score 86.7 83.9 85.3

CL+SH Precision 95.8 95.4 95.6
Recall 95.8 95.4 95.6
F1-Score 95.8 95.4 95.6

SH Precision 95.3 94.1 94.70
Recall 92.2 96.4 94.3
F1-Score 93.5 95.3 94.4

Fig. 5: Proposed model F1 score comparison

Fig. 6: Confusion Matrix for the Proposed Model (PlantDoc)

Figure (6) reveals that the GIN model outperformed
others due to its effective compound scaling strategy.
This strategy consistently grows network breadth, depth,
and resolution, allowing to maintain of an optimal
balance between model size and accuracy, exceeding

standard scaling approaches used in GNN, CNN-LSTM,
BiGRU, ELM, DNN, BiGRU-ATT, and LSTM-DNN
architectures. Despite its deep architecture, BiLSTM had
the lowest performance of the models. The smaller and
less complicated PlantDoc dataset may not have
completely used DNN's vast capacity, potentially
resulting in overfitting. Although dense connections
increase feature reuse and alleviate the vanishing
gradient problem, they may have introduced duplication
in feature maps for this task, resulting in lower
performance relative to CNN-BiLSTM.

Fig. 7: ROC curve of the models

Fig. (7) shows a Receiver Operating Characteristic
(ROC) curve that compares the performance of several
models depending on their sensitivity (true positive rate)
versus 1-specificity (false positive rate). Each curve
represents a distinct model, and their Area Under the
Curve (AUC) values are shown in the legend to reflect
their performance. The proposed model, GIN (black
curve), has the highest AUC of 98.9%, beating out other
models such as ELM (98.8%), GNN and BiGRUAtt
(both 98.7%), and CNNLSTM (98.4%). The ROC curves
are tightly grouped, indicating competitive model
performance. The legend, positioned in the bottom-right
corner, is color-coded for easy identification. This
visualization demonstrates the proposed GIN model's
enhanced discriminative power, as evaluated by the AUC
metric. The chart is well-labeled with axes ("Sensitivity"
and "1 - Specificity") and a title ("ROC Curves with
AUC Values") for clarity.

Figure (8) is a bar chart named "Performance
Comparison," which shows the evaluation of multiple
models using four metrics: CA (Classification Accuracy),
Recall, F1 Score, and Precision. The models being
compared are GIN, LSTM-DNN, BiGRU-Att, DNN,
ELM, BiGRU, CNN-LSTM, and GNN, with each
represented by a different color-coded bar. The
performance scores for each metric vary from 88 to 96,
indicating that the models are highly accurate and
consistent. The GIN model looks to perform the best

http://192.168.1.15/data/13261/fig5.png
http://192.168.1.15/data/13261/fig5.png
http://192.168.1.15/data/13261/fig6.png
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across all criteria, followed by BiGRU-Att and CNN-
LSTM, both of which have competitive scores. GNN and
LSTM-DNN perform relatively well, with ELM and
BiGRU scoring somewhat lower than the rest. The
graphic effectively depicts the relative strengths of each
model in handling classification tasks, with GIN
emerging as the most robust performer.

Fig. 8: Performance comparison

Conclusion
Crop diseases have recently seen a meteoric rise,

thanks to both altered weather patterns and a general lack
of crop immunity. As a result, farmers lose money due to
the widespread destruction of crops and the subsequent
decline in cultivation. Identifying and treating diseases
has become a significant difficulty due to the rapid rise
of both the type of diseases and the amount of
knowledge that farmers have. There are telltale signs of
disease in the leaves, such as similarities in texture and
appearance. Therefore, the solution to this problem can
be found by utilizing computer vision in conjunction
with deep learning. This research presents a deep
learning model that can distinguish between crop leaves
that are healthy and those that are sick, using a publicly
available dataset for training purposes. The model
accomplishes its goal by sorting leaf pictures into a sick
category according to the defect pattern. Capturing and
preparing images make up the first of five stages in the
suggested algorithm. Using a set-size resizer helps
standardize and resize images. The preprocessing and
segmentation using Otsu's approach are also part of this
step. It then applied color space conversions using the
segmented color images in the second phase. Eleven
color descriptors for five hues are calculated in the third
step. We next ran the features that were retrieved through
eight separate classifiers. Finally, the accuracy of
recognition was assessed.
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