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Abstract: The escalating frequency and sophistication of cyber-attacks on
Internet of Things (IoT) devices present a pressing challenge to
cybersecurity. With IoT device connections projected to exceed 42 billion by
2025, the vulnerability of these devices to cyber-attacks has never been
more evident. This paper investigates the integration of Machine Learning
(ML) and data augmentation, specifically Generative Adversarial Networks
(GAN) and Federated Learning (FL), as innovative measures to fortify IoT
security. The study aims to balance the CIC IoT Dataset 2023 using GAN-
generated synthetic data and to enhance ML model performance through FL,
with eXtreme Gradient Boosting (XGBoost) as the FL framework's
backbone. The utilization of GAN for data augmentation addresses the
persistent challenge of data imbalances in datasets. The comparison between
the FL and traditional approaches in IoT security analytics reveals distinct
advantages of FL, particularly in data privacy, scalability, and handling
imbalanced data. While FL consistently delivers high accuracy, precision,
recall, and F1-scores, the traditional approach varies more, often requiring
additional data balancing and model tuning.

Keywords: Internet of Things, Privacy Preserving Mode, Security,
Federated Learning, Data Augmentation

Introduction
The Internet of Things (IoT) is rapidly expanding

with an approximated 42 billion connected devices by
2025 (Statista, 2023). Current research highlights a
300% surge in IoT-related attacks, with over 10.54
million incidents recorded in December 2022 (Maloo and
Nikolov, 2022; Statista, 2022). Machine Learning (ML),
as a new emerging technology, is able to enhance
cybersecurity threat detection by enabling more accurate
and efficient analysis of large datasets. The IoT has been
experiencing a staggering expansion, set to reach an
estimated 42 billion connected devices by 2025, marking
an increase from about 8.74 billion in 2020, as shown in
Fig. 1 (Statista, 2023).

This rapid growth, averaging a Compound Annual
Growth Rate (CAGR) of around 25%, underscores the
escalating integration of IoT into everyday life and
industrial applications. However, this growth is
paralleled by an increasing vulnerability to cyber-attacks.
IoT devices, often characterized by inadequate security
measures, have become a preferred target for
cybercriminals. As projected by Cybersecurity Ventures,

the anticipated worldwide expense of cybercrime is
expected to hit USD 9.5 trillion in 2024 Statista (2023).
Additionally, the escalating expenses associated with
cybercrime impacts are foreseen to extend to $10.5
trillion by the year 2025 (Cybersecurity Ventures, 2023).
The surge in IoT-related cyber-attacks has been alarming.
Studies reveal that there has been an over 300% expand
in such attacks during the previous years (Maloo and
Nikolov, 2022). The fact that in December 2022, there
were over 10.54 million recorded.

IoT incidents serves as more evidence of this
tendency (Statista, 2022). The number of cyber events
increased by 600% in the first quarter of 2023, while
HTTP Distributed Denial-of-Service (DDoS) attacks
significantly increased by 15% over the same period
(Cloudflare, 2024). These attacks are not only growing in
number but also in sophistication, with attackers
exploiting a variety of vulnerabilities in IoT ecosystems.
The vulnerabilities of IoT devices contribute
significantly to this risk. It is found that over 47% of IoT
devices have at least one critical vulnerability, making
them susceptible to attacks such as data breaches,
unauthorized access, and DDoS attacks (Aslan et al.,
2023). Moreover, IoT devices contribute to about 30% of

Journal of Computer Science



Shahad Alahmari and Noura Aleisa / Journal of Computer Science 2025, 21 (7): 1688.1704
DOI: 10.3844/jcssp.2025.1688.1704

1689

all network-based attacks, showcasing the critical need
for enhanced security measures in this domain (Aslan et
al., 2023). The economic repercussions of these security
breaches are substantial. In 2024, the estimated global
cost of cybercrime is expected to reach USD 9.5 trillion,
somewhat less than the estimated growth rate
(Cybersecurity Ventures, 2023). Data breaches cost $4.45
million on average globally in 2023, a 15% rise in only
three years that underscores the mounting financial strain
on businesses (IBM, 2024). This financial impact
underscores the call for powerful and scalable security
approaches to protect the growing IoT infrastructure. The
landscape of IoT threats is both diverse and complex.
CIC IoT 2023 dataset, a significant resource for
researchers, catalogs 33 different types of attacks
executed across 105 IoT devices. These are divided into
seven groups: DDoS, DoS, Reconnaissance, Web-based,
Brute Force, Spoofing, and Mirai attacks (Neto et al.,
2023). Such diversity reflects the multifaceted nature of
threats, ranging from DDoS attacks, which accounted for
approximately 40% of all IoT security incidents, to more
sophisticated spoofing attacks.

Fig. 1: IoT-connected devices globally between 2019 and 2023,
with estimates ranging from 2022 to 2030 (calculated in
billions)

In cybersecurity, ML is comparable to having a
highly trained security guard watch over a building’s
access and departure points all the time. Although the
guards may not be aware of every possible threat at first,
as they watch how individuals arrive and leave, they
begin to see trends and irregularities. Like ML
algorithms that get better at detecting threats as they
analyze more data, they get better at spotting suspicious
activity over time. Numerous well-known ML algorithms
have applications in cybersecurity. These include
supervised algorithms like Random Forests, Decision
Trees, and Support Vector Machines (SVMs), which
categorize risks by using labeled training data
(Doriguzzi-Corin and Siracusa, 2024). Deep Learning
(DL) techniques, e.g., Recurrent Neural Networks
(RNN) and Convolutional Neural Network (CNN) are
excellent at analyzing complex data structures, such as
malware code, while unsupervised algorithms like K
means clustering and Hierarchical cluster in group data
points to identify unusual patterns or outliers. Federated

Learning (FL) is a decentralized ML approach that
improves model performance while protecting data
privacy (Gelenbe and Nakip, 2023). FL allows numerous
devices or nodes to jointly train a global model while
retaining their local data, eliminating the need to
communicate sensitive data to a central server
(Doriguzzi-Corin and Siracusa, 2024). It’s comparable to
a class of students preparing for an exam together; while
each student maintains their notes and knowledge, the
class as a whole increases their total understanding. FL
with Differential Privacy (FLDP), Federated Averaging,
and Federated Proximal are a few well-liked FL
algorithms that are intended to provide security and
resilience in the context of cybersecurity.

Data augmentation techniques are necessary for
improving cybersecurity measures’ efficacy since they
diversify and strengthen the datasets used for training
and evaluation. These methods entail modifying and
growing the amount of data to increase the resilience of
DL models and algorithms that is accessible. Generative
Adversarial Network (GAN) is a popular data
augmentation method in cybersecurity. GAN functions
similarly to cyber-artists, with one network acting as the
generator and another as the discriminator, producing
fake data samples that replicate authentic cyber threats
while trying to identify between the two. More complex
and expanded data is produced by this adversarial
process, which aids in the training of ML models to
detect and neutralize a greater variety of cyber threats
(Dunmore et al., 2023). Other well-liked techniques that
balance unbalanced datasets by either eliminating
majority-class samples or duplicating minority-class
samples include Random Oversampling and Under
sampling. The diversity and complexity of cybersecurity
data are further increased by methods like data
obfuscation, noise injection, and feature shuffling, which
makes it more difficult for hostile actors to take
advantage of system weaknesses. This research addresses
IoT security challenges through synthetic data
augmentation and FL, which are used to balance the
imbalanced dataset and preserve data privacy. To handle
the class imbalance in the CIC IoT Dataset 2023, the
GAN will be used to generate synthetic data for minority
attack classes, which will reflect the characteristics of
underrepresented attack types in the dataset. Further, it
evaluates the effectiveness of FL in improving model
performance for IoT security analytics while preserving
data privacy, scalability, and handling imbalanced
datasets by using a federated framework where
considerable IoT devices train local models on their data
subsets and collaboratively edit a global model. The
effectiveness of FL will be evaluated by measuring the
ML models’ F1-score, recall, precision, and accuracy and
comparing them to conventional centralized training
methods. The study’s innovative approach establishes a
new standard for IoT security research by comparing the
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performance of FL with traditional ML approaches to
deliver insights into the benefits of using FL, specifically
in data privacy, scalability, and balancing datasets.
Finally, this study strives to set a new standard for IoT
security by integrating synthetic data augmentation and
FL, reporting a comprehensive methodology and results
that future researchers can utilize to facilitate
advancements in IoT security methods.

Literature Review
The literature review was conducted between 2021

and 2024, examining the domain of detecting IoT threats
through the application of ML. Various noteworthy
studies have been identified. These studies provide a
range of topics and approaches geared towards
enhancing the security and privacy of IoT networks. IoT
has revolutionized multiple domains, but it has also
introduced security vulnerabilities and privacy concerns.
To address these challenges, researchers have explored
the deploying of ML algorithms and Intrusion Detection
Systems (IDS) to identify and mitigate potential threats
within the IoT ecosystem. This review presents an
outline of selected study efforts, each with its unique
objectives, key themes, studied outcomes, and identified
limitations in the context of IoT threat detection using
ML.

IoT Security Threats and Vulnerabilities

The threats and vulnerabilities in IoT security include
security difficulties, risk, vulnerability, and cyberattacks.
IoT devices are susceptible to attacks at each layer, and
defensive configurations are needed to prevent these
devices from being affected. Security and privacy
considerations pose significant hurdles in IoT, requiring
established methods to overcome security vulnerabilities
(Alamareen et al., 2023). Organizations implementing
IoT need to address security issues and ensure the
confidentiality of data through protocols like datagram
transport layer security (Parmar and Sheth, 2022). The
expanding nature of IoT networks makes them
vulnerable to powerful cyberattacks, and authentication
attacks, such as malware posing as a legitimate device,
are common. Additionally, industrial IoT generates large
amounts of data, and device manipulation attacks
threaten the configuration and control of IoT devices
(Haque and Tasmin, 2020). The rapid proliferation of IoT
devices has led to the “shadow IoT” issue. Shadow IoT
refers to the use of unauthorized or unmanaged IoT
devices within an organization’s network (Richa, 2021).
These devices often lack proper security measures and
can introduce vulnerabilities into the network, making it
easier for attackers to breach it. Unauthorized access,
eavesdropping, man-in-the-middle attacks, unauthorized
control, DDoS attacks, insecure updates, weak
passwords, inadequate authentication, lack of data
encryption, physical security threats, and shadow IoT all
pose risks to IoT systems.

ML in IoT Security

ML algorithms analyze massive cybersecurity
datasets and IoT device profiles. ML includes a number
of methods, such as reinforcement learning, supervised
learning, and unsupervised learning. Unsupervised
learning finds patterns without labels, whereas
supervised learning uses labeled data to train models.
Both paradigms contribute to IoT security by detecting
anomalies and predicting potential attacks. They learn to
identify potential threats, both known and unknown
vulnerabilities. ML models can detect IoT vulnerabilities
related to weak encryption settings and configure
networks to block threats (Asharf et al., 2020).

ML-based IDS can effectively detect anomalies and
assaults in IoT networks. These systems continuously
learn from network traffic patterns and adapt to new
threats. By analyzing data from various sensors and
devices, they identify suspicious behavior and raise
alerts. ML extracts insights from raw data to protect IoT
devices against cyberattacks intelligently. DL techniques,
such as CNN and RNN, enhance security intelligence.
These models learn complex patterns and contribute to
robust threat detection (Khan, 2021).

While ML is powerful, it faces challenges in handling
dynamic IoT environments. Traditional ML methods
struggle with scalability, real-time processing, and
resource constraints. Researchers are exploring hybrid
approaches that combine ML with domain-specific
knowledge (Chen et al., 2023).

Mishra et al. (2022) conducted a comparative
analysis of ML algorithms for intrusion detection in
edge-enabled IoT networks. Their work aimed to
categorize network traffic using conventional ML
classification algorithms on the NSL-KDD dataset.
While achieving a testing accuracy of 79% with a
training time of 1.2 seconds for the Multilayer
Perceptron (MLP) model, it was observed that MLP
relied heavily on network configuration for intrusion
detection. Aqeel et al. (2022) focused on intrusion
detection in IoT using supervised ML, particularly by
leveraging application and transport layer features. Their
research involved proposing TCP, MQTT, and feature
clusters based on flow within the UNSW-NB15 dataset.
They studied high accuracies of 97.37 and 98.67% for
binary and multiclass classification, respectively, but
faced challenges like over-fitting, dimensionality issues,
and increased training time.

Data Augmentation Techniques

Dunmore et al. (2023) delved into the security
implications of hardware Trojans within NoC switches of
multi/many-core processors. Their research revealed that
such embedded Trojans could lead to traffic analysis
attacks, potentially leaking sensitive data. Training on a
balanced dataset significantly increased neural network
performance, marking a 15% rise in accuracy. This
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advancement implies a solid step toward fortifying
defenses against hardware Trojan attacks, a pressing
concern in the field of cybersecurity. In the discipline of
IoT security, Habibi et al. (2023) utilized the CTGAN
model to tackle imbalanced data, achieving a noteworthy
accuracy of 98.93% with an MLP classifier. Their results
attest to the efficacy of data augmentation techniques in
overcoming limitations inherent in previous models,
thereby bolstering the detection rates of IoT botnet
attacks. Concurrently, Rust-Nguyen et al. (2023) focused
on enhancing darknet traffic classification. By utilizing
AC-GAN and SMOTE to correct class imbalances, they
witnessed a slight boost in accuracy. Despite this
progress, they recognized the lack of robustness in
classifiers as a critical area for improvement, suggesting
that resilience against adversarial attacks remains a
challenging frontier.

FL in IoT

In a study conducted by Zhang et al. (2020) to
explore how FL handles the privacy and efficiency
challenges of the IoT landscape by promoting
collaborative model training without centralizing
sensitive data. It emphasises applications in healthcare,
smart cities, and autonomous driving sectors while
determining challenges such as network bandwidth
issues, limited device resources, and lack of
standardization. The authors underline the importance of
innovative solutions to leverage FL’s potential in IoT
systems fully. A study by Priyanka Mary Mammen on
the collaborative ML technique FL, permits devices to
learn a shared model without sharing their data.
Introduced by Google in 2016, FL is particularly
beneficial in sensitive domains like healthcare and
finance, where data privacy is paramount. Other
significant challenges were highlighted, including
communication overhead, system and data heterogeneity,
and vulnerabilities to security threats like membership
inference and data poisoning attacks. The author
emphasizes the need for innovative solutions to address
these challenges and enhance the effectiveness of FL
across diverse applications (Mammen, 2021).

Critical Evaluation of Methodologies

Richa (2021) presented a method for IoT intrusion
detection using network traffic profiling and ML. Their
approach actively monitored networked devices for
tampering attempts and suspicious transactions,
achieving an overall accuracy of 98.35%. However, the
study excluded low-powered IoT devices from
consideration. Mishra et al. (2022) focused on cyber
threat intelligence for IoT using ML. Their research
provides various themes such as IoT network security,
anomaly detection, DDoS attack detection, and intrusion
detection systems. They achieved an accuracy of 97.21%
with the Random Forest algorithm. Nonetheless, the
time-consuming nature of anomaly detection in virtual

network analysis was identified as a limitation. Saba et
al. (2022) addressed the security challenges of smart
cities by employing ML models for IoT system
protection. They studied an impressive accuracy rate of
99.7% using a voting classifier on seven datasets from
the TON-IoT telemetry dataset. A limitation noted was
the absence of consideration for the full spectrum of IoT
devices and vulnerabilities in a smart city environment.
Almomani et al. (2023) evaluated the efficacy of
different ML classifiers, including AdaBoost, Gradient
Boosting, CatBoost, and XGBoost, in detecting
reconnaissance attacks on computer networks using the
UNSW-NB15 dataset. Their work demonstrated
significant progress in identifying reconnaissance
activities within IoT networks by achieving a True
Positive Rate of 90.08% and an F1-Measure of 93.57%.
Similarly, Almomani et al. (2024) focused on predicting
Denial-of-Service (DoS) attacks in IoT environments,
employing various ML classifiers such as SVM, Na¨ıve
Bayes, Random Forest, Logistic Regression, and
Decision Tree. Utilizing the UNSW-NB15 dataset, they
achieved remarkable accuracy and precision rates, with
Random Forest reaching 99.4% accuracy and 99.2%
precision.

In another study, Otoom et al. (2023) proposed a DL-
based solution for accurately detecting brute force
attacks on IoT networks, utilizing the MQTT-IoT-
IDS2020 dataset. Their model achieved a notable
accuracy of 99.56%, emphasizing the efficacy of DL in
addressing cybersecurity challenges in IoT
environments. Contrastingly, Zhang et al. (2020)
investigated adversarial attacks on ML-based security
systems, introducing a black-box method for generating
adversarial examples. While achieving a high accuracy
of 99.74% in attacking DoS scenarios, the study
highlighted limitations concerning accessibility to target
classifier labels. Sharma et al. (2023) developed a DL
model for detecting Mirai botnet attacks on IoT devices,
achieving precision, recall, and F1-score rates exceeding
97%. Their work emphasized the need to address
challenges related to streaming data in IoT environments.
Addressing specific attack vectors, Khan (2021)
proposed an algorithm for detecting spoofing attacks in
IoT, demonstrating effectiveness in simulated
environments. Similarly, Alamareen et al. (2023)
introduced PhishCatcher, a client-side defense
mechanism against web spoofing attacks, achieving high
accuracy and precision rates in detecting spoofed web
pages. Moreover, Eshmawi et al. (2024) developed a
robust detection system for GPS spoofing attacks on
small UAVs, achieving an accuracy of 99.74% using ML
ensemble approach. Nookala Venu et al. (2022) focused
on detecting Mirai botnet attacks in IoT using ML
techniques, showcasing high accuracy and precision rates
utilizing datasets such as CICIDS2017 and CTU-13. In
exploring the landscape of ML applications for security,
Richa (2021) presented an intriguing study on the
integration of covert backdoor attacks during data
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augmentation. Their work highlighted a dual-edged
outcome; augmentation improved model accuracy by
5.2%, yet it simultaneously opened up vulnerabilities due
to dependency on external libraries. This dependency
poses a risk, making systems susceptible to attacks,
thereby creating a gap that needs addressing in future
studies. Subsequently, Tomislav et al. (2023) contributed
to this discourse by using GANs for data augmentation
in predicting at-risk students. They underscored the
potential of balanced datasets to enhance ML
performance.

Nevertheless, they warned against the pitfalls of
under sampling, which could inadvertently eliminate
critical data, thus distorting the predictive accuracy of the
models. Further, Strelcenia and Prakoonwit (2023)
introduced K-CGAN, a new data augmentation model
tailored for credit card fraud detection. Their model,
adept at learning from genuine transactions, was shown
to optimize the accuracy of fraud detection models by
7.3%. This significant enhancement suggests that K-
CGAN could be a valuable tool in the ongoing fight
against credit card fraud.

Justification for Chosen Methods

The review of existing literature highlights several
key findings in the discipline of IoT security,
demonstrating the effectiveness of ML models in
identifying cyber threats. For instance, the uses of
various ML classifiers have shown remarkable accuracy
and precision in identifying attacks such as DoS,
reconnaissance, and spoofing, as well as botnet activities.
Studies have successfully utilized datasets like UNSW-
NB15, MQTT-IoT-IDS2020, and CICIDS2017 to train
models that achieve good performance metrics.
However, these studies also reveal limitations, such as
the challenge of overfitting, the time-consuming nature
of anomaly detection, and the exclusion of low-powered
IoT devices. Particularly, imbalanced datasets emerge as
a pervasive challenge across the research, leading to
models that might overlook less frequent but potentially
more harmful cyber threats. This shows the critical need
for innovative approaches to generate synthetic data and
apply FL to enhance the robustness and privacy of IoT
security solutions. Addressing these research gaps, our
study proposes to leverage GAN for synthetic data
augmentation and FL for distributed, privacy-preserving
ML models, aiming to address the prevalent concern of
class imbalance in the CIC IoT Dataset 2023. The
existing literature indicates a nascent application of
GANs in IoT security for balancing datasets and a
significant underutilization of FL in this context. By
integrating these methodologies, our research seeks to
not only enhance the detection rates of infrequent attacks
through a more balanced dataset but also to preserve data
privacy in the process of collaborative learning among
IoT devices. Furthermore, by establishing an enhanced
dataset as a new benchmark for IoT security research,

this study aims to fill the void in comprehensive
approaches that combine data augmentation with
advanced ML techniques in a unified framework. Hence,
our research not only addresses the identified gaps but
also contributes to setting a new standard for future IoT
security analytics.

Materials and Methods
As the foundation of any scientific investigation, the

research methodology section provides a methodical
framework for conducting and evaluating research. This
section defines the methodology, techniques, and
processes utilized to accomplish the research goals
presented in this investigation.

Proposed Methodology

The aim of this paper is to assess how well GANs
and FL perform to improve security analytics for IoT
settings while also methodically addressing the
imbalance in the CIC IoT Dataset 2023. The steps
involved are as follows (Figure 2):

Fig. 2: Proposed methodology diagram

Data Preparation and Cleansing

Initial work will involve a detailed examination of
the CIC IoT Dataset 2023 to identify any inconsistencies,
missing values, or outliers that may affect the quality of
the data. Data cleansing techniques, such as noise
reduction, outlier removal, and missing value imputation,
will be applied to guarantee the credibility of the dataset
for the subsequent stages of the methodology.

Dataset Segregation

From the cleaned dataset, two distinct subsets will be
produced: the training dataset and the testing dataset. The
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training dataset will be used for the development and
optimization of the ML models, while the testing dataset
will be retained for the final evaluation of the model’s
performance.

Imbalance Identification

Within the training dataset, we will analyze to
quantify the extent of class imbalance. This will involve
statistical measures to determine the distribution of the
different attack types and to identify minority and
majority classes.

Generative Adversarial Network Implementation

For minority attack classes, GANs will be used to
artificially create new data. Discriminator and generator,
the two neural networks that make up a GAN, are trained
simultaneously in a process known as competition. The
Adam optimizer’s beta1 parameter is set to 0.5, the
learning rates are set to 0.0002, and the batch size is set
to 64 for both networks. With early ending conditions if
the generator reaches a loss plateau against the
discriminator, the GAN is trained for a maximum of 500
epochs. The generator can now create data that is
indistinguishable from real, while the discriminator can
now distinguish between genuine and synthetic data.
Until the generator generates data that cannot be
distinguished from the real thing, this adversarial process
is repeated.

Synthetic Data Generation and Integration

The GANs will generate synthetic data instances that
adhere to the characteristics of the minority classes. This
generated data will then be integrated with the original
training data to generate a balanced dataset.

FL Setup

In the FL setup, multiple IoT devices will participate
in the training process. Each device will perform local
training on its subset of the balanced training dataset and
compute updated model parameters. Learning rates,
batch sizes, and iteration thresholds are optimized during
training to prevent overfitting. As an example, the model
iterates until the validation accuracy stabilizes for a batch
size of 32 devices with a learning rate of 0.1. This
decentralized method reduces the need for data
centralization and protects privacy by guaranteeing that
sensitive data stays on the device.

Parameter Aggregation and Model Update

To update the global model, the local model
parameters from every device will be transferred to a
central server and combined. The devices will thereafter
receive the updated global model from the server for
additional training. Until the model performance stops
improving or satisfies predetermined criteria, this
iterative process will continue. Because of its
effectiveness and performance in unbalanced datasets,

XGBoost is used as the basis model on every device. On
a central server, the Federated Averaging (FedAvg)
method is used to aggregate local model updates from
devices. The FedAvg method uses the sample sizes of
each device’s training set to compute weighted averages.

Model Evaluation

Once training is accomplished, the model will be
evaluated using a separate testing dataset. Evaluation
metrics, including precision, recall, and F1-score, will be
used to compare the model’s performance before and
after applying GAN-based data augmentation and FL
training.

This detailed methodology will ensure that the
research objectives are met and that the findings can
enhance IoT security analytics. The methodology also
includes plans for extensive documentation and the
potential for reproducibility, which are critical for
advancing research in this field.

Dataset Description

The CIC IoT Dataset 2023 is a comprehensive dataset
designed for research and analysis in the field of IoT
security. It consists of network traffic data encompassing
various cyber-attack scenarios commonly encountered in
IoT environments. The dataset contains 33 different
attack labels, grouped into major classes, along with a
multitude of features extracted from network flows Neto
et al. (2023). 33 attacks were conducted in an IoT
topology collected of 105 devices. The class distribution
diagram is demonstrated in Figure 3.

Fig. 3: The class distribution of the CICIoT2023 dataset (Neto
et al., 2023)

There are 33984560, 8090738, 2634124, 1098195,
486504, 354565, 24829, and 13064 instances of the
DDoS, DoS, Mirai, Benign, Spoofing, Recon, Web, and
Brute Force classes, respectively. From Figure 3, it is
evident that the dataset is highly imbalanced. The
majority of instances belong to the DDoS class, with
33984560 records, while other attack classes have
comparatively lower occurrences, such as DoS, Mirai,
Benign, Spoofing, Recon, Brute Force and Web Attacks.
These classes are underrepresented compared to the
DDoS class indicating a significant class imbalance.

Data Pre-Processing

The procedures for cleaning and preparing the data
for additional analysis are described in this paragraph.
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These procedures include data normalization, encoding
categorical variables, addressing missing and duplicate
values, and eliminating outliers (Zelaya, 2019).

Missing values in the dataset can hinder the analysis
and modeling process. Therefore, it is essential to
address them appropriately. All features in the dataset
might have missing values identified. Duplicate values in
the dataset can skew analysis results and model
performance. Duplicate records are determined based on
all feature values. Duplicate records will be removed,
retaining unique instances in the dataset. The dataset
integrity is assessed post-removal to ensure the
preservation of essential information. Outliers can
significantly affect the performance of ML models.
Therefore, outlier removal techniques are employed to
enhance model robustness. Outliers are detected using
statistical methods such as z-score, Inter Quartile Range
(IQR), or domain-specific knowledge. Outliers were
removed from the dataset.

Categorical variables in the dataset require
transformation into numerical representations for
compatibility with ML algorithms. For nominal
categorical variables, one-hot encoding was performed to
generate binary columns for every category. Data
normalization is applied to scale numerical features
within a consistent range, facilitating convergence and
improving model performance. To preserve the relative
relationships between data points, numerical features are
scaled to a specific range, usually between 0 and 1
(Zelaya, 2019).

By systematically addressing missing values,
duplicate values, outliers, encoding categorical variables,
and normalizing data, the CIC IoT Dataset 2023 is
prepared for effective analysis and modeling, ensuring
the integrity and reliability of research findings and
conclusions.

Synthetic Data Generation Using GAN

Synthetic data generation refers to creating artificial
data samples that resemble real data instances but are
generated algorithmically rather than being observed or
collected from real-world sources. This technique is
essential in various fields, including ML, where access to
labeled data may be limited or expensive. Synthetic data
generation allows researchers and practitioners to
augment existing datasets, balance class distributions,
and create diverse training data for building robust ML
models. Furthermore, by creating data that anonymizes
sensitive information while maintaining the statistical
characteristics of the original dataset, synthetic data can
help allay privacy concerns and facilitate safer data
research and sharing.

There are a number of methods used to create
synthetic data, and each has advantages and
disadvantages.

A common technique is the use of GANs, which
simultaneously train a discriminator and a generator
neural network. It learns to produce synthetic data
samples that are precise duplicates of authentic data. It
gives the discriminator the ability to distinguish between
authentic and synthetic data. A different method uses
probabilistic models, like Variational Autoencoders
(VAEs), which train a low-dimensional data
representation and use the learned latent space
distribution to sample new data. Additionally, to create
synthetic data, conventional statistical procedures like
bootstrapping and data augmentation methods like
SMOTE are used (Fonseca and Bacao, 2023).

Fig. 4: Basic architecture of GAN Adapted from GAN
Structure (Google Developers, 2022)

GANs stand out as a powerful and versatile tool for
synthetic data generation in various domains, e.g.,
medical data, financial data, etc., offering significant
advantages over traditional techniques.

Introduction to GAN

Generative Adversarial Networks, or GANs, have
emerged as a revolutionary paradigm in ML, especially
in the field of generative modeling. GANs, first
presented by Ian Goodfellow and colleagues in 2014
(Dunmore et al., 2023), have fundamentally changed
how we tackle the problem of generating new data
samples that closely resemble those in a given dataset.
Generator networks and discriminator networks are two
neural networks that can be competitively pitted against
one another. This is the basic idea of GANs. This novel
adversarial configuration facilitates a dynamic learning
process in which the discriminator aims to discern
between synthetic and genuine data, while the generator
attempts to generate realistic data samples (Dunmore et
al., 2023). The development of new and realistic data
examples is made possible by GANs’ ability to produce
data distributions that closely resemble the training data.

Working Principle of GAN

GANs operate by utilizing the new idea of adversarial
training, in which two neural networks—the
discriminator and the generator—participate in a
competitive learning process. Learning a distribution of
data that is similar to the training data distribution is the
aim of a GAN. The generator network seeks to produce
synthetic data samples that are identical to real data
samples by using random noise as input. On the other
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hand, the discriminator network’s task is to differentiate
between real data samples from the training dataset and
fake data samples that the generator creates (Dunmore et
al., 2023). Figure 4 shows the basic architecture of GAN.

A GAN’s training process alternates between two
stages: the discriminator phase and the generator phase.
Random noise is used as input by the generator network
to create synthetic data samples during the generator
phase. The discriminator is subsequently given these
artificial samples with the goal of accurately classifying
them as false. Following this, the discriminator learns by
combining actual data samples from the training dataset
with fake data samples that were produced by the
generator during the discriminator stage. To improve its
capacity to distinguish between real and phony samples,
the discriminator adjusts its settings. At the same time,
the discriminator provides feedback to the generator,
which modifies its parameters to create increasingly
realistic synthetic samples that are more difficult for the
discriminator to distinguish from actual data. In a
dynamic game of cat and mouse, the discriminator and
generator networks compete with one another to
outperform the other as training goes on. Both networks
develop iteratively as a result of this adversarial learning
process; the discriminator gets better at differentiating
between real and fake data, while the generator
eventually learns to create more realistic synthetic
samples. In the end, competition reaches a point where
the generator generates synthetic data that is nearly
identical to real data and the discriminator is unable to
distinguish between real and synthetic samples. At this
point, the GAN has successfully learned the underlying
data distribution, enabling it to generate novel and
realistic data samples consistent with the training dataset.

Integration of Synthetic Data with the Original
Dataset

Once synthetic data has been generated using
techniques such as GANs, it is crucial to integrate this
synthetic data seamlessly with the original dataset while
ensuring the preservation of data integrity and
maintaining representativeness across classes. The
integration process involves several steps to effectively
merge the synthetic data with the original dataset (Joshi
et al., 2024):

Concatenation: The simplest approach to integrate
synthetic data with the original dataset is by
concatenating the synthetic samples with the
existing data. This involves adding the synthetic
data instances as additional rows or observations to
the original dataset while preserving the feature
structure and labels.
Balancing Class Distributions: Synthetic data
generation is often employed to address class
imbalance issues in the original dataset. Therefore,
during integration, special attention should be given

to balancing the class distributions by strategically
incorporating synthetic samples for minority
classes. This helps ensure that each class is
adequately represented in the integrated dataset,
leading to more robust machine-learning models.
Randomization: To prevent biases and maintain the
randomness of the data, synthetic samples should be
integrated with the original dataset in a randomized
manner. This involves shuffling the combined
dataset to ensure that the synthetic samples are
distributed evenly across different sections of the
dataset, preventing any systematic biases that may
arise from the integration process.

Evaluation Metrics for Synthetic Data Quality

To ensure that the produced samples accurately
reflect the underlying data distribution, it is crucial to
evaluate the quality of synthetic data produced by GANs
or other methods. The fidelity and usefulness of synthetic
data in comparison to real data can be measured using a
variety of evaluation metrics. The quality of synthetic
data is frequently assessed using the evaluation measures
listed below (Vujović, 2021):

Frechet Inception Distance (FID): A widely used
metric for comparing the distributions of synthetic
and actual data is called FID. Using a pre-trained
Inception network, it determines the Wasserstein-2
distance between the multivariate Gaussian
distributions of feature embeddings taken from
synthetic and real data.
Inception Score (IS): IS assesses the variety and
caliber of artificial images produced by GANs. It
penalizes high-confidence predictions and
calculates the entropy of class predictions based on
synthetic images using a pre-trained classifier (such
as the Inception network). Better performance is
shown by higher IS metrics, which assess the
quality and diversity of generated samples.

FL for Privacy-Preserving Classification

With its innovative method for training models on
decentralized data sources while maintaining data
security and privacy, FL has become a ground-breaking
paradigm in the field of ML. In order to train their
models, traditional ML models need centralized data
aggregation, which gathers and stores data from multiple
sources on a single server. This strategy, however,
presents serious privacy issues because private user
information could be vulnerable to hacks or illegal
access. FL addresses these challenges by enabling model
training directly on the local devices or servers where the
data resides, without the need for data sharing.
Conceptual Framework of FL

FL presents a new paradigm for cooperative model
training over dispersed data sources while preserving the
confidentiality and privacy of data. According to FL’s
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conceptual framework, decentralized model training is
the process by which several devices or edge servers
work together to jointly build a global model without
exchanging raw data. Figure 5 depicts the anatomy of a
basic FL. This FL framework can be elucidated through
several key components and processes (Jiang et al.,
2020):

Fig. 5: Architecture of a simple FL approach Adapted from FL
in smart city sensing: challenges and opportunities
(Jiang et al., 2020)

Local Training: In FL, data is generated or stored
locally on edge servers or individual devices, where
model training takes place. Using local data and
local computational resources, each local device
trains a model separately. Data privacy is
maintained by this local training method, which
enables devices to learn from their own data without
disclosing it to a central server or other devices.
Model Aggregation: Following local training
iterations, model updates are sent to a central server
or aggregator for aggregation in the form of model
parameters or gradients. The global model is
updated by the aggregator, which receives model
updates from several devices and aggregates them.
Averaging and weighted aggregation are two
examples of aggregation techniques that can be used
to efficiently integrate model updates while
maintaining the global model’s quality.

Communication Protocol: Communication
between local devices and the central server is
facilitated through secure and efficient
communication protocols. These protocols ensure
the transmission of model updates while preserving
data privacy and security. Techniques, e.g., SMC
and differential privacy may be employed to encrypt
or obfuscate communication to protect sensitive
data during transmission.
Iterative Optimization: Model aggregation and
local training are carried out repeatedly until
convergence or a predetermined stopping criterion
is satisfied in FL’s usual iterative optimization
method. Each iteration involves training local
models with local data, then aggregating model
updates to improve the global model. Through
iterative optimization, the global model’s
performance is continuously improved while
collaborative learning across dispersed data sources
is made possible.
Evaluation and Validation: Throughout the FL
process, evaluation and validation mechanisms are
employed to assess the performance and quality of
the global model. Metrics, e.g., loss, accuracy, and
convergence rate may be monitored to evaluate the
effectiveness of FL in achieving the desired learning
objectives. Additionally, techniques such as
differential privacy analysis may be applied to
validate the privacy guarantees provided by FL
approaches.

The conceptual framework of FL encompasses
decentralized model training, secure communication,
iterative optimization, and evaluation mechanisms,
enabling collaborative learning across distributed data
sources while preserving data privacy and security. This
framework lays the foundation for the practical
implementation and deployment of FL in various real-
world applications and domains.

eXtreme Gradient Boosting (XGBoost)

eXtreme Gradient Boosting is referred to as
XGBoost. Gradient boosting is implemented in an
effective and scalable manner, an ML technique used for
regression, classification, and ranking problems (Sagi
and Rokach, 2021). XGBoost has gained popularity in
ML competitions and industry applications due to its
performance and speed. In contrast to conventional
gradient boosting, XGBoost builds upon this base in
several significant ways, including the following:

Gradient Boosting Framework: The core idea
behind XGBoost is gradient boosting. In a
sequential approach, it builds a series of decision
trees, each one attempting to correct the errors of its
predecessors. By employing a gradient descent
technique, the model reduces the loss when adding
more models.

http://192.168.1.15/data/13184/fig5.jpg
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Regularization: Model complexity is managed by
XGBoost by the inclusion of a regularization term
in its goal function. By doing so, overfitting is
lessened, which is a common problem with standard
gradient boosting methods.
System Optimization: XGBoost has been designed
to be highly efficient and scalable. It utilizes both
hardware optimization (such as multi-threading on a
single machine) and software optimization
techniques (like cache awareness and block
structure for out-of-core computation) to achieve
high performance on large datasets.
Sparsity Awareness: XGBoost can automatically
handle missing data. This means that it can still
make splits even if some data are missing, which
can be particularly useful for sparse datasets.
Tree Pruning: While traditional gradient boosting
uses a depth-first approach for tree generation,
XGBoost uses a depth-wise approach and prunes
trees using a depth-first approach once a maximum
depth is reached. This results in more optimized
trees.

XGBoost is known for delivering high performance
and speed compared to other implementations of gradient
boosting. XGBoost supports classification, regression,
ranking, and user-defined prediction problems. It can be
used in conjunction with several programming
languages, including Python, R, Java, and Scala. Its
built-in regularization helps avoid overfitting, making it
more effective on a wide range of datasets. XGBoost can
automatically learn the best way to handle missing data.
XGBoost offers a wide range of parameters that can be
tuned for optimal performance, such as learning rate,
depth of trees, and regularization terms (Sagi and
Rokach, 2021).

Incorporating XGBoost into a FL framework
leverages the strength of XGBoost in handling large-
scale and highdimensional data with high efficiency and
accuracy, while FL guarantees that the data perseveres on
the local devices, preserving privacy and reducing the
risk of data leakage.

Evaluation Metrics

To evaluate various elements of model performance,
a range of evaluation measures are used in the
assessment of ML models, including those trained using
FL methods. The predicted accuracy, class-wise
performance, and overall efficacy of the model are all
revealed by these indicators. FL algorithms are
frequently assessed using the assessment measures listed
below (Vujović, 2021):

Accuracy: The model’s overall correctness is
measured by how accurate its predictions are. The
equation to calculate accuracy is as follows:

Precision: The model’s precision is determined by
dividing all of its positive predictions by the percentage
of real positive predictions. The following formula can
be used to determine precision:

Recall: The percentage of genuine positive
predictions among all actual positive cases in the dataset
is known as recall, which is also frequently called true
positive rate or sensitivity. The following formula is used
to determine recall:

F1-Score: The harmonic mean of precision and recall,
or F1-score, provides a reasonable assessment of a
model’s performance. Here is the formula to determine
the F1-score:

Metrics from GANs can also be relevant, particularly
when evaluating synthetic data quality. Some common
metrics for evaluating GAN-generated data include:

FID: Evaluates how closely the distributions of
synthetic and real data are similar.
IS: Evaluates the variety and quality of artificial
images produced by GANs.

Results and Discussion
The study’s results and analysis present an in-depth

understanding of how well the different approaches used
in IoT security analytics performed. Expanding on this
approach, the assessment of GAN-based synthetic data
augmentation provides insightful information on how
well the CIC IoT Dataset 2023 addresses class
imbalance. To offer a greater understanding of the
influence of synthetic data augmentation on model
performance and overall security analytics, this section
explores the particular metrics and improvements that are
attained using this technique.

Evaluation of GAN-Based Synthetic Data
Augmentation

It is crucial to assess the synthetic data produced by
GAN in order to determine its quality and
appropriateness for improving the CIC IoT Dataset 2023.
The integrity and diversity of the produced synthetic data
have been assessed using two important metrics: IS and
FID Score.

The FID is a widely accepted metric for evaluating
the similarity between two datasets in terms of their
distribution of features. The real and synthetic datasets
are more comparable when the FID score is lower. In our
evaluation, the calculated FID score of 0.0371 suggests a
remarkable closeness between the synthetic data and the
real dataset, as shown in Figure 6. The obtained FIDAccuracy =

 

FN+FP+TP+TN
TN+TP

Precision =
 

FP+TP
TP

Recall =  

TP+FN
TP

F1-Score = 2 ⋅
 

Recall+Precision
Recall⋅Precision
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score well below 0.1 indicates a high level of fidelity in
the synthetic data generation process. According to this,
the distribution of features in the synthetic data is quite
similar to that seen in the actual CIC IoT Dataset 2023. A
low FID score confirms that the synthetic data is realistic
and can faithfully capture the features of minority attack
classes in the dataset. The close alignment between the
synthetic and real datasets ensures that the augmented
dataset maintains its authenticity, thereby bolstering the
credibility and applicability of the dataset in IoT security
research scenarios.

Fig. 6: Synthetic data evaluation based on IS and FID scores

Conversely, the IS serves as a tool for assessing the
caliber and variety of data produced by GANs. By
evaluating the predictability of labels, it gauges the
synthetic data’s diversity and quality. Better quality and
diversity of the produced data are indicated by a higher
IS. As seen in 6, the computed IS of 0.9482 indicates a
good degree of quality and variety in the synthetic data.
This suggests that the created data enriches the dataset by
adding variability in addition to capturing the
distribution of attributes. A high IS highlights the GAN’s
capacity to produce a variety of synthetic data examples,
guaranteeing that the augmented dataset includes a broad
spectrum of attack scenarios and variants. The high IS
raises trust in the synthetic data’s resilience and suggests
that it may be used to train and assess ML models for IoT
security analytics.

The evaluation of the GAN-based synthetic data
augmentation using FID Score and IS demonstrates its
effectiveness in producing high-quality, diverse, and
realistic data. These metrics validate the suitability of the
synthetic data for rectifying the class imbalance in the
CIC IoT Dataset 2023, thereby bolstering the research
objectives aimed at enhancing IoT security analytics.

Performance of FL without Synthetic Data

The evaluation of FL without synthetic data
augmentation, conducted on 10, 15, and 20 client
devices, provides insights into the effectiveness of this
approach in training ML models for IoT security
analytics using the original imbalanced CIC IoT Dataset
2023, as depicted in Figure 7.

Fig. 7: Performance of FL without synthetic data

For 10, 15, and 20 client devices, respectively, the
aggregated model’s accuracies were 68.52, 67.98, and
67.27%, as seen in Figure 7. 63.71, 62.24, and 61.93%
were the precisions of the aggregated model for 10, 15,
and 20 client devices, respectively. For 10, 15, and 20
client devices, respectively, the aggregated model
showed recalls of 64.29, 63.87, and 62.84%. F1-scores
for 10, 15, and 20 client devices were 63.58, 61.98, and
61.17%, respectively, for the aggregated model.

The consistent performance across varying numbers
of client devices suggests that FL is effective in training
ML models for IoT security analytics using distributed
data sources. Despite the imbalanced nature of the
original dataset, FL demonstrates its potential to learn
from decentralized data while preserving data privacy.
The slight decrease in performance metrics as the
number of client devices increases may indicate
challenges associated with model aggregation and
coordination across a larger number of decentralized
devices. However, the relatively small fluctuations in
performance metrics suggest that FL maintains
robustness and scalability across different device
configurations. The performance metrics of the
aggregated model without synthetic data augmentation
highlight the inherent challenges posed by a class
imbalance in the original dataset. While FL shows
promise in addressing data privacy concerns and
leveraging distributed computing resources, its efficacy
in handling imbalanced datasets may be limited without
additional strategies such as synthetic data augmentation.

The evaluation of FL without synthetic data
augmentation underscores its effectiveness in training
ML models for IoT security analytics using decentralized
data sources. However, the performance metrics also
highlight the importance of addressing class imbalance
in the dataset to further enhance model performance and
robustness.

Performance of FL with Synthetic Data

The evaluation of FL with synthetic data
augmentation was conducted on 10, 15, and 20 client
devices, as shown in Figure 8. It provides crucial insights
into the effectiveness of this approach in mitigating class
imbalance and enhancing model performance for IoT
security analytics using the augmented CIC IoT Dataset
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2023. To evaluate the effectiveness of the FL framework
with synthetic data augmentation, key performance
measures including as F1-score, recall, precision, and
accuracy have been evaluated. The aggregated model
achieved exceptionally high accuracies of 95.82, 95.76,
and 95.59% for 10, 15, and 20 client devices,
respectively. The aggregated exhibited high precision
scores of 94.44, 95.08, and 94.84% for 10, 15, and 20
client devices, respectively. The aggregated model
demonstrated recall rates of 95.19, 95.65, and 95.26% for
10, 15, and 20 client devices, respectively. The
aggregated model achieved high F1-scores of 95.02,
95.57, and 95.18% for 10, 15, and 20 client devices,
respectively.

Fig. 8: Performance of FL with synthetic data

The substantial increase in all performance metrics
compared to FL without synthetic data augmentation
underscores the effectiveness of synthetic data in
addressing class imbalance and enhancing model
performance. The augmented dataset, enriched with
synthetic data, provides a more representative and
balanced training environment, leading to significantly
improved model F1-score, recall, precision, and
accuracy. The consistently high performance across
different numbers of client devices highlights the
robustness and scalability of the FL framework with
synthetic data augmentation. Despite the decentralized
nature of the training process involving multiple client
devices, the aggregated model maintains high levels of
accuracy and performance, indicating the reliability of
the approach. The augmented dataset enables the FL
framework to effectively capture the characteristics of
minority attack classes, thereby improving the model’s
ability to detect and classify diverse cyber threats in IoT
environments. The heightened performance metrics
validate the efficacy of synthetic data augmentation in
bolstering IoT security analytics and addressing the
challenges posed by imbalanced datasets.

The evaluation of FL with synthetic data
augmentation demonstrates its capability to significantly
enhance model performance for IoT security analytics.
The augmented dataset facilitates more accurate and
robust model training, paving the way for more effective
cyber threat detection and classification in IoT
ecosystems.

Comparative Performance of With and Without
Synthetic Data Using FL Approach

The comparison between the performance of FL with
and without synthetic data augmentation provides critical
insights into the efficacy of incorporating synthetic data
to address class imbalance and enhance model
performance for IoT security analytics. To assess the
influence of synthetic data augmentation on model
efficacy, key performance measures such as F1-score,
recall, precision, and accuracy have been examined.

FL with synthetic data augmentation consistently
outperforms FL without synthetic data across all
configurations of client devices, as presented in Table 1.
The augmented dataset, enriched with synthetic data,
leads to a significant increase in accuracy, indicating a
higher proportion of correctly classified instances. To
increase the overall efficacy of IoT security analytics
models, this development emphasizes how crucial it is to
resolve class imbalance through synthetic data
augmentation. Precision exhibits notable improvement
with synthetic data augmentation. The higher precision
values obtained with synthetic data augmentation
indicate a reduced rate of false positives, signifying
improved model reliability in identifying true attacks
while minimizing false alarms. Recall shows consistent
enhancement with synthetic data augmentation. The
augmented dataset enables the model to capture a higher
proportion of true positive instances, resulting in
improved detection rates for minority attack classes and
reducing the risk of overlooking critical security threats.
The higher F1-scores obtained with synthetic data
augmentation reflect a more balanced trade-off between
precision and recall, indicating improved overall model
effectiveness in handling imbalanced datasets. The
consistent performance improvement across all
performance metrics and configurations of client devices
underscores the generalizability and robustness of
synthetic data augmentation in enhancing FL for IoT
security analytics. The augmented dataset facilitates
more representative and balanced model training, leading
to improved model generalization and robustness in
detecting diverse cyber threats in IoT environments. This
comparative analysis highlights the significant
performance improvement achieved through synthetic
data augmentation in FL for IoT security analytics,
emphasizing its critical role in addressing class
imbalance and enhancing model effectiveness.

Performance of ML Models with Traditional Approach

Using the original CIC IoT Dataset 2023, the
performance of ML models using the traditional
approach—both with and without synthetic data
augmentation—offers important insights into how well
different algorithms address class imbalance and
improve model performance for IoT security analytics.
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Decision Tree

With precision, recall, and F1-score values ranging
from 63 to 64%, the Decision Tree model achieved an
accuracy of 63.96%, as shown in Table 2. In terms of IoT
security threat classification, this conventional method
without artificial data performs mediocrely. With
synthetic data augmentation, the Decision Tree model’s
performance increased dramatically, reaching precision,
recall, and F1score values over 88% and an accuracy of
89.72%. This notable enhancement demonstrates how
well synthetic data may reduce class imbalance and
boost model performance.
Table 1: Comparative performance of with and without synthetic

data using FL approach

Number of
Devices

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

10 27.30 30.73 30.90 31.44
15 27.78 32.86 31.78 33.59
20 28.32 32.91 32.42 34.01

Naive Bayes

As shown in Table 2, the accuracy of the Naive Bayes
model was 59.86%, while the precision, recall, and
F1score values were about 59-60%. When compared to
other algorithms, this model’s performance without
artificial data augmentation indicates a lesser efficacy in
identifying IoT security issues. The Naive Bayes model’s
performance increased dramatically with the addition of
synthetic data, reaching an accuracy of 93.32% with
precision, recall, and F1-score values over 92%. This
significant improvement emphasizes how important
synthetic data is for boosting model efficacy, especially
for methods like Naive Bayes that have built-in
drawbacks.

Support Vector Machine (SVM)

With precision, recall, and F1-score values ranging
from 61 to 62%, the SVM model achieved an accuracy
of 61.69%, as shown in Table 2. Even if SVM performs
mediocrely in the absence of synthetic data, it may be
better. With the addition of synthetic data, the SVM
model’s performance significantly improved, attaining
precision, recall, and F1-score values over 86% and an
accuracy of 86.05%. Especially for algorithms like SVM,
this notable improvement highlights how effective
synthetic data is in correcting class imbalance and
improving model performance.

XGBoost

According to Table 2, the XGBoost model showed an
accuracy of 63.60%, with precision, recall, and F1-score
values ranging from 63 to 64%. Without synthetic data,
XGBoost’s performance is mediocre, although it might
be improved. The addition of synthetic data significantly
improved the XGBoost model’s performance, with

accuracy of 94.62% and precision, recall, and F1-score
values over 94%. This substantial improvement shows
how much synthetic data may enhance model
performance for powerful algorithms like XGBoost.

The benefit of synthetic data augmentation in
reducing class imbalance and enhancing model efficacy
for IoT security analytics is demonstrated by the
performance of ML models using the conventional
method. The substantial performance improvement
across various algorithms underscores the importance of
leveraging synthetic data to address inherent challenges
in imbalanced datasets and enhance the reliability and
robustness of IoT security analytics models.

Comparison between the FL Approach and
Traditional Approach

The efficacy of each methodology in training ML
models for IoT security analytics is revealed by
contrasting the FL approach with the conventional
approach. Table 3 compares key performance indicators
including as F1-score, recall, precision, and accuracy to
assess the relative advantages and disadvantages of each
strategy.

F1-Score, Recall, Precision, and Accuracy

When compared to the conventional method, the FL
technique often yields greater values for F1-score, recall,
precision, and accuracy. This is explained by FL’s
decentralized training methodology, which efficiently
addresses class imbalance and protects privacy while
enabling models to learn from a variety of data sources.

Data Privacy

The FL technique reduces the possibility of exposing
private data to centralized servers by enabling model
training to be carried out locally on client devices. In
contrast, the traditional approach may compromise data
privacy, especially when dealing with centralized data
storage.

Scalability

FL approach exhibits high scalability as it leverages
distributed computing resources across multiple client
devices. This enables FL to handle large-scale datasets
and accommodate increasing numbers of devices
seamlessly. On the other hand, the traditional approach
may face scalability challenges, particularly when
dealing with large volumes of data and extensive
computational requirements.

Imbalanced Data

FL approach addresses imbalanced data effectively
by leveraging techniques such as synthetic data
augmentation and distributed learning. This enables FL
to create more balanced training datasets and improve
model performance for minority classes. In contrast, the
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traditional approach may require additional strategies to
handle class imbalance, such Table 3. FL vs. traditional
approach for IoT security analytics.
Table 2: Performance of ML models with traditional approach

Model Approach Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Decision Tree Without
Synthetic

63.96 63.89 63.73 62.73

With
Synthetic

89.72 89.95 89.14 88.14

Naive Bayes Without
Synthetic

59.86 59.74 59.07 59.29

With
Synthetic

93.32 93.24 93.09 92.73

Support Vector
Machine

Without
Synthetic

61.69 61.21 61.40 61.03

With
Synthetic

86.05 86.62 88.54 87.27

XGBoost Without
Synthetic

63.60 63.08 63.23 62.91

With
Synthetic

94.62 94.55 94.26 94.13

Table 3: FL vs traditional approach for IoT security analytics

Metric FL Traditional Approach
Accuracy (%) Superior Moderate to Good
Precision (%) Consistently High Varied (Moderate to High)
Recall (%) Outstanding Moderate to High
F1-Score (%) Excellent Moderate to Good
Data Privacy Ensured May Compromise
Scalability Strong Limited to Moderate
Imbalanced Data Effectively

Managed
Requires Additional Handling

Model
Generalization

Robust May Require Manual
Adjustments

Model Generalization

FL approach enhances model generalization by
training on diverse data from multiple devices. This
improves the model’s ability to adapt to unseen data and
several IoT environments. The traditional approach may
require finetuning to achieve similar levels of model
generalization.

While both FL and the traditional approach have their
respective strengths and limitations, FL emerges as a
promising methodology for IoT security analytics,
offering high performance, data privacy preservation,
scalability, and effective handling of imbalanced data.
However, in the end, the particular needs and limitations
of the IoT security application will determine which of
the two strategies is best.

Comparative Result with Previously Published
Works

The comparison of different machine learning models
for detecting IoT cyberattacks using the CIC 2023 IoT
dataset in Table 4 reveals distinct performance outcomes
while revealing critical limitations in existing studies.
Previous studies such as Jony and Arnob (2024a); Neto
et al. (2023); Jony and Arnob (2024b) have shown that

traditional methods, including Logistic Regression,
KNN, Decision Trees, and Random Forests, achieve up
to 99.16% accuracy. However, challenges such as
overfitting, the time-consuming nature of anomaly
detection, and Imbalanced datasets remain, causing
models to overlook less frequent but potentially harmful
cyber threats. In contrast, advanced techniques like
Generative Adversarial Networks (GANs) and Federated
Learning (FL) significantly enhance performance,
achieving accuracy rates of 95.3% in our study,
improving infrequent attack detection rates and
preserving data privacy through collaborative learning.
By establishing an enhanced dataset as a new benchmark
for IoT security research, we fill the void in
comprehensive approaches combining data augmentation
with advanced ML techniques, setting a new standard for
future IoT security analytics.
Table 4: Comparative Result with other Works

Authors Dataset Methods Purpose of
Study

Evaluation
Matrices

Limitation

Jony
and
Arnob
(2024a)

CIC IoT
Dataset
2023

LSTM Detecting
cyber
attacks in
IoT using
the CIC IoT
2023 dataset

(Accuracy
0.9875),
(F1 Score
0.9859),
(Recall
Score
0.9875),
(Precision
Score
0.9866)

Needs
improvement in
interpretability
and scalability

Neto et
al.
(2023)

CIC IoT
Dataset
2023

Logistic
Regression,
Perceptron,
Adaboost,
Random
Forest, and
Deep
Neural
Network

Propose a
novel IoT
attack
dataset for
security
analytics

LR
(Accuracy
0.8023),
Perceptron
(Accuracy
0.8196),
Adaboost
(Accuracy
0.6079),
RF
(Accuracy
0.9916),
DNN
(Accuracy
0.9861)

Limited to
specific types of
attacks; requires
further
optimization

Jony
and
Arnob
(2024b)

CIC IoT
Dataset
2023

Logistic
Regression,
KNN,
Decision
Tree,
Random
Forest

Evaluate
ML
algorithms
for detecting
IoT
cyberattacks

RF
(Accuracy
0.9916),
KNN
(Accuracy
0.9380),
DT
(Accuracy
0.9919),
LR
(Accuracy
0.8275)

Limited to
specific attack
types; LR
performed the
least effectively

This
study

Enhanced
CIC IoT
Dataset
2023

Decision
Tree, Naive
Bayes,
Support
Vector
Machine,
XGBoost

Enhance IoT
security
through
GANs and
Federated
Learning

DT
(Accuracy
89.72), NB
(Accuracy
93.32),
SVM
(Accuracy
86.05),
XGBoost
(Accuracy
94.62)

Computationally
intensive; risks
during
aggregation
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Conclusion
The advent of the IoT has revolutionized numerous

industries, offering unprecedented connectivity and
convenience: However, with this connectivity comes the
inevitable challenge of ensuring robust security measures
to safeguard IoT ecosystems against evolving cyber
threats In this paper, it has been investigated the
effectiveness of different approaches, specifically
traditional ML and FL, in enhancing IoT security
analytics using the CIC IoT Dataset 2023 Our
investigation commenced with a comparative analysis of
performance between traditional ML approaches and FL
Traditional ML models, including Decision Tree, Na¨ıve
Bayes, SVM, and XGBoost, were initially trained using
the original dataset without synthetic data augmentation

These models exhibited moderate performance,
achieving accuracy scores ranging from 59.86 to
63.96%.

However, their effectiveness was significantly
enhanced when synthetic data augmentation was applied,
with accuracy scores ranging from 86.05% to 95.82%.
FL outperformed traditional ML approaches across all
metrics, Presenting greater F1-score, recall, precision,
and accuracy values. The FL framework leveraged the
collaborative learning capabilities of multiple IoT
devices while preserving data privacy and effectively
addressing class imbalance through techniques like
synthetic data augmentation. The substantial
improvements observed in model performance with
synthetic data augmentation underscore the critical role
of addressing class imbalance in IoT security analytics.
Synthetic data generation enabled the models to learn
from more representative datasets, thereby enhancing
their ability to detect and classify diverse cyber threats.
Moreover, FL exhibited superior scalability and data
privacy preservation compared to traditional ML
approaches. By decentralizing model training and
leveraging local data sources, FL mitigated the risk of
exposing sensitive information to centralized servers
while accommodating large-scale IoT environments
seamlessly. These enhancements not only contribute to
more accurate threat detection but also lay the foundation
for scalable and privacy-preserving security analytics in
IoT ecosystems.

The outcomes of this paper have major ramifications
for IoT security practitioners and researchers. Firstly, the
adoption of FL holds promises for enhancing the
effectiveness and scalability of security analytics in IoT
environments. By harnessing the collective intelligence
of distributed devices, FL enables more robust threat
detection and classification while safeguarding data
privacy. Secondly, the integration of synthetic data
augmentation techniques addresses the inherent
challenges posed by imbalanced datasets, enabling ML
models to better capture the nuances of minority attack
classes. This, in turn, facilitates more comprehensive and
accurate security analytics, reducing the risk of

overlooking critical security threats. While this paper
provides insightful findings into the efficacy of FL and
synthetic data augmentation for IoT security analytics,
several avenues for future research exist. Firstly,
exploring advanced FL techniques such as differential
privacy and secure aggregation could further enhance
data privacy while maintaining model performance.
Additionally, investigating novel synthetic data
generation methods tailored specifically for IoT security
datasets could lead to more effective model training and
threat detection. Furthermore, longitudinal studies
evaluating the long-term effectiveness and scalability of
FL in real-world IoT deployments are warranted to
validate its practical applicability.

This study underscores the critical importance of
adopting innovative approaches like FL and synthetic
data augmentation to enhance IoT security analytics. By
leveraging distributed learning and addressing the class
imbalance, FL offers a scalable, privacy-preserving
framework for robust threat detection in IoT ecosystems.
The significant improvements observed in model
performance highlight the potential of these approaches
to fortify cyber defense capabilities and mitigate
evolving dangers in the rapidly evolving area of IoT. As
we continue to explore the intersection of ML and IoT
security, embracing innovative methodologies will be
paramount in safeguarding the integrity and robustness
of IoT systems countering evolving cyber threats. As the
domain of IoT security continues to evolve, multiple
promising research directions and development can
further enhance the effectiveness of security analytics
and mitigate emerging cyber threats. Integrating multi-
modal data sources, such as sensor data, network traffic,
and device logs, can enrich the training datasets and
improve the robustness of security analytics models.
Future work could explore methodologies for effectively
integrating and leveraging diverse data sources to
enhance threat detection abilities. Also, we will explore
additional data balancing techniques, including SMOTE,
ADASYN, and hybrid approaches to provide a
comprehensive view of their comparative effectiveness
in IoT security contexts.

Limitations

This study has faced limitations regarding deploying
GAN and FL. Their deployment can be computationally
intensive, demanding much processing power and
memory. Specifically, with large datasets like the CIC
IoT Dataset 2023, training with GANs may increase
operational costs and training times. Moreover, FL’s
communication cost can delay training, affecting real-
time application capabilities, specifically in limited
bandwidth environments.

Another limitation the study encountered was
regarding data privacy. While FL improves data privacy
by using local devices to store sensitive data, some risks
remain. During the aggregation, the sensitive data from
shared model parameters may be inferred by adversarial
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users. Additionally, there is a risk of re-identification if
the data is used to train GANs without proper
anonymization. In this study, the efficacy of GANs and
the quality and representativeness of the training data
determine how well ML models perform. Using synthetic
data in the CIC IoT Dataset 2023 may not accurately
reflect real-world scenarios because of Biases or missing
classes in the dataset, which could be reflected in the
synthetic data.

Lastly, model interpretability is challenged due to the
complexity of deploying GANs, restricting trust in model
outputs. Understanding the alignment of generated
synthetic data with real-world data can be challenging,
particularly in applications where interpretability is
critical.
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