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Abstract: In the current Internet era, there are now trillions of gadgets online, 

and the Internet of Things is becoming a necessary part of daily life. IoT devices 

are connected, but this also makes them vulnerable to cyberattacks. Cyberattacks 

targeting Internet of Things (IoT) systems have increased dramatically in both 

volume and sophistication in the last year. Determining the importance and 

explainability of significant feature selection is not done in conventional feature 

selection, which acts as a black box method. Classical machine learning suffers 

from overload and class imbalance issues in IoT-based cloud security which is 

the major issue that results in botnet attack detection. To overcome these two 

issues, this study developed a model of a feature map to encode conventional 

data to a quantum feature space and then utilize the newly created quantum data 

in the cognitive circuit, which motivates to development of Quantum Shapley 

Additive Explanation with Variational Quantum Classifier (QSHAP-VQC) is 

implemented. This makes it possible to employ classical data in a quantum 

circuit. To minimize a cost function, a VQC employs hybrid quantum-classical 

techniques that involve parameterized circuits and gates whose parameters are 

improved via a classically based optimization loop. A quantum-classical hybrid 

loop consisting of these steps is eventually broken when the classical 

optimization finds the ideal parameters. For training data, the usual cost 

function is a comparison of the actual and expected outputs. The proposed 

QSHAP-VQC achieves the highest rate of accuracy in the detection of 

attacks in an IoT cloud environment. 

 

Keywords: Quantum Cryptography, Parameter Optimization, Shapley Additive 

Explanation, Variational Quantum Classifier, IoT, Cloud Security, Botnet 

 

Introduction 

The Internet of Things integrated systems are currently 

proliferating and encompassing many geographically 

dispersed networks of diverse equipment functioning in 

an insecure environment (Ali et al., 2020). These devices 

use core and secondary cloud services to facilitate 

communication and business tasks while interacting 

locally. IoT devices are often used without the owners' 

knowledge as instruments in cyberattacks. These gadgets 

have the potential to be taken over and added to a "botnet," 

or collection of compromised devices. These botnets, 

which are networks of individual computers controlled 

collectively and contaminated with malware, are 

frequently employed in cyber security attacks especially 

botnet attacks (Alshamkhany et al., 2020). Because these 

devices frequently have insufficient security measures, 

the involvement of IoT in these botnets is becoming more 

and more concerning. 

Four kinds of botnet architecture are distinguished: 

Hierarchical, random, multiple-server, and star topologies 

(Ragunthar et al., 2021). As illustrated in Fig. (1), the 

centralized botnet, sometimes referred to as star topology, 

is the most widely used and swiftly spreading kind of 

botnet. The control-and-command server announces a 

command to all the bots when a bot master publishes it, 

starting an attack (Wazzan et al., 2021). As soon as the 

bots get the order, they will launch the attack using the 

strategy that the bot manager has prepared. A web host or 

researcher can discover and use the control-and-command 

system, which is the foundation of this architecture, to 

successfully take down a botnet. 
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Fig. 1: Star topology of botnet attack in IoT 

 
The assault will not be successful if the connection 

among the control-and-command servers is interrupted 
because the bots cannot get commands from the bot master. 
The total count of servers varies from the star topology in 
many server architectures. Because of how easily things 
might go wrong, many server topologies modify the setup of 
the control-and-command servers. Every control-and-
command server in the network is set up to send out 
commands. The botnet will continue to operate as planned 
even if any of the servers is discovered and malfunctions; a 
substitute server is going to take its place. According to the 
bot master, the attack will go on regardless of whether each 
of the servers is up and running. 

IoT networks typically have several entry points that 

could be used by hostile actors to compromise the devices. 

These access points can be found remotely via wireless 

communication protocols, the Internet, or cloud 

infrastructure, or they can be found inside the network's 

communication boundary (Kumar and Lim, 2020). Such 

networks are particularly susceptible to several kinds of 

harmful impacts because of this situation. 
The dynamic aspect of IoT cloud functioning that 

includes the capacity to alter the devices' composition, 

location, settings, data, profiles, user behavior features, 

and data flow structure is a crucial component of the 

technology. This is specifically caused by the 

organizational and technological difficulties involved in 

upgrading such devices, which frequently entails 

performing manual maintenance on the device and 

upgrading the firmware to fix vulnerabilities. All these 

calls for the creation of specialized methods for 

guaranteeing the information confidentiality of IoT 

clouds, methods that would take into consideration their 

characteristics and enable the successful detection and 

reaction to threats in addition to the prevention of 

potential assaults. 

The ability to collect and analyze data from numerous 

similar or distinct IoT clouds using the cloud's virtually 

limitless computational resources negates the need to 

implement computationally demanding protection 

algorithms. This is one of the main benefits when 

employing the cloud and its offerings to guarantee the 

confidentiality of IoT clouds. Apart from examining Big 

Data and recognizing diverse trends that impact IoT cloud 

maintenance and user requirements, cloud infrastructure 

also enables the identification of dispersed coordinated 

attacks (Darshan and Divyanka, 2023). 

These assaults can take the shape of intricate multi-

step schemes and botnets, involving tens of thousands of 

devices from various IoT clouds and employing 

techniques like SYN port flooding, port sweeping, and 

scanning. It appears that identifying such assaults locally 

within the hardware of each unique IoT network would be 

very challenging, if not impossible. 

However, there are inherent drawbacks to these cloud 

services for information security. Specifically, they are 

the practical impossibility of supplying the entirety of 

network security data transferred to the cloud, as well as 

the inherent communication constraints of network 

communication routes. It results in the requirement to 

extract, compile, and transfer to the cloud only the bare 

minimum of required data. Furthermore, the ability to 

transfer any user data, or even small portions of it, to the 

cloud is restricted by law and marketing due to privacy 

concerns. Specifically, providing entirely anonymized 

user data may result in legitimate legal inquiries to the 

provider as well as harm to the company's reputation from 

a lack of end-user awareness (Mijwil et al., 2023). 
Thus, decentralizing security measures and attack 

detection methods is thought to be a potential strategy 

for managing the security of an IoT network. This 

proposed work contributes a novel quantum theory 

with the SHAP method to select the potential features 

and improve the computation complexity while 

detecting attacks in IoT clouds. 

A unique collection of features from different attacks 

is extracted and constructed by analyzing the original 

traffic to generate each model. 

The proposed methodology’s approach is novel as 

represented below: 

 

 Uses the types of network attacks that have been chosen 

as an essential component of intricate, multi-step actions 

 Creates and extracts feature sets for these attacks 

based on the properties of TCP/IP traffic in Internet 

of Things clouds 

 Combines specific, machine learning-based 

adaptations of widely used classification techniques. 

Furthermore, in contrast to previous analogs, the 

concurrent examination of several facets of TCP/IP 

information in IoT clouds enables the identification 

of an assault as well as its primary attributes 

 The significance of the proposed methodology is 

demonstrated by an improvement in recognizing 

indicators of quality, which is validated through 

experimental means 



Veena Antony and Nainan Thangarasu / Journal of Computer Science 2025, 21 (1): 168.176 

DOI: 10.3844/jcssp.2025.168.176 

 

170 

Literature Review 

Muñoz and Valiente (2023) focused on aspects of 

network traffic that may indicate cybersecurity risks to 

the Internet of Things networks and impacted network 

nodes. Using the components that were obtained on each 

IoT console, particular attribute vectors were also 

produced. To manage cyberattacks in real-time 

communication, such good prediction is required. The 

model may be used to predict cyberattacks in real-time, 

even in large-scale IoT deployments, due to its 

efficiency and scalability. Its ability to compute 

efficiently enables it to produce precise predictions 

quickly, enabling timely detection and intervention. 

Intrusion Detection Systems (IDSs) fall into one of 
two primary categories as discussed by the authors 
(Khraisat et al., 2019) look for previously identified 
patterns in data sent over the network, sadly, the efficacy 
of these systems is declining. It uses machine learning 
techniques to identify variations in the network's learned 
behavior. To avoid being discovered, attackers need to be 
aware of typical behavior. 

Kumar et al. (2022) utilized Autocorrelation Function 
based tests to identify individual bots after classifying 
aggregate traffic using supervised machine learning 
techniques. A policy engine, a feature extractor, a traffic 
parser, and a malware traffic database are further 
components of the EDIMA architecture. 

This study explored by Azam et al. (2023) the security 
features, procedures, risks, and practical applications of 
security-related technologies for cloud computing and 
Internet of Things services. We also examine the effects 
of cloud computing and Internet of Things security 
services, including their advantages, drawbacks, and 
prospects. To give readers a basic knowledge of these 
technologies, we describe cloud computing and the 
Internet of Things (IoT) in our exploration. Subsequently, 
we explore their practical uses, emphasizing their 
pertinence and abundance across several fields. 

In the article (Joseph and Jayapandian, 2022), the 
authors describe many kinds of security risks that impact 
cloud computing and the Internet of Things. Machine 
learning is used to categorize these threats. Applications' 
runtime behavior can be exploited to identify malware 
using supervised learning methods. The malware is 
identified by its unusual behavior, which is discovered 
through network traffic. After the malware has been 
identified, application data is kept in a database that has 
been educated using an ML classifier like KNN or 
Random Forest. The model can more accurately identify 
malicious programs with more training. 

The work of (Priyatharsini et al., 2022) covers the 

secure online verification of IoT device settings to offer 

further value-added services. Provide a Cloud-based 

architecture that permits communication between IoT 

devices and several federated Cloud services after 

reviewing the safe self-configuration restrictions placed 

on IoT and Cloud technologies. Talk about two specific 

scenarios, one in which federated cloud infrastructure, 

and a cloud environment interact with IoT devices and 

address special problems. Furthermore, it offers a plethora 

of operational design elements that consider the existing 

hardware and software products that are truly open. 

A unique hybrid honeynet driven by artificial 

intelligence AI and cloud computing CC for improved IoT 

botnet detection rates in the work (Memos and Psannis, 

2020). This new security feature predicts the possible 

existence of a botnet by utilizing Machine Learning such 

as Logistic Regression, Naïve Bayes (Shang, 2024), etc. 

To detect and stop harmful attacks in an environment 

involving cloud computing, Arunkumar and Kumar 

(2023) developed an innovative combination of support 

vector machine-extreme learning machine techniques 

based on the Gannet Optimization Algorithm. It is utilized 

to minimize information loss and choose the best 

characteristics. The GOA method optimizes the variables 

of the combined SVM-ELM model. 

To reduce the DDoS threat, a DDoS detection 

technique based on Random Forest Classifier and Grey 

Wolf Optimization algorithms was created in this study 

(Savita and Taran, 2023). Botnet attacks can be identified 

using the staked boosted LSTM encoder method. Offering 

an improved detection system to recognize impending 

threats is the study's main goal. The solution offers 

excellent accuracy by combining deep learning and 

machine learning with proactive security (Aruna and 

Prayla, 2024). 

Materials and Methods  

The experiment was conducted in a cloud-based 

environment using Google Cloud IoT platform. To detect 

Botnet attacks public dataset UNSW-NB15 is used to 

provide labeled data for training and testing. Raw traffic 

data was preprocessed to extract features such as: Packet 

size, flow duration, source/destination IP, protocol type, 

and port usage. 

The proposed work architecture is depicted in Fig. (2), 

the main objective of this newly developed Quantum 

SHAP model with enhanced Variational Quantum 

classifier is to prevent botnet attacks from occurring in the 

IoT clouds. The IoT clouds are used for cost-effective 

resource storage, but the attackers find a high chance of 

possible attacks that could be done with botnets to affect 

the service to the cloud users. Hence in this study to 

detect botnet attacks in the IoT cloud, a novel quantum 

theory-based feature selection using SHAP value and 

classification of legitimate and abnormal attacks are 

discovered by the variational quantum optimizer by 

optimizing the parameters of a classifier to produce a 

high detection rate. The dataset used for attack detection 

is collected from the UNSW-NB15 dataset with 

2,57,673 records (Moustafa and Slay, 2015). 
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Fig. 2:Proposed model: Integrating SHAP and variational 

quantum classifiers 

 

As illustrated in Fig. (2), the proposed model of the 

IoT cloud botnet attack data is initially encoded into a 

quantum state by VQCs. A feature map, a type of quantum 

circuit that receives data as input and outputs a quantum 

state, is used to do this. A variational quantum circuit, or 

a quantum circuit that is parameterizable, receives the 

quantum state after that. Next, a classical machine 

learning technique is used to optimize the variational 

quantum circuit's parameters to minimize a loss function. 

The effectiveness of the VQC in classifying the data is 

indicated by the loss function. New instances can be 

classified using the variational Quantum Circuit (VCCR) 

once its parameters have been optimized. In order to 

accomplish this, the feature map is used to encode the data 

point into a quantum state, which is subsequently sent to 

the VCCR. Next, over the various classes, VCCR 

generates a probability distribution. Next, the type of data 

point is projected to be the one with the highest likelihood. 

Feature Selection Based on the SHAP Model 

Shapley additive explanation (SHAP) has been a well-

liked technique for deciphering predictions from machine 

learning models. SHAP offers information about how 

each attribute contributes to particular predictions by 

using strategies from Game Theory (Schuld et al., 2015; 

Sheoran and Yadav, 2024). It's one of a category of 

model-independent additive feature attribution approaches 

that may be used with a wide range of deep learning and 

machine learning models. These methods assist in gaining a 

deeper comprehension of the behavior of the model by 

assigning significance to specific input features. 

The mean absolute ratings for each feature are then 

determined by computing SHAP values for each instance 

and averaging these values over the whole dataset. This 

technique makes the calculation of SHAP values 

computationally hard. The absolute SHAP score reflects 

the significance of a feature regardless of its tendency 

(negative or positive), but the average SHAP score shows 

the average influence of each feature on predicted models 

over the whole dataset. Higher SHAP features are 

recognized as having a greater influence on the model's 

predictions by ranking the features according to their mean 

relative SHAP values in order of decreasing importance. 

Preamble of Quantum Machine Learning 

Classification tasks play a significant role in the broad 

field of machine learning. An algorithm is trained to identify 

labeled subsets within provided data in a supervised training 

circumstance (Farhi and Neven, 2020). After it has been 

trained, this structure can be utilized for organizing unlabeled 

data since it learns the characteristics that collectively define 

each label. Additionally, ongoing efforts are being 

undertaken to identify situations in which quantum solutions 

are preferable to conventional, standard methods. The goal 

of this effort is to find quantum algorithms that are either 

exponentially more efficient or substantially quicker than 

their digital equivalents. If a breakthrough of this sort were 

made, let us discuss the merits of using the quantum concept. 
A new multidisciplinary research field that blends ML 

with quantum physics is called Quantum Machine Learning 
(QML). Using QML enhances QC's performance and 
expedites the data processing process. 

Data Normalization 

In this study, the min-max normalization is applied to 
convert the different range of values in each attribute of 
the botnet dataset to convert to a common range of values 
using the formula: 
 
𝑋 =  (𝑋 − 𝑚𝑖𝑛) / (𝑚𝑎𝑥 −  𝑚𝑖𝑛) (1) 
 
where, X is the attribute value min and max are the minimum 

and maximum range of values of a particular attribute. 

State Preparation 

In order to prepare data for processing, state 
preparation is required in QML. In supervised learning, 
for instance, a common function classification involves 
computing the function f to map the input data (x) and the 
output labels (z) to become z = f (x). Enhancing prediction 
model accuracy is the main objective of classification. 
The binary classification Z = {d1, d2, …. dn} where Z is 
the target variable and a collection of data in the training 
phase in such a way that the conventional machine 
learning domain can describe it as: 
 
𝐶 = {(𝑥1, 𝑦1), (𝑥𝑖 , 𝑦𝑖), … (𝑥𝑛, 𝑦𝑛)} (2) 
 
where, features (n) are denoted as 𝑥𝑖  on the properties of 
the order of instance I and 𝑦𝑖  is the related instance. In 
binary classification 𝑦𝑖𝜖(𝐿1,  𝐿2). 

To illustrate the same framework in the quantum 
machine learning domain, the initial process is to convert 
the classical data to quantum data as denoted in training 
data as shown in the equation below: 
 
𝐸𝑛 = {(〈𝜓1〉, 𝑧1), … (〈𝜓𝑖〉, 𝑧𝑖), … (〈𝜓𝑛〉, 𝑧𝑛) (3) 



Veena Antony and Nainan Thangarasu / Journal of Computer Science 2025, 21 (1): 168.176 

DOI: 10.3844/jcssp.2025.168.176 

 

172 

where, the quantum state of 𝐸𝑛  is denoted as 〈𝜓1〉 and 

𝑧𝑖 ∈ 𝐿1,  𝐿2. 

To transform classical data to quantum data, in this 
study basic encoding is used. Using the following 
equation, this method establishes a connection between n-
bit classical data points and the computational foundation 
of n-qubit data points, like classical information (1001) 
enciphered to four qubits |1001> quantum data: 
 

|𝐶⟩ =
1

√𝑃
∑ |𝑥𝑝⟩𝑃

𝑝=1  (4) 
 
where, C is the classical data, { 𝐶 =  𝑥1, 𝑥2 … . , 𝑥𝑝 } 

produce a binary vector, 𝑥𝑝 = {𝑑1
𝑝

, 𝑑2
𝑝

, . . . , 𝑑𝑁
𝑝

} , 𝑑𝑖
𝑝

∈
{0,1}, 𝑖 ∈ {1,2, … , 𝑃} and P refers to a number of features 

in the dataset. 

Variational Quantum Classifier 

Mainly used for supervised QML classification 

applications, the Variational Quantum Classifier (VQC) is 

an important algorithm for classifying quantum events 

that are relevant to environmental events. It provides a 

classification of the complexity involved in 

approximating the Ising and Tutte partition functions with 

complex parameters and investigates their connections to 

quantum computation. (Havlíček et al., 2019; Saxena and 

Nigam, 2022, Goldberg and Guo (2017).). 

Iterative device measurements are used to generate the 

cost function, which reduces mistakes by incorporating 

noisy data into the optimization calculations. This 

quantum technique, which is based on quantum circuits 

that are challenging to replicate conventionally, maps 

conventional input data to an expanding quantum feature 

space. In VQC, classical data is embedded into quantum 

computing through a variety of feature mapping 

approaches. This process begins with the preliminary 

preparation of QML issues. The variational circuit has the 

same dimensions and number of measurements. Lastly, a 

circuit receives the measured value as feedback to 

enhance the trainable parameters of the variational circuit 

as depicted in Fig. (3). 
 

 
 
Fig. 3: Process of variational quantum classifier 

The standard machine learning kernel technique, 
which maps a dataset non-linearly into a higher-
dimensional space to identify a hyperplane that classifies 
non-linear data, is the source of the fundamental idea 
behind quantum feature mappings. 

Our feature space (Fi) has now increased in dimension 
due to the unitary operation applied to the starting state 
and our classifier's job is to locate a separating hyperplane 
in this enlarged space. Which include the depth (dp) of the 
circuit and the layer of Hadamard gates (H) sandwiched 
between entangling blocks encoding the classical data. 
The quantity of qubits needed depends on the data's 
dimension. Unitary gates are used to encode the data. 
When non-traditionally generated quantum feature maps 
are used instead of characteristic maps that can be 
modeled on classical computers, the quantum advantage 
becomes apparent. 

This method's fundamental principle is to optimize the 
parameters by following the guidance of an objective 
function. Variational quantum circuits have two unique 
phases: The quantum phase and the classical phase. State 
preparation in the variational quantum circuit 
parameterized input depending on the number of 
parameters and measurements included in that procedure. 
The learning algorithm, the objective function, and the 
circuit's output comprise the classical phase. The VQC is 
estimated via optimization approaches such as restricted 
optimization by linear approximations. 

The assessment stage, which comes next, uses a 
definitive measurement to evaluate the class possibilities. 
It is equivalent to computing the average value of several 
samples taken from a distribution of possible 
computational base states. The aim of training is to find 
the parameter values that will optimize a specific loss 
function. Like how we can optimize a traditional neural 
network, we can also optimize a quantum model. 
Calculate the loss function by running the model forward 
in both scenarios. The gradient-based optimization 
techniques update our trainable parameters as loss 
functions fluctuate during training because the gradient of 
a quantum circuit can be determined. This technique 
allows us to calculate the loss function value, which 
represents the difference between our estimates and the 
actual data. When the measurements are prepared, an 
optimization procedure is used to update the parameter 
values of the VQC. Our parameters are trained using the 
classical loop until the value of the cost function drops. 

Experimental Results and Discussion 

This section discusses in detail the performance of the 
proposed Quantum Shapely Additive Explanation Model 
with Variational Quantum Classifier (QSHAP-VQC) 
deployed using Python software to detect botnet attacks in 
the IoT cloud environment. To detect botnet attacks, the 
training dataset comprised 1,75,341 records and the 
testing dataset is 82,332 records. The python software is 
used to develop the proposed QSHAP-VQC Model.   
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The confusion matrix to measure the efficiency model 

is depicted in Table (1). 
In Table (2), the botnet and normal attacks correctly 

predicted are 26,312 and 55,850 respectively. The process 
of the quantum SHAP model with Variational Quantum 
Classifier effectively detects the botnet attacks more 
prominently. 

The proposed QSHAP-VQC performance is compared 
with a conventional support vector classifier [Arunkumar, 
M., & Kumar, K], Random Forest [Savita, D., & Taran], 
and conventional variational quantum classifier [Saxena, 
N., & Nigam]. The metrics used for analysis are accuracy, 
precision, recall, and mean square error. 

Table (3) explores the comparative analysis of four 
different IoT botnet security attack detection models in 
cloud computing. The result shows that the performance of 
the newly devised quantum SHAP model as feature selection 
and Variation quantum classifier to detect the normal and 
abnormal packets entering inside the IoT network in the 
cloud environment achieves the highest accuracy rate of 
98.1% compared with other existing models. 

The proposed model QSHAP-VQC has a much more 
balanced distribution of the feature’s importance, with 
significant features selected by the quantum SHAP model. 
The computation of the contribution of each feature 
played a vital role in improving the detection rate 
effectively compared with the other machine learning 
models, which work as a black box to produce output. It 
is difficult to find what makes the misclassification rate. 
Hence, in this proposed work quantum Shapley feature 
selection is used to determine the contribution of each 
feature, and a variational Quantum classifier is used to 
determine the patterns of the input data and the 
corresponding output generated based on the cost function 
during the training phase it achieves higher rate of 
accuracy is depicted in Fig. (4). 
 
Table 1: Confusion matrix 

 True label 

  Botnet Normal 

Predicted 

label 

Botnet True positive False 

positive 

Normal False-negative True 

negative 
 
Table 2: Result of proposed model confusion matrix 

 True label 

  Botnet Normal 

Predicted 

label 

Botnet 26,312 20 

Normal 150 55,850 
 
Table 3: Performance result 

Prediction 

Models 

Accuracy Precision Recall MSE 

SVC 80.8 82.3 83.5 0.48 

VQC 85.2 87.2 88.1 0.37 

Random 

Forest 

89.9 90 90.1 0.22 

QSHAP-VQC 98.1 98.3 98.4 0.1 

When comparing the proposed framework QSHAP-

VQC to the existing techniques for cloud-based IoT 

botnet attack detection, the latter achieves the highest rate 

of precision. In order to improve cloud computing's 

security measures for IoT botnet attack detection, novel 

perspectives into the algorithm are provided by the notion 

of quantum theory and the SHAP approach, which 

uncovers unanticipated correlations between input 

characteristics and the target variable. Thus, in Fig. (5), 

QSHAP-VQC achieves a precision rate of 98.1%, while 

SVC, QSVC, and Random Forest produce 79.4%, 86.7%, 

and 89.6% respectively. 

 

 
 
Fig. 4: Rate of accuracy 

 

 
 
Fig. 5: Precision rate 

 

 
 
Fig. 6: Recall rate 
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Fig. 7: Mean square error rate 

 

The recall value obtained by the four IoT botnet attack 

detection models is depicted in Fig. (6). The results show 

that QSHAP-VQC with the reduced feature subset 

selection using Quantum Shapley values and using 

Variational Quantum Classifier achieves better 

performance of recall value compared to other standard 

classification models. This method compares the 

predictions made by a model with and without a feature, 

assigning a relevance value to each one for a given 

prediction. Because the computation considers all 

potential feature combinations and takes the effects of 

interaction between features into account, it guarantees 

equitable imputation. In Fig. (6), the recall rate of 

QSHAP-VQC is higher than the other existing models as 

it attains a value of 98.4%. 

As shown in Fig. (7), the suggested QSHAP-VQC has 

a much lower mean square error rate when compared to 

the existing algorithms for IoT botnet attack detection in 

the cloud. The proposed QSHAP-VQC algorithm 

achieves the lowest error rate compared to other advanced 

algorithms due to its utilization of the quantum concept in 

machine learning. The anticipated VQC attained during 

the training process has a fundamentally different 

approach to feature importance compared to the 

conventional approaches for the prediction of botnet 

attacks in cloud-based IoT. 

Discussion 

The SHAP-integrated Gradient Boosting Model 

outperformed baseline approaches such as. 

SVC: Accuracy of 80.8%, lower due to 

oversimplification of feature relationships: 

 

 VQC: Accuracy of 85.2%, limited by higher false-

positive rates 

 Random Forest: While achieving comparable 

accuracy (89.9%), lacked interpretability compared 

to QSHAP-VQC based explanations 

Conclusion 

Although this study provides an overview of current 

developments in quantum machine learning research, it is 

important to note that it is not an exhaustive analysis. It is 

crucial to have a thorough understanding of both machine 

learning and quantum information processing before 

exploring their interaction. Most of the research in 

quantum machine learning so far has come from 

specialists in quantum information processing and 

classical machine learning and this successful 

multidisciplinary collaboration has produced a lot of 

positive results. Hence, in this proposed work a novel 

Quantum SHAP-based feature selection and Variational 

Quantum Classifier is developed to predict the botnet 

attacks in IoT clouds. First, it makes use of quantum 

computing's high parallelism to improve machine 

learning's capacity for managing, interpreting, and mining 

massive amounts of data. Second, it encourages 

innovation and the creation of fresh machine-learning 

algorithms by taking inspiration from the ideas of 

quantum physics. Thirdly, it draws inspiration from 

conventional machine learning methods to suggest novel 

study directions that will propel quantum mechanics 

research forward. The simulation results proved quantum 

machine learning is the most promising area in the field 

of IoT cloud-based cybersecurity. In the future, we will 

improve the efficiency and dependability of quantum 

machine learning in our next work with the goal of 

contributing significantly to the resolution of challenging 

issues, the improvement of algorithms, and the achievement 

of more useful applications and scientific advances. 
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