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Abstract: Partial Optimal Transport (POT) has recently emerged as a
central tool in various Machine Learning (ML) applications. It lifts the
stringent assumption of the conventional Optimal Transport (OT) that input
measures are of equal masses, which is often not guaranteed in real-world
datasets, and thus offers greater flexibility by permitting transport between
unbalanced input measures. Nevertheless, existing major solvers for POT
commonly rely on entropic regularization for acceleration and thus return
dense transport plans, hindering the adoption of POT in various applications
that favor sparsity. In this paper, as an alternative approach to the entropic
POT formulation in the literature, we propose a novel formulation of POT
with quadratic regularization, hence termed quadratic regularized POT
(QPOT), which induces sparsity to the transport plan and consequently
facilitates the adoption of POT in many applications with sparsity
requirements. Extensive experiments on synthetic and CIFAR-10 datasets,
as well as real-world applications such as color transfer and domain
adaptations, consistently demonstrate the improved sparsity and favorable
performance of our proposed QPOT formulation.

Keywords: Partial Optimal Transport, Quadratic Regularizer, Optimal
Transport

Introduction
Optimal Transport (OT) (Kantorovich, 1942; Villani,

2008) has long been a well-established mathematical
framework for comparing probability distributions by
finding the minimum-cost solution for transporting mass
between them. However, the high computational cost of
OT remains a significant drawback, limiting its
practicality in large-scale problems. In recent years, the
introduction of regularizers, particularly the entropic
regularizer (Cuturi, 2013), emerged as an answer to
speeding up OT and improving its scalability, garnering
significant attention as a powerful tool in modern
Machine Learning (ML) applications. OT applications
now span many fields of ML, such as color transfer
(Pitié et al., 2007; Pouli and Reinhard, 2011), domain
adaptation (Redko et al., 2019), and dictionary learning
(Rolet et al., 2016). A primary constraint of OT is its

stringent assumption that both the masses of the source
and the target distribution are equal, which does not hold
in many real-world datasets. This becomes the primary
bottleneck for the application of OT to various ML
problems (Rubner et al., 2000; Pele and Werman, 2009;
Gramfort et al., 2015; Nguyen et al., 2023b), where such
an assumption is not guaranteed.

Partial Optimal Transport (POT) (Chapel et al., 2020)
was introduced to address the challenges posed by OT
and entropic regularized OT, allowing mass to be
transported between unbalanced distributions. POT
achieves this by relaxing the marginal constraints that
OT strictly imposes (Figalli, 2010; Caffarelli and
McCann, 2010), providing greater flexibility (Chapel et
al., 2020) and improved robustness to outliers (Le et al.,
2021). However, as observed by Nguyen et al. (2024a),
the current implementation of POT in Chapel et al.
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(2020) is effectively reformulations of OT with extended
cost matrices, resulting in a significant increase in
computation cost. Additionally, Nguyen et al. (2024a)
highlighted that the original Sinkhorn algorithm, when
naively used to solve POT, is strictly infeasible as it
violates some of the foundational constraints of the
problem and proposes a revised feasible Sinkhorn
algorithm for POT with worsen complexity.

In addition, the entropic regularizer, along with the
Sinkhorn algorithm (Cuturi, 2013; Nguyen et al., 2024a)
or relevant solvers (Benamou et al., 2015), has recently
become prevalent in the optimization of OT and POT
problems thanks to its computational acceleration.
However, the usage of entropic regularizers induces
strictly dense transport plans (Blondel et al., 2018),
which is undesirable for several reasons. First, dense
transport plans potentially impose significant memory
complexity, making them inefficient when scaling to
higher dimensions and larger datasets (Peyré and Cuturi,
2020). Second, the lack of sparsity reduces the
interpretability of the solution, obscuring the key
connections between the source and target distributions
(Solomon et al., 2015). Third, such dense transport plans
are often sensitive to noise, which undermines the
reliability of the result (Genevay et al., 2019). Finally,
dense transport plans enforced by the solvers may nullify
the usage of POT in many applications (Pitié et al., 2007;
Courty et al., 2017; Muzellec et al., 2017), favoring
sparse solutions.

Given the worsening complexity of the Sinkhorn
algorithm for POT and the lack of sparsity due to the
entropic regularizer in the existing solvers (Nguyen et
al., 2024a), there is a strong need for an alternative
regularization approach that can accelerate POT while
inducing sparsity. This work proposes and benchmarks
the quadratic regularizer as an effective solution, offering
improved performance and encouraging sparsity for the
POT solution. To this end, we propose the novel
quadratic regularized POT (QPOT) formulation, which
augments the objective of the POT problem with
quadratic regularization. We empirically evaluate QPOT
across extensive settings of synthetic and CIFAR-10
datasets and real-world applications, such as color
transfer and domain adaptation. Using entropic
regularized POT (EPOT) as the baseline, our
benchmarks demonstrate that QPOT achieves superior
sparsity, proving its effectiveness in comparison to
EPOT.

Related Works
Applications of OT span a wide range of fields. In

economics, (Gan et al., 2024) has shown that using OT
in resource allocation for Cloud–Edge Collaborative IoT
significantly reduces the average energy consumption
and delay. In ML, Courty et al. (2017) has applied OT
for domain adaptation on toys, challenging real visual
adaptation examples, and has shown that the method

consistently outperforms state-of-the-art approaches.
Bousquet et al. (2017), in addition, has studied
unsupervised generative modeling in terms of the OT
problem and has shown a better understanding of the
commonly observed blurriness of images generated by
variational auto-encoders. In deep learning, the use of
OT to generalize a deep neural network was studied in
Zhang et al. (2023), while Oh et al. (2020) has applied
OT in deep learning approaches for accelerated MRI and
was able to reconstruct high-resolution MR images. OT
is also used in image processing, as (Rabin and
Papadakis, 2015; Blondel et al., 2018; Rabin et al., 2014)
have applied OT in addition to other methods to gain
great results in color transfer tasks. In biology, OT was
applied in (Schiebinger et al., 2019) to study
developmental time courses to infer ancestor-descendant
fates and model the regulatory programs that underlie
them.

However, the classical optimal transport problem
aims to find a transportation map that keeps the total
mass between two probability distributions, requiring
their mass to be the same. In certain cases, this condition
can be hard to achieve, therefore leading to the
formulation of Partial Optimal Transport (POT). The first
known study of POT in ML applications was by (Chapel
et al., 2020). The work showed that this method is
efficient in scenarios where point clouds come from
different domains or have different features. Similarly,
Qin et al. (2022) proposed a point cloud registration
algorithm based on partial optimal transport and showed
that the proposed method achieves state-of-the-art
registration results when dealing with point clouds with
significant amounts of outliers and missing points.

To further improve the OT method, recent studies
have been about adding a regularizer term to improve
certain aspects of the algorithm. The work of Cuturi
(2013), for example, has added an entropic regularizer
term into the initial problem and shown that the
algorithm runs at a speed that is several orders of
magnitude faster than that of transportation solvers.
Further studies on the efficiency and convergence of the
entropic regularized OT can also be found in Lin et al.
(2022) and Carlier et al. (2017).

Even though the entropic regularizer has proven to
increase the computing speed significantly, the resulting
transportation plan is usually dense. To resolve this
problem, many works have been conducted on studying
the application of the quadratic regularizer to the OT
problem. Blondel et al. (2018) shows that the
incorporation of the quadratic norm and group lasso
regularizations has led to an improvement in the sparsity
of the transport plans. Additionally, Lorenz et al. (2021)
investigated the problem of optimal transport in the so-
called Kantorovich form and derived two algorithms to
solve the dual problem of the regularized problem. Their
experiments have shown that both methods perform well,
even for small regularization parameters. Similarly, Nutz
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(4)
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(2025) has proven the existence of the solution of the
dual problem for a general square-integrable cost and
that the optimal support is indeed sparse for small
regularization parameters in a continuous setting with
quadratic cost. On the other hand, in Nguyen et al.
(2023b), the quadratic regularizer was applied
simultaneously with the KL divergence to fill the lack of
sparse UOT literature. Furthermore, motivated by an
application to a sparse mixture of experts, Liu et al.
(2022) studied OT with explicit cardinality constraints on
the transportation plan and showed that this framework is
formally equivalent to using squared k-support norm
regularization in the primal. In terms of the
computational methods, the two main approaches for
solving OT are gradient-based methods and the Sinkhorn
algorithm. The Sinkhorn algorithm has been studied in
Cuturi (2013) and has shown great computational speed.
On the other hand, gradient methods have been studied
in Nesterov et al. (2021) and An et al. (2022) and have
shown that the proposed method achieves faster
convergence and better accuracy with the same
parameter compared to the Sinkhorn algorithm. For POT,
Nguyen et al. (2024a) has shown that Sinkhorn is not
feasible and proposes a rounding algorithm to resolve the
problem. In UOT, the gradient method has been studied
in Nguyen et al. (2023b) in addition to the primal-dual
theory.

Problem Formulation

Optimal Transport

Define the source and target distribution for the
transport as  with mass  and .
The Optimal Transport aims to move the mass of  to 
and the other way around with minimal cost.
Kantorovich (1942) hence reformulate OT as a Linear
Programming (LP) problem:

where  is the cost matrix of moving between  and ,
and  being the set of solution  that minimize
the overall cost, defined as:

Revise the formulation of OT, the two equalities of
 enforces a strict constraint where the

transported mass must be equal to the mass of both
distributions, leading to the requirement where both
masses must also be equal for the calculation of OT.

Partial Optimal Transport

The Partial Optimal Transport (POT), as defined in
Chapel et al. (2020) and Le et al. (2021), relaxes such
constraint from OT by introducing a total mass 

 that is allowed to be transported

between the two distributions. The introduction of s
hence reformulate 1 as:

such that  where

To elaborate, the addition of s transforms the
previous equalities in 2 into inequalities in 3, allowing
the mass of each distribution to be transported partially
and hence allowing the masses to differ. The loosening of
the original constraint also allows POT to be more
flexible and encourages sparsity in the transport plan,
accelerating computations while maintaining the key
connections between the two distributions.

Regularizers

To be able to modify Linear Programming problems
to focus on achieving certain tasks (e.g, lower runtime,
higher accuracy, etc), a novel approach is to add a
regularizer term to the objective function.

For OT problems, the entropic regularizer has been
applied to both OT and POT (Clason et al., 2021; Cuturi,
2013) and has given some optimistic results. The
Entropic regularized OT (EOT) problem is OT with the
addition of the regularizer Kullback–Leibler divergence
(Shlens, 2014) to stabilize the computation and make it
solvable using faster algorithms such as the Sinkhorn-
Knopp algorithm. Its formula can be written as:

Entropic Regularized Partial OT (EPOT) is the
combination of POT and EOT, where our objective
function would be the same as Eq. (4) but with the
additional condition that  which have
been denoted in (3). Formally, it can be written as:

The greatest reason why the entropic regularizer is
favored for OT problems is due to its great algorithmic
speed (Cuturi, 2013). However, the limitation of the
entropic regularizer is that it would result in a dense
transport plan, leading to difficulties in interpreting the
general pattern, which may lead to suboptimal solutions
in applications where sparsity is important. Additionally,
when the regularizer coefficient ε becomes very small,
the Sinkhorn iterations used to solve the entropic OT
problem may converge very slowly or face stability
issues due to extremely large or small entries in the
transport matrix.

To resolve this problem, we propose the Quadratic
Regularized POT (QPOT), which is POT with the
additional usage of the quadratic regularizer (also known
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as the ℓ2 norm). More formally, the formula for QPOT
can be written as:

where ε is the regularizer coefficient and  is the
Frobenius norm of the matrix T for all matrix T.

The proposed method can perform very well due to
the simplicity in computations of the novel ℓ2 norm as
well as its ability to handle outliers. These properties of
the ℓ2 norm have also been studied in Zhu et al. (2015)
and Zhang et al. (2019) and have given satisfactory
results in terms of sparsity.

Methods and Implementation
We conducted our experiments on a system powered

by an i7-12700K processor with 64GB of DDR5 RAM,
comparing the performance of QPOT and EPOT in terms
of sparsity through numerical experiments, color transfer,
and domain adaptation tasks. Our implementation
leveraged Python’s cvxpy library, which provides a
natural mathematical interface for expressing convex
optimization problems. Additionally, the library offers
access to multiple open-source solvers, making it well-
suited for our experimental setup

We selected CLARABEL and SCS as the solvers for
QPOT and EPOT, respectively. The CLARABEL solver,
introduced by Goulart and Chen (2024), based on a
primal-dual interior-point method, aligns effectively with
the smooth and convex optimization landscape
introduced by the quadratic regularizer. CLARABEL is
particularly efficient for quadratic objective functions as
it does not require epigraphical reformulation of the
objective function, leading to faster computation times. It
operates with a tight convergence tolerance of
approximately 10−8 and 10−6, resulting in highly
accurate solutions.

Conversely, the SCS solver (introduced by
O’Donoghue et al. (2016)) proved more suitable for
EPOT. SCS employs Douglas-Rachford splitting
combined with acceleration techniques, such as
Anderson acceleration from Zhang et al. (2020), which
enhance its flexibility and efficiency when handling
smooth and strongly convex regularizers like the entropic
regularizer. The SCS solver achieves a convergence
tolerance in the range of 10−3 and 10−4, providing a
balance between computational speed and accuracy,
making it a practical choice for large-scale entropic
regularized problems.

Experiments Setup and Results
The performance of QPOT is benchmarked through

three experiments, using EPOT as the baseline. The first
experiment involves a numerical analysis on the CIFAR-
10 dataset and multiple toy distributions. We also
conduct additional experiments on real-world machine

learning applications, such as color transfer and domain
adaptation. In all settings, we solve QPOT and EPOT
using Python’s cvxpy package. Furthermore, our
experiment setup aims to study the performance of both
regularized POTs and observe how they behave under
various parameters.

Two noteworthy parameters that are studied
throughout all experiments are λ and ε. λ is the
proportion of mass to be transported in the process. In
other words, let λ = 0.6 and  = 1, then λ is used
to simulate the unbalance between the mass of source
and target distributions, in this case, the mass to be
transported is s = λ ∗  = 0.6. On the other
hand, ε is the regularizers’ strength, where the higher the
value of ε, the greater the effect of the regularizers,
which drives the solver to focus more on optimizing the
regularization term rather than the cost of the
transportation.

We measured the performance of both QPOT and
EPOT based on their sparsities, defined as the number of
entries in the transport plan below a certain threshold.
For all four experiments, we set the threshold at 1e − 10.
As discussed, sparsity is beneficial in the Optimal
Transport (OT) problem because it improves
computation time and promotes key connections between
source and target distributions. Moreover, for better
visualization, we color the heatmaps of all transport
plans white for values smaller than the threshold 1e − 10
and black for all other values. Since λ being too small
would lead to the sparsity of both methods being too
close to 1 and hard to differ, we have chosen λ to be 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, and 0.99%` which is equivalent to
50, 60, 70, 80, 90, 95 and 99% of the allowed mass to be
transported. Furthermore, for each value of λ, we run ε
from 10−i to 10−j. Where i, j will be chosen to
numerically fit with each experiment.

Numerical Experiments

This section presents the performance of QPOT and
EPOT on two datasets. The first dataset is synthetic data
sampled based on several of the classic distributions,
such as mixed Gaussian, Poisson, Gamma, etc. On the
other hand, in the second setup, the masses are drawn
from the CIFAR10 dataset.

Sparsity Experiment on Toy Distributions

The first setup compares the sparsities of QPOT and
EPOT on multiple toy distributions in a one-to-one
setting. We selected the pairs of distributions on several
combinations of six different classic distributions and
generated their mass by sampling them using Python’s
numpy library. For each type of distribution, we
generated 105 samples, which are divided into 100 bins.
Our sampled distributions include: the Gamma
distribution (G): Γ(α = 7, β = 1), the Poisson distribution

QPOT r, c, s, ε =( ) min C, X +
 

∥X∥
 

  s.t. X ∈[⟨ ⟩ 2
ε

F
2 ] U r, c, s( )

∥T∥  

F

∥r∥ = ∥c∥

min(∥r∥, ∥c∥)
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(P): Pois(λ = 5), the Binomial distribution β (n = 10, p =
0.4) (Bi):, the Beta distribution (Be): Beta(α = 2, β = 2),
and the Mixed Gaussian distribution (MG): 𝒩1(µ1 = 1,
σ1 = 2), 𝒩2(µ2 = 10, σ2 = 1.5). The results are plotted
out in Figure 1.

Fig. 1: Comparing pairs of toy distributions

It can be observed from Figure 1 that for all
experimented pairs, QPOT has a more sparse transport
plan compared to EPOT. Furthermore, for some pairs of
toy distributions like MG-G or MG-Be, the sparsity of
QPOT even doubles that of EPOT, which again
highlights the dominance of our proposed method.

Sparsity Experiment on Multiple Mass

The setting of λ for this experiment is similar to what
was mentioned at the beginning of this section.
Additionally, we have chosen the regularizer coefficient
ε to be 1e − 6 and run our experiment on two toy
distributions which are the Binomial Distribution β (n =
10, p = 0.4) and the Mixed Gaussian distribution 𝒩1(µ1
= 1, σ1 = 2), 𝒩2(µ2 = 10, σ2 = 1.5). Figure 2 below
shows the sparsity of both methods for each λ.

Fig. 2: Sparsity of QPOT and QPOT for multiple transport
masses

Similar to before, in all conducted experiments,
QPOT shows better performance in terms of sparsity
compared to EPOT. Furthermore, overall values of λ ,
QPOT sparsity always stay higher than 0.9, while the
same is not true for EPOT. This has confirmed the
effectiveness of QPOT in finding a sparse solution even
on different masses.

Sparsity Experiment on Multiple Regularizer
Coefficients

The next setup studies the effect of the regularizer
strength on the performance of both EPOT and QPOT by
varying the value ε. As shown in Figure 3, we
benchmarked both POT methods on ε running from
10−0.5 to 10−6 with the pair of Pois(λ = 5) and Beta(α =
2, β = 2) are selected as the source and target
distributions. We also studied this effect on two λ values
0.99 and 0.7, as the first value simulates the setup of
almost equal distribution, while it is studied that the
sparsities of the two methods are the highest when λ =
0.7. Furthermore, similar to the previous experiment, for
each type of distribution, we used 105 samples to
generate and divided them into 100 bins.

In both cases of λ , it can be seen that QPOT
surpasses EPOT for all experimented ε. Additionally, it
can also be observed that for most values of epsilon, the
sparsity of EPOT is usually below 0.9, while the sparsity
of QPOT mostly stays above 0.95. This, again, shows
how dominant QPOT is when it comes to sparsity.

Fig. 3: Sparsity on Numerical Experiment on Poisson and Beta
with: (a) λ = 0.7 (b) λ = 0.99

Sparsity Experiment on CIFAR10 Dataset

Numerical experimentation on CIFAR-10 allows us
to evaluate the optimal transport methods and on
standard benchmark datasets where the masses are drawn
from images

The CIFAR-10 dataset is a well-established dataset
that provides a diverse collection of 60,000 color images

http://192.168.1.15/data/13182/fig1.png
http://192.168.1.15/data/13182/fig1.png
http://192.168.1.15/data/13182/fig2.png
http://192.168.1.15/data/13182/fig2.png
http://192.168.1.15/data/13182/fig3.png
http://192.168.1.15/data/13182/fig3.png
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in RGB format, each sized 32×32 pixels, divided into 10
object classes: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. It includes 50,000 training
images and 10,000 test images, making it a benchmark
for many machine learning tasks that involve images.
Despite its low resolution, CIFAR-10 remains
challenging due to its diverse and complex visual
content. The diversity in object classes, and consequently
the differences in pixel value distribution images, makes
CIFAR-10 an excellent candidate for this experiment. In
this experiment, we used a pair of colored images from
the CIFAR-10. We have decided to convert RGB images
to grayscale images and to downscale the dimensions of
the images from 32×32 to 10×10. The grayscale-reduced
images are flattened into histograms with 100 bins.

We smooth and normalize both histograms by adding
a small value of 10−6 to each bin. We calculate the cost
matrix C using the squared Euclidean distance between
pixel positions and normalize it so that the maximum
value is 1 (  = 1).

For the experiment, λ = 0.7 is chosen as it yielded the
best sparsity in the previous experiment. Moreover, we
select the regularizer coefficient ε ≈ 2 × 10−7. The heat
map of the final result is illustrated in Figure 4.

Fig. 4: Transport map for QPOT and EPOT on CIFAR10 with
λ = 0.7 and ε = 10−7

Just like the aforementioned sections, this experiment
has again highlighted the dominance of QPOT in terms
of getting a sparse transport plan compared to EPOT.
While the EPOT heat map is very dense and barely
shows any pattern, the QPOT heat map, on the other
hand, has given us a much more recognizable solution.

Color Transfer

Fig. 5: Dataset for Color Transfer

Color transfer is an image editing process where the
color palette of one image is applied to another. It is
often used to match the mood, tone, or aesthetic of two
images by transferring color characteristics (hue,
saturation, and brightness) from a reference image to a
target image and has applications in robotics and ML (He
et al., 2018; Lee and Han, 2005). The key to color
transfer is that the new image would have the same color
palette as the target image without losing its contextual
information.

Define an RGB image as x ∈  with each color
channel is a matrix of  corresponding to Red,
Green, or Blue. A pixel xij in an image at coordinate (i, j)
hence consists of three values xij = {red, green, blue}
where each value range from 0 to 255, where the higher
the value, the stronger the color component for that
channel. Hence, each image can be interpreted as an
array of pixels, with each color channel forming a color
distribution. Therefore, the goal of the color transfer task
is equivalent to transporting the color distribution of the
source image to the target image.

The data for this experiment is a pair of images
(Figure 5) representing the source and the target
distribution, each having the dimension of 256×256. This
pair of images is chosen because of their distinct color
palettes. However, instead of conducting the experiments
on the RGB images, we convert the images to the LUV
color space for two main reasons. Firstly, the LUV color
space primarily encodes the color information as the U
and V channels, consequently reducing the
dimensionality of the color space from three (Red-Green-
Blue) to two (UV-color chromaticity). Moreover, LUV is
more accurate in representing the colors, which is in
contrast to RGB, where two colors can be close in the
color space but appear very different to the human eye.
The conversion of RGB to LUV is as follows: L = R + G
+ B, U = G/L, and V = B/L.

After converting the color space, we extract the color
histogram with n bins for each image by taking the
frequency of each U and V channel. These color
histograms then undergo smoothing and normalization,
yielding the total mass of each histogram to  = 1 and

 = 1. From the histogram, we then defined the cost
matrix C as Ci,j =  where  are
the bin values of each histogram. Since we are using 256
× 256 pictures, setting ε too small would lead to
numerical problems while calculating. Thus, we have
chosen to set i, j to −0.2 and −6 respectively, and use the
step size of 10−0.2.

The resulting sparsity is seemingly the same for all
experimented λ . We have chosen to plot out the case of λ
= 0.7 in Figure 6. It can be observed that QPOT
completely dominates EPOT in terms of sparsity, ranging
over all the values of ε. This greatly highlights the
effectiveness of QPOT in getting a sparse transportation
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http://192.168.1.15/data/13182/fig4.png
http://192.168.1.15/data/13182/fig4.png
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plan. In Figure 6 we have also drawn the heatmaps of the
results for ε = 10−2 of the two methods. These heat maps
are drawn by first setting all the values of the transported
plan from 0 to 1e-10 to 0 and the rest to 1. The zero-
values, then, are plotted white, and the one-values are
plotted black. It can be seen that QPOT has a much more
sparse transport plan, which clearly shows the pattern of
the solution. The heat maps of EPOT, on the other hand,
are very dense and have no pattern whatsoever. This
firmly confirms the effectiveness of QPOT in terms of
sparsity.

Domain Adaptation

In many real-world applications, the process of
labeling a newly collected and unlabeled data set (or
target domain) requires the usage of models trained on
largely annotated data sets (or source domains).
However, problems such as the differences in the
probability distribution can impede the effectiveness of
directly applying the learned models to the latter. In
recent years, new ML research has been conducted to
resolve this problem. As a result, Domain Adaptation
(DA), a family of techniques that handles cases where
source and target samples follow different probabilities,
was invented to adapt models trained from the source
data onto the target data.

Fig. 6: (a) Sparsity graph λ = 0. (a) Sparsity graph λ = 0; (b)
Transport plans of QPOT and EPOT λ = 0.(b) Transport
plans of QPOT and EPOT λ = 0

In our experiment’s setting, the ”moon” dataset , a
widely-used scikit-learn (Pedregosa et al., 2011)
synthetic dataset for benchmarking classification

algorithms on linearly non-separable data, is used for
both the source dataset and the target dataset. This
dataset consists of two interleaving half circles
representing two distinct classes, commonly used to test
algorithms capable of handling complex, non-linear
classification boundaries. The experiment requires a
source and a target dataset where the target distribution is
created by rotating the source distribution by 50 degrees,
simulating a domain covariate shift.

Fig. 7: Moon Dataset for domain adaptation

Figure 7 illustrates the dataset where the source
dataset has a total of 300 data points, with 150 data
points for each class. The target dataset, on the other
hand, has a total of 400 data points that are yet to be
labeled. Since the number of data points in the target
dataset is larger than the amount in the source datasets,
we first use K-means clustering to reduce the number of
data points in the target dataset down to 300. The cost
matrix is then calculated based on the Euclidean distance
and is normalized by dividing all numbers by the largest
number.

The metric for measuring QPOT and EPOT
performance is typically the sparsity. However, in this
experiment, to measure how accurately our domain
adaptation performed, we train a support vector machine
(SVM) model on the target dataset predicted by our
domain adaptation and then test it on the source dataset
to find the accuracy. This accuracy shows how similar
the classification of the target dataset is compared to the
classification of the source dataset.

The results of benchmarking QPOT and EPOT on
domain adaptation with ε varying from 10−0.3 to 10−15
and λ = 0.7 are illustrated in Figure 8. The Figure
suggests that the sparsity QPOT achieves, averaging
around 0.9, dramatically surpasses that of EPOT, which
typically hovers around 0.5 and peaks at around 0.7. This
performance of sparsity applies to all λ values in the
experiment. The accuracy of the SVM classifier also
shows that there is no tradeoff between sparsity and
accuracy from QPOT, where the method provides a good

http://192.168.1.15/data/13182/fig6.jpeg
http://192.168.1.15/data/13182/fig6.jpeg
http://192.168.1.15/data/13182/fig7.png
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accuracy consistently over the ε range. Specifically, the
accuracies of both solvers are illustrated in Figure 8 in
the case of ε = 10−4, showing an improvement in
accuracy from QPOT over EPOT while maintaining high
sparsity. Moreover, the heat maps of both methods have
also been plotted in Figure 8 to further highlight the
dominant sparsity of the transport plan created by QPOT
compared to that created by EPOT.

Fig. 8: (a) Sparsity (b) Accuracy with decision boundary of
SVM, and (c) Transport plan comparison of QPOT and
EPOT for Domain Adaptation with λ = 0.7

Discussion
As shown in Figure 3, Figure 4, Figure 6, and Figure

8(a, c), introducing quadratic terms into the formulation
of Partial Optimal Transport (POT) significantly
improves sparsity compared to other variants for various
tasks. Moreover, QPOT demonstrates strong robustness
across different distribution pairs (Figure 1) and varying
transport mass levels (Figure 2). Notably, in real-world
tasks such as color transfer and domain adaptation,
QPOT achieves over a 20% improvement in performance
compared to its counterpart, EPOT. In particular, for
domain adaptation, where accuracy serves as an
important metric, QPOT also outperforms EPOT (Figure

8(b)), further demonstrating its effectiveness. These
results underscore the potential of our approach as a
strong foundation for future advancements in sparse OT
frameworks. We believe this formulation opens up new
directions for both theoretical exploration and practical
applications, especially in areas requiring sparse and
scalable solutions.

Conclusion
In this paper, we proposed and examined the

Quadratic-regularized Partial Optimal Transport
formulation (QPOT) and implemented a variety of
experiments to show its superiority compared to the
classical Entropic-regularized Partial Optimal Transport
(EPOT) formulation. In particular, we experimented with
both synthetic data, the CIFAR-10 dataset, and then
applied our formulation to the Domain Adaptation and
Color Transfer applications. For each experiment, we
tested different values of the transport mass and the
regularizer coefficient to show the proficiency and
robustness of QPOT.

While entropic regularization is widely favored for its
compatibility with the celebrated Sinkhorn algorithm,
recent advancements in gradient-based methods suggest
that quadratic regularization offers a more seamless
integration. Notably, works such as Blondel et al., (2018)
and Nguyen et al. (2023b) demonstrated the superior
efficiency of quadratic regularization in practice.
Consistent with these findings, our experiments show
that QPOT consistently outperforms EPOT across all
settings in terms of sparsity, producing transport plans
that make it significantly easier to infer general patterns.

We believe that the new QPOT formulation will lay
the foundation for many interesting future works. For
example, the sparsity and numerical stability of the
QPOT could further enhance the performance and thus
facilitate its adoption in many ML and generative AI
applications (Nguyen et al., 2025; Vu et al., 2025; Li et
al., 2024). Another approach for future improvements
would be to develop accelerated computational methods,
such as APDAGD (Dvurechensky et al., 2018), to solve
QPOT. Additionally, one can adapt Stochastic or
Constrained Decentralized Optimization methods (Wai et
al., 2017; Nguyen et al., 2024b, 2018; Zhang et al.,
2022) to develop sample-efficient computational
methods for noisy, dynamic and multi-agent applications
(Dinh and Nguyen, 2020; Nguyen et al., 2020, 2023c;
Nguyen-Vinh et al., 2024) arising in modern distributed
settings (Nguyen et al., 2021, 2023a).
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