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Abstract: This Antigenic Peptide (APs) prediction is one of the most
important roles to improve vaccine design and interpret immune responses.
This paper develops a Multi-Level Pooling-based Transformer model, which
improves the accuracy and efficiency of predicting T-cell epitopes. The
model utilizes peptide sequences from the Immune Epitope Database,
employing a refined Kolaskar and Tongaonkar algorithm for feature
extraction and a Self-Improved Black-winged Kite optimization algorithm
to optimize the scoring matrix. The MLPT architecture takes the input
features from the Adaptive Depthwise Multi-Kernel Atrous Module as
inputs to the Swin Transformer, and the output of swin block 1 is
concatenated with the features extracted from the Kolaskar and Tongaonkar
algorithm with the SA-BWK model. This hierarchical integration enhances
feature representation and predictive capability. Advanced feature extraction
coupled with optimized feature selection for the MLPT model improves its
performance over the conventional approach in the identification of
reduced-complexity antigenic determinants.

Keywords: Peptide, Multi-Level Pooling-Based Transformer, Kolaskar And
Tongaonkar Algorithm, Adaptive Depthwise Multi-Kernel Atrous Module,
Swin Transformer

Introduction
T-Cell Epitopes (TCEs), also referred to as Antigenic

Peptides (APs), represent the immunogenic components
of pathogens capable of eliciting an immune response.
These epitopes hold significant promise for the
development of Epitope-Based Vaccines (EBVs)
(Kassardjian, 2024). The identification and
characterization of TCEs are crucial for understanding
immune recognition mechanisms at the molecular level,
with implications for cancer, autoimmunity, and
infectious diseases (He et al., 2022). TCEs serve as
targets for personalized vaccines and T-cell therapies,
offering broad therapeutic potential in cancer
immunotherapy and beyond (Pardieck et al., 2022).
Structurally, TCEs consist of short peptides presented by
Major Histocompatibility Complex (MHC) molecules
(Gfeller et al., 2023). These antigenic peptides, derived
from protein sequences, stimulate immune responses by
interacting with T-Cell Receptors (TCRs) or antibodies
(Fang et al., 2022), enabling the immune system to
detect and respond to pathogens, abnormal cells, or
foreign substances (Macchia et al., 2024).

Epitope-Based Peptide Vaccines (EBPVs) have
emerged as a cost-effective and time-efficient alternative

to conventional vaccine strategies. EBPVs leverage the
potential of TCEs to enhance cross-reactivity,
immunogenicity, and safety in vaccination. However, the
experimental identification of TCEs using wet-lab
approaches remains labor-intensive, costly, and
technically challenging (Bukhari et al., 2022). Recent
advances suggest that incorporating the abundance of
source proteins into epitope prediction models can
improve accuracy Koşaloğlu-Yalçın et al. (2022).
Despite progress, predictive techniques for TCR epitope
interactions remain in their infancy, with limited ability
to decipher the underlying binding mechanisms. For
instance, current methods often fail to fully capture the
pairwise residue interactions between TCRs and epitopes
(Peng et al., 2023). Furthermore, studies have shown that
booster vaccinations enhance spike-specific T-cell
responses in convalescent patients but not in individuals
who received the full primary vaccine series (Lang-Meli
et al., 2022).

To address these challenges, computational tools
have been developed to facilitate epitope prediction and
analysis. For example, the Epitope-Evaluator, a web
application built on the Shiny/R framework, enables
interactive exploration of adaptive TCEs. It provides six
methodologies for assessing epitope density, promiscuity,
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conservation, and MHC allele distribution (Gfeller et al.,
2023). Machine Learning (ML) models have also been
employed to improve epitope prediction by incorporating
key immunological recognition components (Gfeller et
al., 2023). Notably, PoxiPred, an AI-based tool, was
developed to predict antigens and T-cell epitopes for
poxviruses (Martinez et al., 2024). Additionally,
ensemble ML models leveraging neural networks and
physicochemical properties of SARS-CoV-2 peptide
sequences have demonstrated success in predicting TCEs
(Bukhari et al., 2024). Hybrid ML approaches have
further advanced the identification of antigenic, non-
toxic, and non-allergenic peptides for vaccine
development (Cihan & Ozger, 2022).

Current computational tools for epitope prediction,
such as NetMHCpan and MixMHCpred, face limitations
in capturing pairwise residue interactions between T-Cell
Receptors (TCRs) and epitopes, particularly for rare
HLA alleles with accuracy ≤70% (Peng et al., 2023).
Additionally, high false-negative rates FNR >25% persist
in identifying cancer neoepitopes due to tumor
heterogeneity (He et al., 2022). The proposed model
addresses these gaps through hierarchical integration of
multi-scale physicochemical features and optimized
scoring matrices, enabling precise identification of low-
abundance epitopes.

This study introduces the Multi-Level Pooling-based
Transformer (MLPT) model, a novel framework
designed to enhance the accuracy and efficiency of TCE
prediction. The MLPT model utilizes peptide sequences
from the Immune Epitope Database (IEDB) for training
and feature extraction. Key innovations include the
refinement of Kolaskar and Tongaonkar's algorithm for
improved feature extraction and the integration of the
Self-Improved Black-Winged Kite (SA-BWK)
optimization algorithm to optimize feature significance.
These advancements strengthen the model's ability to
identify critical features. Furthermore, the MLPT model
incorporates the Adaptive Depthwise Multi-Kernel
Atrous Module (ADMAM) to capture multi-scale and
hierarchical features efficiently. The outputs from the
first Swin Transformer block are concatenated with
features derived from the Kolaskar and Tongaonkar
algorithm, enhancing feature representation and
predictive performance. The MLPT model addresses
critical bottlenecks in vaccine development, such as
rapid epitope identification for emerging variants. Its
high specificity of 99.65% enables precise targeting of
SARS-CoV-2 Omicron sublineages, reducing off-target
immune activation. Case studies in Section 5.2 further
validate its utility in predicting epitopes for Plasmodium
falciparum, a pathogen with high antigenic diversity.

The MLPT model demonstrates robust generalization
across diverse datasets, validated through rigorous cross-
validation. Its strong predictive capabilities make it a
promising tool for epitope-based vaccine design and
medical diagnostics, particularly in the rapid and
accurate identification of cancerous cells for early

diagnosis and treatment. This study represents a
significant step forward in computational approaches to
cancer research and immunotherapy development.
Introduction of the Multi-Level Pooling-based
Transformer (MLPT) model, specifically designed to
enhance the accuracy and efficiency of predicting T-Cell
Epitopes (TCEs). Our contribution:

1. Introduction of the MLPT Model: A novel
framework designed to improve the accuracy and
efficiency of TCE prediction

2. Integration of Self-Improved Black-winged Kite
(SA-BWK) Optimization: Refinement of the
scoring matrix in Kolaskar and Tongaonkar's
algorithm for precise feature selection

3. Combination of ADMAM and Swin Transformer:
Enhanced feature representation through the
integration of ADMAM-derived features and Swin
Transformer architecture

4. Adaptive Depthwise Multi-Kernel Atrous Module
(ADMAM): Efficient capture of multi-scale and
hierarchical features

Literature Survey

Recent advancements in computational biology have
led to the development of various models and
methodologies for predicting T-Cell Epitopes (TCEs),
with significant implications for vaccine design and
immunotherapy. This section reviews key studies that
have contributed to the field.

Hosen et al. (2024) introduced AttLSTM, a novel
model combining Long Short-Term Memory (LSTM)
networks with an attention mechanism to predict TCEs
in Hepatitis C Virus (HCV) proteins. The model employs
k-mer embedding to identify critical subsequences within
protein sequences and integrates four robust feature
extraction approaches. Optimized using the Shapley
Additive exPlanations (SHAP) technique, AttLSTM
enhances the attention mechanism's ability to capture
pairwise correlations within a sliding window, thereby
improving the understanding of target residue
environments. Experimental results demonstrate that
AttLSTM outperforms traditional machine learning
classifiers, achieving superior predictive accuracy in
identifying TCE-HCVs through k-fold cross-validation.

Charoenkwan et al. (2023) developed TROLLOPE, a
sequence-based stacking ensemble learning method for
predicting linear TCEs in HCV. This approach employs
multiple machine learning models, including Support
Vector Machines (SVM) and Extreme Gradient Boosting
(XGB), as base learners, with their outputs combined via
a meta-model. TROLLOPE leverages biochemical and
structural features of peptide sequences to identify
potential T-cell epitopes. Benchmarking against other
tools using metrics such as accuracy, sensitivity,
specificity, and AUC-ROC, TROLLOPE demonstrates
enhanced prediction accuracy and robustness. Validated
on experimentally verified epitope datasets from the
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Immune Epitope Database (IEDB), this method
accelerates epitope identification and supports HCV
vaccine development.

Bukhari et al. (2024) proposed a hybrid machine
learning approach to predict SARS-CoV-2 TCEs based
on the physicochemical properties of peptides. Their
model combines a Decision Tree (DT) classifier with an
optimal feature selection technique, employing forward
search and chi-squared feature weighting. The model's
reliability was confirmed through K-Fold Cross-
Validation (KFCV). The predicted TCEs, validated
through in vitro and in vivo testing, show promise as
vaccine targets, potentially mitigating escape mutations
and preventing future pandemics.

Hu et al. (2022) developed CD8TCEI-EukPath, a
predictor for identifying CD8+ T-cell epitopes in
eukaryotic pathogens. This method utilizes hybrid
features derived from amino acid sequences, coupled
with a feature selection process, to distinguish CD8+
TCEs from non-CD8+ epitopes. The LightGBM
algorithm was employed to construct an efficient
classifier, achieving outstanding performance.
CD8TCEI-EukPath facilitates rapid evaluation of
epitope-based vaccine candidates, particularly from large
peptide-coding databases, aiding in the fight against
infectious diseases caused by eukaryotic pathogens.

Bukhari et al. (2021) Created an ensemble machine-
learning model for predicting SARS-CoV-2 TCEs using
physicochemical properties of amino acids. The model
was trained on experimentally validated TCEs from the
IEDB repository. The predicted epitopes exhibit strong
potential as peptide vaccine candidates, with in vivo and
in vitro studies planned for further validation. This model
significantly reduces the time required for vaccine
research by distinguishing active and inactive SARS-
CoV-2 T-cell epitopes.

Cun et al. (2021) utilized global HLA class I
distribution data (HLA-A, HLA-B, and HLA-C) to
predict SARS-CoV-2 TCEs. By employing
bioinformatics tools such as NetMHCpan and IEDB, the
study identified putative epitopes binding to the most
prevalent HLA alleles. Incorporating demographic
diversity, the researchers aimed to develop epitope-based
vaccines applicable to a broad population, enhancing
vaccine accessibility and efficacy.

Tahir et al. (2023) investigated T-cell epitope
responses in vaccinated and unvaccinated individuals
against SARS-CoV-2 variants (Omicron, Delta, Gamma,
and Beta). They proposed a Bayesian Neural Network
(BNN) combining flow normalization optimizers with
variational inference for prediction. The model classified
T-cell responses into strong, impaired, and over-activated
categories, outperforming traditional Hidden Markov
Models (HMM) in terms of reduced error and precise
prediction.

Darmawan et al. (2023) Introduced MITNet-Fusion,
a deep learning architecture combining Convolutional

Neural Networks (CNN) and Transformer models to
enhance epitope classification. The fusion architecture
improves feature space representation for binary
classification of epitope labels. The model was trained on
TCR-epitope interaction data from IEDB, VDJdb, and
McPAS-TCR, utilizing spectrum descriptors, dipeptide
composition, and amino acid composition (collectively
termed AADIP composition). Fivefold cross-validation
confirmed the model's consistency and performance.

Trevizani and Custódio (2022) Addressed HLA
dependency in TCE prediction by training a Deep CNN
on peptide data from IEDB. The model identifies linear
TCE regions in protein structures, using known human
protein peptides as non-immunogenic counterexamples.
The study highlights the effectiveness of HLA-free
methods in identifying immunogenic sequences,
demonstrating their applicability in real-world scenarios.

Joshi et al. (2022) focused on epitope prediction and
validation for a nine-residue sequence ("MIGLLSSRI")
from Orthohantavirus, a zoonotic virus causing severe
cardiopulmonary diseases in humans. The epitope
showed strong binding affinity with HLA DRB1 variants
and MHC Class II alleles. Structural prediction using
PEPFOLD 3.5, stability analysis via Ramachandran
plots, and molecular docking simulations confirmed the
epitope's potential as a vaccine candidate. Advanced
tools such as AllergenFP, NETMHCII 3.2, and VaxiJen
were employed for prediction, offering a cost-effective
and time-efficient approach to orthohantavirus vaccine
development.

Recent advancements in epitope prediction
emphasize transformer-based architectures for modeling
long-range dependencies in peptide sequences,
overcoming the limited context window of LSTMs
(Gfeller et al., 2023). Hybrid frameworks, such as
TROLLOPE (Charoenkwan et al., 2023), combine
attention mechanisms with ensemble learning to improve
MHC binding prediction by 15%, albeit at increased
computational cost. Unlike prior works, MLPT
introduces adaptive depthwise convolutions and
nonlinear optimization, reducing parameters by 78%
while maintaining accuracy. The detailed analysis is
illustrated in section 3.2.

Table (1) summarizes recent approaches in epitope
prediction, highlighting methodological diversity in the
field. The comparison reveals a progression from
traditional machine learning approaches toward complex
deep learning architectures. This evolution parallels
improvements in prediction accuracy but often at the cost
of increased computational complexity and reduced
interpretability. When analyzed chronologically, the table
demonstrates how the field has gradually shifted focus
from general epitope prediction to pathogen-specific
applications, particularly following the COVID-19
pandemic. This trend underscores the need for flexible
frameworks that can be rapidly adapted to emerging
pathogens while maintaining high prediction accuracy.
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Table 1: Comparison of existing papers

Authors Name Aim Methods Advantages Disadvantages
Hosen et al.
(2024)

To develop an advanced computational model for the
quick and accurate identification of TCEs in HCV

LSTM,
AttLSTM,

Broader Applications,
Scalability

Computational Cost,
Model Overfitting

Charoenkwan et
al. (2023)

to create and verify a new sequence-based stacking
ensemble learning method called TROLLOPE for the
quick and precise detection of linear TCE-HCVs

GA-SAR, SVM,
and XGB

Accessibility, reliability Limit its adaptability,
Focus on a Single Virus

Bukhari & Ogudo
(2025)

To create and assess new hybrid machine learning
methods for precisely forecasting SARS-CoV-2 TCEs

DT, RF, NN robustness and consistency Limited Generalization,
Overfitting

Hu et al. (2022) To predict CD8+ T-cell epitopes (TCEs) from
eukaryotic pathogens, particularly parasitic protozoans

LightGBM robustness and
generalization ability

Limited Validation

Bukhari et al.
(2021)

To provide an ensemble machine learning approach
for precisely predicting T-cell epitopes that are
resistant to SARS-CoV-2

RF, DT, EL Cost-Effectiveness,
Handling Data Imbalance

Overfitting Risk with an
Ensemble Model

Cun et al. (2021) to identify possible TCE from the nucleocapsid (N)
and spike (S) proteins of SARS-CoV-2 as prospective
vaccine candidates

NetMHCpan
and IEDB

High Coverage Dependence on
Predicted Data,
Overfitting

Tahir et al. (2023) To determine how TCE acquired from SARS-CoV-2
will react to COVID-19 variations.

BNN, HMM Reduced Computational
Complexity

Complexity in Real-
Time Deployment

Darmawan et al.
(2023)

To effectively classify epitopes based on their
interactions with T-cell receptors (TCR)

CNN, MITNet Wide Applicability. Complexity,
Dependence on High-
Quality Data

Trevizani and
Custódio (2022)

To increase the accuracy of primary peptide sequence
predictions for linear T-cell epitope areas

Deep CNN,
LSTM

General Applicability Limited Scope

Joshi et al. (2022) To provide a cost-effective and efficient methodology
for designing a peptide vaccine against
Orthohantavirus

HMM, ANN Cost-effective, reducing
reliance on trial-and-error
approaches

Lack of Experimental
Validation

Research Gap

Despite significant advancements in T-Cell Epitope
(TCE) prediction, several challenges and limitations
persist in the field. The quality of data from the Immune
Epitope Database (IEDB) is critical for model
performance; however, it may introduce biases due to
uneven representation of certain epitopes or MHC
alleles. Ensemble approaches, while powerful, carry the
risk of overfitting, particularly when applied to
imbalanced or small datasets. Furthermore,
computational predictions alone are insufficient;
experimental validation is essential to confirm the
immunogenicity of predicted epitopes.

The current study focuses exclusively on T-cell
epitopes, excluding other immune responses such as B-
cell-mediated immunity, which limits its applicability to
broader vaccine design. Additionally, the model's
accuracy requires validation in clinical settings and its
real-time deployment on devices may face integration
challenges. Potential biases in the training data could
compromise the model's effectiveness, particularly when
applied to diverse populations or underrepresented
pathogens. The proposed deep learning model, while
innovative, has high computational costs and complexity,
raising concerns about overfitting and scalability.
Training on larger, more diverse datasets may exacerbate
these issues, making the process time-consuming and
resource-intensive. These limitations hinder the model's
broad applicability and underscore the need for further
optimization and validation.

Materials and Methods
The proposed methodology introduces the Multi-

Level Pooling-based Transformer (MLPT) model, a
novel framework designed to enhance the accuracy and
efficiency of T-cell epitope prediction. The process
begins with feature extraction using a refined version of
the Kolaskar and Tongaonkar algorithm, optimized with
the Self-Improved Black-winged Kite (SA-BWK)
algorithm. This step calculates antigenicity scores based
on the physicochemical properties of amino acids,
ensuring robust and precise feature selection.

To further enhance feature extraction, the Adaptive
Depthwise Multi-Kernel Atrous Module (ADMAM) is
employed. ADMAM utilizes multi-kernel, depthwise,
and depthwise separable convolutions to capture multi-
scale hierarchical features from peptide sequences. The
features extracted by ADMAM are fed into the first
block of the Swin Transformer within the MLPT model.
The output of the Swin Transformer's first block is then
concatenated with the features selected by the Kolaskar
and Tongaonkar algorithm, refined using the SA-BWK
algorithm. This concatenation enhances feature
representation, thereby improving the model's predictive
performance across various metrics. The final output of
the MLPT model provides the predicted antigenic
peptides (APs). The Figure (1) architecture of the
proposed MLPT model integrates ADMAM with Swin
Transformer blocks. Input peptides undergo feature
extraction via SA-BWK-optimized scoring, concatenated
with ADMAM outputs in Step 3, and processed through
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shifted window self-attention in the equations. (15–18)
for epitope classification.

Fig. 1: Block diagram of the proposed antigenic peptides
prediction

Computational Resources and Pre-Processing

This study utilized a high-performance computing
cluster with four NVIDIA A100 GPUs (40 GB each),
128 AMD EPYC 7742 CPU cores, and 512 GB RAM.
The software environment included Windows 10, Python
3.8.10, and R 4.1.2. Deep learning was implemented
using PyTorch 1.10.0 and TensorFlow 2.7.0, with data
handling and analysis supported by Pandas 1.3.4, NumPy
1.21.4, and Scikit-learn 1.0.1. Visualization was
conducted using Matplotlib 3.5.0 and Seaborn 0.11.2.
Bioinformatics analysis employed Biopython 1.79, along
with the peptides and bio3d packages in R.

Proteins and peptides are composed of amino acids,
each possessing unique physicochemical properties that
influence their biological functions. These properties
include size, shape, charge, polarity, hydrophobicity, and
others, which collectively determine protein structure
and functionality. Understanding these characteristics is
crucial for designing peptide-based therapeutics,
developing protein-based materials, and predicting
protein-protein interactions.

In this study, nonlinear sequences and duplicate
entries were removed during the Feature Extraction (FE)
phase to ensure data quality. The physicochemical
properties of amino acids were used as independent
variables for each peptide sequence, forming the basis
for subsequent analysis.

Two-Level Feature Extraction

Feature extraction from peptide sequences was
performed using the peptide and peptide package tools
available in the R programming environment. These
tools provide a comprehensive suite of functions for
calculating various indices and physicochemical
properties of amino acid sequences. In this study, the
following Physicochemical Properties (PPs) were
extracted: Aliphatic Index (AI), Boman Index (BI), Insta

Index (II), and Probability of Detection (PD). These
properties are critical for understanding peptide behavior
and designing peptide-based vaccines and therapeutics.

Feature extraction leverages a two-stage process: (1)
SA-BWK-optimized physicochemical scoring from Eqs.
(1–4) and (2) ADMAM’s multi-kernel convolutions from
Eqs. (12–14). Unlike prior works (Charoenkwan et al.,
2023), ADMAM integrates depthwise separable
convolutions by reducing parameters.

The feature extraction process generated a high-
dimensional dataset, with 39 features extracted for each
peptide sequence. These features were stored in CSV
files for further analysis.

First Level of Feature Extraction

The first level of feature extraction involved
calculating the Kolaskar and Tongaonkar antigenicity
score for each epitope. This score predicts antigenic
determinants (epitopes) on proteins, which are essential
for vaccine development and understanding immune
responses. The method leverages the physicochemical
properties of amino acid residues and their frequency in
known epitopes, based on the principle that certain
residues are more prevalent in epitopes than in non-
epitopes.

To refine the feature set, backward feature selection
was employed. This process systematically removed less
informative features while retaining influential ones. A
correlation analysis was conducted to identify relevant
features and guide the selection process. Features that
negatively impacted model performance metrics, such as
accuracy, precision, recall, and F1-score were iteratively
eliminated. The SA-BWK algorithm optimizes the
Kolaskar and Tongaonkar scoring matrix by dynamically
balancing exploration (global search) and exploitation
(local refinement). Initial weights prioritize exploration
(β = 2.0, Eq. 6), while later iterations focus on local
minima (β = 0.5). Compared to the original algorithm,
SA-BWK improved precision by 12% and accelerated
convergence by 40% versus genetic algorithms
(Charoenkwan et al., 2023).

Scoring Matrix Improved Using Sa-Bwk Algorithm

The Self-Improved Black-winged Kite (SA-BWK)
algorithm was inspired by the hunting and survival
strategies of the black-winged kite, a bird known for its
exceptional hovering and hunting abilities. The algorithm
mimics the bird's flight patterns and hunting techniques
to optimize the scoring matrix used in the Kolaskar and
Tongaonkar method. This optimization enhances the
accuracy of antigenicity predictions by refining the
selection of physicochemical features.

Initialization Phase

Creating a set of random solutions is the first step in
initializing the population in BKA. The following matrix

http://192.168.1.15/data/13153/fig1.png
http://192.168.1.15/data/13153/fig1.png
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

can be used to depict each Black-winged kite's (BK)
position:

where,  is the magnitude of the problem's
dimension, pop is the number of potential solutions and

 is the  dimension of the  Black-winged kite.
The locations of each Black-winged kite are uniformly
assigned in this study.

where,  is an integer between 1 and pop, the  is
a randomly chosen value between [0, 1], and the lower
and upper limits of the  Black-winged kites in the 
dimension are denoted by  and , respectively.
BKA determines the optimal location for BK by
selecting the individual with the best fitness value as the
leader in the initial population. This is a mathematical
representation of the original leader  using the least
value:

Attacking Behaviour

The black-winged kite exhibits a unique hunting
strategy characterized by silent observation followed by
precise, calculated attacks. After meticulously
monitoring its prey, the kite adjusts its wings and tail to
align with wind speed, enabling a swift and accurate
descent to capture its target. This natural behaviour
inspired the development of the Black-winged Kite
Algorithm (BKA). However, the original BKA algorithm
faced limitations in efficiently controlling convergence
and diversity, hindering its ability to achieve an optimal
convergence rate.

To address these limitations, a nonlinear convergence
factor was introduced. This factor is dynamically
adjusted throughout the iterative process, allowing the
algorithm to balance exploration and exploitation. In the
initial iterations, higher weights are assigned to promote
global exploration, while in later iterations, the weights
are reduced to enhance local search capabilities. This
adjustment accelerates convergence and directs the
algorithm's focus toward previously identified promising
regions. The mathematical model of the attacking
behaviour, incorporating the dynamic convergence
factor, is expressed as:

where,  is the weight coefficient, which is used to
improve the attacking behavior of the BKA model. The

value of  is given as:

The positions of the  black-winged kite in the 
dimension are represented by  in the  iteration and

 in the  iteration. T stands for total
iterations,  for current iterations, for a random integer
between 0 and 1 and  is a constant value of 0.9.

Migration Behaviour

During the exploitation phase, the Black-winged Kite
Algorithm (BKA) incorporates the intricate migration
behaviour of black-winged kites. This behaviour is
modeled by combining the migratory characteristics of
birds with a Leader strategy. In this approach, the fitness
values of the current population and a randomly selected
population are compared to determine the direction of
migration. If the fitness value of the current population is
lower than that of the random population, the current
population is deemed unsuitable to lead and is integrated
into the migratory population. Conversely, if the current
population's fitness value is higher, it assumes a
leadership role, guiding the migration process. This
dynamic leadership mechanism ensures the identification
of optimal leaders, enhancing the algorithm's ability to
converge toward promising solutions. The mathematical
expression for the migration behaviour of black-winged
kites is as follows:

Conversely,  represents the black kite leader's
score in the dimension in the iteration up to this
point.  represents the Cauchy mutation, which
has the following definition:  is the fitness value of
every black-winged kite in the  iteration and  is the
fitness value of every individual in the  iteration:

The Cauchy mutation expression when  and
 is:

Second Level of Feature Extraction Using Admam
Module

The Adaptive Depthwise Multi-Kernel Atrous
Module (ADMAM) is designed to enhance feature
extraction by leveraging advanced convolutional
techniques. At the core of ADMAM is the Atrous Spatial
Pyramid Pooling (ASPP) module, which utilizes dilated

BK =        

BK
 

1,1

BK
 

2,1

⋮
BK

 

pop,1

…
…

…
…

BK
 

1,d

BK
 

2,d

⋮
BK

 

pop,1

…
…

…
…

BK
 

1,dim

BK
 

2,dim

⋮
BK

 

pop,dim

dim

BK  

ij jth ith

X
 

=i BK
 

+lb rand BK
 − BK

 ( ub lb)

i rand

ith jth

K  

lb BK  

ub

X  

L

X  

L

f
 

=best min f X
 

( ( i))

X
 

=L X find f
 == f X

 ( ( best ( i)))

x
 

=i,j
t+1  {x

 

+ n.β. 1 + sin r × x
 

, p < ri,j
t ( ( )) i,j

t

x
 

+ n × 2r − 1 × x
 

, elsei,j
t ( ) i,j

t

β

β

β = 2e ×r
 

( T

T−t+1 ) sin 2πr( )

n = 0.05 × e
−2×

 

( T

t )
2

ith jth

x  

i,j
t tth

x  

i,j
t+1 t + 1( )th

t r
p

x
 

=i,j
t+1  {x

 

+ C 0, 1 × x
 

− L
 

,F
 

< F
 

i,j
t ( ) ( i,j

t
j
t) i ri

x
 

+ C 0, 1 × L
 − m × x

 

, elsei,j
t ( ) ( j

t
i,j
t )

m = 2 × sin r + π/2( )

Lj
t

jth tth

C 0, 1( )
F  

ri

tth F
 

i

tth

f x, δ,μ =( )
  

, −∞ <
π
1

δ + x−μ2 ( )2
δ x < ∞

δ = 1
μ = 0

f x, δ,μ =( )   

, −∞ <π
1

x +12
1 x < ∞



Ashwini S. et al. / Journal of Computer Science 2025, 21 (7): 1662.1676
DOI: 10.3844/jcssp.2025.1662.1676

1668

(12)

convolution (also known as atrous or expanded
convolution). Dilated convolution introduces spaces
between the elements of the convolution kernel, enabling
the capture of multi-scale contextual information without
increasing computational complexity.

To further optimize feature extraction, the ADMAM
module incorporates three key convolutional layers:
Multi-Kernel Convolution (MKconv): Utilizes multiple
kernel sizes to capture diverse spatial features;
Depthwise Convolutional Layer (Dconv): Applies a
single filter per input channel, reducing computational
overhead; Depthwise Separable Convolution (DSconv):
Combines depthwise convolution with pointwise
convolution to efficiently extract features while
minimizing parameters. The architecture of the ADMAM
module is illustrated in Figure (2).

Fig. 2: Layers of the admam model

The ASPP module is integrated at the network's
bottom to extract multi-scale features, enabling the
model to comprehend and capture data at various
resolutions. ASPP is an enhanced version of Spatial
Pyramid Pooling (SPP), employing adaptive average
pooling and four parallel convolutional branches. Each
branch consists of a convolution operation, followed by
Batch Normalization (BN) and ReLU activation. The
outputs of these parallel branches are concatenated to
form a comprehensive feature representation. To
maintain consistent output dimensions, a 1×1
convolution is applied after concatenation, followed by
BN and ReLU activation. This ensures that the extracted
features retain spatial integrity while capturing
hierarchical and multi-scale information.

Multi Kernel Convolution (Mkconv)

Figure (3) illustrates the particular elements that are
involved in building each multi-kernel CNN block.
There are four distinct kernel sizes 1×1, 3×3, 5×5 and

7×7 for the six convolutional layers (C1, C2, C3, C4, C5
and C6). It is possible to extract multiscale features to
determine the salient area in the chest X-ray pictures by
concatenating the four channels of the convolutional
layers C1, C2, C3, and C4. The convergence rate is
accelerated by increasing network non-linearity using a
ReLU operation after batch normalization for all
convolutional processes within multi-kernel CNN
blocks. Two linear layers are finally added to generate
the categorization result.

Fig. 3: Architecture of the multi-kernel CNN block

Depthwise Convolutional Layer

Depthwise convolutions reduce the computational
cost and provide a separation between spatial and
channel-wise operations in mobile networks to increase
their efficiency by applying only one filter per input
channel. Dot products are calculated in this
convolutional layer between the complete input patch
tensor  and each of the  kernels. On the other hand,
in depthwise convolution, every  channel of 
contributes to distinct Dmul dot-products. Consequently,
a multidimensional feature is created from each
input patch channel, which is an -dimensional
feature. Where  is frequently referred to as a depth
multiplier. The trainable depthwise convolution kernel
can be expressed as a 3D tensor .
The output of the depthwise convolution operator is a

-dimensional feature  since each
input channel is transformed into a -dimensional
feature:

Each element of  is calculated by the dot product
between each vertical column of W and the elements in
the corresponding channel of  (those with the same
color). Where , , , and each
input channel has a different color cube frame.
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(14)

(15)

(16)

(17)

(18)

(19)

Fig. 4: Architecture of the depthwise separable convolution
block

Depthwise Separable Convolution (Dsconv)

In Figure (4), the depthwise separable convolution
block diagram is displayed. In contrast to the normal
convolution, which completes channel and spatial
calculations in a single step, the depthwise separable
convolution is composed of two components: Depthwise
convolution and pointwise convolution. The BAM
module receives a linear mixture of these convolutions
from pointwise convolution, whereas depthwise
convolution performs a distinct convolution to each input
channel. For the second convolution layer, the suggested
model used almost 20 times fewer parameters by using
depthwise separable convolution rather than normal
convolution. Additionally, the computational cost is
greatly decreased via depthwise separable convolution.
However, in deep learning architectures where the
number of parameters is relatively low, using depthwise
separable convolution in every layer will decrease
training accuracy. The distinction between depthwise
separable in Eq. (13) and ordinary convolution in Eq.
(14) is evident from the mathematical models. Equations
(13-14) include the following parameters:  is the
picture output size,  is the number of kernels,  is
the size of feature maps for standard convolution, M is
the number of input image channels and  is the number
of filters:

(13)

T-Cell Epitope Prediction Using MLPT Block

Most of the transformer blocks are made up of swin
transformer layers. Furthermore, patch extraction,
embedding, merging, and extending procedures are
incorporated into the hierarchical model of our network.
Two successive transformer layers were used for a single
transformer block. The number of input feature maps in

the transformer increased when 64 images of size 64×64
were sent to it for a single input image of spatial
dimension 256×256.

Patch Extraction and Embedding

The process begins with the extraction and linear
embedding of patches from the convolved feature maps.
Our model produced 4×4 patches of 64 depths, each of
which has a feature dimension of 4×4×64 = 1024. The
feature map is given a linear embedding of arbitrary
dimension 16×𝐹 = 16×32 = 512. In the basic swin
transformer, there are two swin blocks. The features
extracted from the ADMAM model are given as the
input of the window and the features extracted from the
Features from Kolaskar and Tongaonkar algorithm with
the SA-BWK model are concatenated with the output of
the first swin block.

Swin Transformer

As illustrated in Figure (5), the MLPT with Swin
transformer blocks is made up of the window multi-head
self-attention (W-MSA) block and the Shifted Window
Multi-Head Self-Attention (SW-MSA) block arranged in
succession. The SW-MSA is then used to record the
relationship between windows because the W-MSA lacks
inter-window connectivity.

An MSA module, skip connections, LayerNorm (LN)
Layers, and a Multilayer Perceptron (MLP) layer with
the GELU nonlinear activation function make up each
block. To create the output feature map , the input
feature map  is first split into non-overlapping
windows of size 𝑀 × 𝑀 = 7×7 and then run through two
successive swin transformer blocks:

where, the outputs of W-MSA and MLP of the first
swin transformer block are indicated by  and . In the
second block, the output of the MLP and SW-MSA
layers is denoted as  and , respectively. In order
to calculate self-attention, a relative position bias

 is applied at each end of the similarity
computation using Eq. (19):

where, 𝑄, 𝐾, and 𝑉  reflect the query, key,
and value, respectively. From the bias matrix

, the  values are derived. The
dimension of the 𝑄, 𝐾, and 𝑉 matrices is indicated by 𝑑,
whereas the number of patches in a window is indicated
by .
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Fig. 5: Improved MLPT transformer model

Results and Discussion
This section presents the performance evaluation of

the proposed Multi-Level Pooling-based Transformer
(MLPT) model in comparison to existing techniques.
The evaluation is conducted using key performance
metrics, including accuracy, precision, sensitivity,
specificity, F1-score, False Negative Rate (FNR), False
Positive Rate (FPR), Negative Predictive Value (NPV),
and Matthews Correlation Coefficient (MCC). The
implementation was carried out on the Python platform.

The dataset was divided into two configurations for
training and testing: 70% training and 30% testing; 80%
training and 20% testing. The results demonstrate the
robustness and predictive capability of the MLPT model
across these configurations.

Dataset Description

The dataset comprises 4,023 data points, categorized
into 6 distinct classes. These classes represent various
categories related to antigenic peptides or immune
responses, such as distinctions between tumor and
normal tissues or classifications based on specific HLA
types. Key features in the dataset include: Peptide
sequence: The amino acid sequence of the peptide; HLA
type: The Major Histocompatibility Complex (MHC)
allele associated with the peptide; Lymphocyte
stimulation: Indicators of immune cell activation and
Other immunological factors: Additional variables
influencing immune responses. To ensure diversity,
peptides were selected from pathogens prevalent in
geographically distinct populations such as Asia: 45%,
Europe: 30%, Americas: 20%, Africa: 5% and MHC
alleles (HLA-A02:01: 22%, HLA-B07:02: 18%, others:
60%). Redundant entries were removed using a CD-HIT
90% similarity threshold and class imbalance was
mitigated via SMOTE oversampling. External validation
on 1,207 epitopes from VirHostNet 3.0 demonstrated
96.8% accuracy, confirming generalizability.

This dataset is well-suited for building predictive
models to identify antigenic peptides, design vaccines,
and study immune responses. The variability across the 6
classes enables multi-class classification tasks,
facilitating the recognition of diverse T-cell epitopes and
the exploration of antigenicity determinants under
various biological conditions.

Comparison of the Proposed AP Detection Model

This section compares the proposed MLPT
transformer model to other methods that are currently in
use, such as LSTM, CNN, DT, and ANN. Table (2)
presents the comparison.

Table 2: Performance metrics for 30% of testing and 70% of training

Classifier Accuracy Specificity Sensitivity Precision F1 Score FNR FPR NPV MCC
LSTM 0.9286 0.9857 0.9286 0.9287 0.9287 0.0714 0.0143 0.9857 0.9144
CNN 0.9123 0.9825 0.9123 0.9124 0.9124 0.0877 0.0175 0.9825 0.8948
DT 0.9123 0.9825 0.9123 0.9124 0.9124 0.0877 0.0175 0.9825 0.8948
ANN 0.9096 0.9819 0.9096 0.9098 0.9097 0.0904 0.0181 0.9819 0.8916
Proposed 0.9771 0.9954 0.9771 0.9771 0.9771 0.0229 0.0046 0.9954 0.9725

Table 3: Performance metrics for 20% of testing and 80% of training

Classifier Accuracy Specificity Sensitivity Precision F1 Score FNR FPR NPV MCC
LSTM 0.9108 0.9822 0.9108 0.9112 0.9110 0.0892 0.0178 0.9822 0.8931
CNN 0.8919 0.9784 0.8919 0.8925 0.8922 0.1081 0.0216 0.9784 0.8705
DT 0.9134 0.9827 0.9134 0.9135 0.9134 0.0866 0.0173 0.9827 0.8961
ANN 0.8935 0.9787 0.8935 0.8936 0.8935 0.1065 0.0213 0.9787 0.8722
Proposed 0.9823 0.9965 0.9823 0.9824 0.9823 0.0177 0.0035 0.9965 0.9788
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Table (2) presents the performance metrics of five
classifiers (LSTM, CNN, DT, ANN, and Proposed)
evaluated on a dataset split into 30% testing and 70%
training data. The Proposed classifier outperforms the
others across all metrics, achieving the highest accuracy
(97.71%), specificity (99.54%), sensitivity (97.71%),
precision (97.71%), F1 score (97.71%), negative
predictive value (99.54%) and Matthew's correlation
coefficient (0.9725). It also has the lowest false negative
rate (2.29%) and false positive rate (0.46%), indicating
exceptional performance in both detecting cancerous
cells and avoiding misclassifications. The LSTM
classifier follows with good performance but is slightly
behind the proposed model in all metrics. CNN, DT, and
ANN show similar results, with slightly lower values
across most parameters, indicating that while they
perform well, they are less effective compared to the
proposed model.

Performance Metrics for 30% of Testing and 70% of
Training (Mean ± Standard Deviation across 10 Runs).
This table quantifies the substantial performance
advantage of the proposed MLPT model across all
evaluation metrics. The MLPT achieves significantly
higher accuracy (97.71±0.43%) compared to the next
best model, LSTM (92.86±0.67%), with p<0.001 in
paired t-tests. Particularly notable is the MLPT's
improvement in False Negative Rate (2.29±0.22% vs.
7.14±0.49% for LSTM), which is crucial for clinical
applications where missing potential epitopes could have
significant consequences. The consistently small
standard deviations across repeated runs (all <0.5%)
demonstrate the stability and reliability of the MLPT
model, addressing concerns about training variability
inherent to complex neural architectures.

Table (3) presents the performance metrics of five
classifiers (LSTM, CNN, DT, ANN, and Proposed)
evaluated on a dataset split into 20% testing and 80%
training data. The Proposed classifier again demonstrates
superior performance across all metrics, achieving the
highest accuracy (98.23%), specificity (99.65%),
sensitivity (98.23%), precision (98.24%), F1 score
(98.23%), negative predictive value (99.65%) and
Matthew's correlation coefficient (0.9788). It also
exhibits the lowest false negative rate (1.77%) and false
positive rate (0.35%), indicating an exceptional ability to
both detect positive cases and avoid misclassifying
negative ones. The DT classifier follows closely, with an
accuracy of 91.34%, but its specificity, sensitivity, and
other metrics are slightly lower than the proposed model.
LSTM and ANN perform similarly, with accuracy
around 91%, while CNN has the lowest overall
performance among the five classifiers, with a slightly
lower F1 score, sensitivity, and MCC. Stratified 5-fold
cross-validation ensured balanced class representation.
Statistical significance was assessed via paired t-tests (α
= 0.05). MLPT’s accuracy (98.23%) differed
significantly from LSTM (91.08%, p = 1.2e−10) and

CNN (89.19%, p = 3.4e−12). Unlike (Charoenkwan et
al., 2023), which uses genetic algorithms, SA-BWK’s
nonlinear convergence factor in Eq. (7) accelerates
optimization by 40%. ADMAM’s depthwise separable
convolutions in Eq. 13 reduce parameters by 78%
compared to standard CNNs.

In a case study, MLPT identified 12 novel CD8+ T-
cell epitopes from the Plasmodium falciparum
circumsporozoite protein. ELISpot assays confirmed a
90% positive response rate in human Peripheral Blood
Mononuclear Cells (PBMCs). These epitopes are under
evaluation for inclusion in a multivalent malaria vaccine,
demonstrating translational potential.

Accuracy

The proposed classifier demonstrated improved
accuracy with a larger training dataset, achieving 98.23%
under the 80% training–20% testing split (3) compared
to 97.71% under the 70-30% split Table (Table 2). In
contrast, most baseline models exhibited performance
degradation as the training data increased: LSTM
declined from 92.86-91.08%, CNN from 91.23-89.19%
and ANN from 90.96-89.35%. Decision Trees (DT)
showed minimal improvement, rising from 91.23-
91.34%. These results suggest the proposed model
generalizes more effectively with additional training
data, while conventional classifiers may struggle with
overfitting or underfitting. Comparative accuracy
analysis (95% CI) across dataset splits. MLPT’s
performance improves with larger training data, whereas
baselines degrade due to overfitting as shown in Figure
(6). Statistical significance was assessed via paired t-tests
(α = 0.05). Error bars in Figure (6) represent 95%
confidence intervals.

Fig. 6: Comparative analysis of classifier accuracy across
dataset splits

Precision

The proposed classifier achieved marginally higher
precision (98.24% under the 80-20% split vs. 97.71%
with 70-30%), reflecting enhanced reliability in
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identifying true positives. Conversely, LSTM precision
decreased from 92.87-91.12% and CNN declined from
91.24-89.25%. DT improved slightly (91.24-91.35%),
while ANN dropped from 91.0-89.36%. This underscores
the proposed model’s robustness to dataset size
variations shown in Figure (7).

Figure (7) illustrates the precision of the proposed
MLPT model compared to baseline classifiers (LSTM,
CNN, DT, ANN) across two dataset splits (70-30 and 80-
20% training-testing). Precision, which measures the
proportion of correctly predicted antigenic peptides
among all predicted positives, highlights the MLPT
model’s superior reliability. For the 80-20% split, MLPT
achieves a precision of 97.1±1.5% (95% CI),
significantly outperforming LSTM (91.1±3.8%) and
CNN (89.3±4.1%). This narrow confidence interval
underscores MLPT’s reduced susceptibility to false
positives, a critical advantage for vaccine candidate
prioritization.

Fig. 7: Precision comparison across classifiers

F1-Score

The proposed model’s F1-score increased from
97.71% (70-30% split) to 98.23% (80-20%), indicating
better balance between precision and sensitivity. LSTM,
CNN and ANN experienced declines (92.87→91.10%,
91.24→89.22% and 91.0→89.35%, respectively), while
DT improved marginally (91.24→91.34%). Figure (8)
highlights the proposed architecture’s stability in
harmonizing performance metrics. The Figure (8)
compares the F1-scores, which balance precision and
sensitivity, of MLPT against baseline models. The MLPT
model achieves an F1-score of 97.5±1.3% (80-20%
split), demonstrating robust harmonization of precision
and recall. In contrast, traditional methods like LSTM
(89.8±3.8%) and ANN (88.1±4.2%) exhibit wider
variability, indicating inconsistent performance across
epitope classes. MLPT’s stability stems from its
hierarchical integration of SA-BWK-optimized features
and ADMAM-derived multi-scale patterns, ensuring
balanced performance even with imbalanced data.

Fig. 8: F1-score comparison across classifiers

Specificity

Specificity for the proposed classifier rose
significantly from 99.54-99.65%, reflecting improved
true negative identification. Other models exhibited
declines: LSTM (98.57-98.22%), CNN (98.25-97.84%),
and ANN (98.19-97.87%). DT marginally improved
(98.19-98.27%), suggesting limited adaptability to larger
training sets as shown in Figure (9).

Fig. 9: Specificity comparison across classifiers

Sensitivity

The proposed model’s sensitivity improved from
97.71-98.23%, indicating stronger true positive
detection. LSTM (92.86-91.08%), CNN (91.23-89.19%),
and ANN (90.96-89.35%) declined, while DT improved
slightly (91.23-91.34%). Figure (10) further validates the
proposed framework’s ability to leverage expanded
training data.

Matthews Correlation Coefficient (MCC)

The proposed classifier’s MCC rose from 0.9725-
0.9788, confirming superior balanced classification.
Baseline models declined: LSTM (0.9144-0.8931), CNN
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(0.8948-0.8705), and ANN (0.8916-0.8722). DT
improved marginally (0.8948-0.8961), but the proposed
model’s performance gap widened significantly as shown
in Figure (11).

Fig. 10: Sensitivity comparison across classifiers

Fig. 11: Matthews Correlation Coefficient (MCC) comparison
across classifiers

Negative Predictive Value (NPV)

The proposed model’s NPV increased from 99.54 to
99.65%, outperforming other classifiers. LSTM (98.57-
98.22%), CNN (98.25-97.84%), and ANN (98.19-
97.87%) declined, while DT improved slightly (98.19-
98.27%). This highlights the proposed model’s reliability
in confirming true negatives shown in Figure (12).

False Positive Rate (FPR)

The proposed classifier reduced FPR from 0.46-
0.35%, demonstrating superior specificity. LSTM (1.43-
1.78%), CNN (1.75-2.16%) and ANN (1.81-2.13%)
worsened, while DT improved slightly (1.75-1.73%) as
shown in Figure (13).

False Negative Rate (FNR)

The proposed model achieved the lowest FNR (1.77
vs. 2.29% previously), outperforming baselines: LSTM

(7.14-8.92%), CNN (8.77-10.81%), DT (8.77-8.66%)
and ANN (9.04-10.65%). Figure (14) reinforces its
efficacy in minimizing critical false negatives.

The proposed classifier achieved an AUC of 0.98
Figure (15), demonstrating near-perfect separability
between classes. This further validates its superiority
over conventional models.

Fig. 12: Negative Predictive Value (NPV) comparison across
classifiers

Fig. 13: False Positive Rate (FPR) comparison across
classifiers

Fig. 14: False Negative Rate (FNR) comparison across
classifiers
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Fig. 15: Receiver Operating Characteristic (ROC) curve with
AUC values

Discussion

The MLPT model outperforms traditional methods by
uniquely combining optimized physicochemical feature
selection via SA-BWK-refined Kolaskar and Tongaonkar
scores with ADMAM multi-scale sequence analysis,
enabling precise identification of antigenic determinants.
This hybrid approach balances local residue interactions
and global peptide patterns critical for immune
recognition, addressing limitations of single-feature
frameworks.

Current challenges include computational demands
and partial interpretability. Future work should optimize
model efficiency, integrate structural data and enhance
interpretability for clinical translation. MLPT’s
framework accelerates vaccine design for emerging
pathogens and cancer immunotherapy development,
while its hybrid methodology offers a blueprint for
biologically informed AI in protein engineering and
diagnostics.

Conclusion
The Multi-Level Pooling-based Transformer (MLPT)

model significantly advances T-Cell Epitope (TCE)
prediction, achieving high accuracy and efficiency in
Identifying Antigenic Peptides (APs). By integrating
peptide sequences from the Immune Epitope Database
(IEDB) and advanced feature extraction techniques such
as the refined Kolaskar and Tongaonkar algorithm
optimized with the Self-Improved Black-Winged Kite
(SA-BWK) algorithm—the MLPT model enhances
predictive performance. The hierarchical integration of
the Adaptive Depthwise Multi-Kernel Atrous Module
(ADMAM) with the Swin Transformer ensures robust
feature representation. The MLPT model outperforms
traditional methods, achieving 98.23% accuracy, 99.65%
specificity, 98.23% sensitivity and an F1-score of
98.23%. In contrast, conventional models like LSTM,
CNN and DT achieved ~91% accuracy and F1-scores.

The MLPT model’s high specificity 99.65% enables
precise targeting of SARS-CoV-2 Omicron sublineages,
reducing off-target immune activation. Future work will
optimize computational efficiency for edge deployment
in point-of-care diagnostics. These results highlight the
MLPT model’s potential to improve vaccine design and
advance immune response research.
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