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Abstract: Breast cancer, which originates in a woman's breast tissue, is
acknowledged to be a significant study topic in the medical field. For a long
time, there has been a serious concern with the classification of breast
cancer. Thus, to effectively categorize the breast cancer dataset, machine
learning methods are designed and implemented. In previous research, the
algorithms have classification accuracy and time complexity issues. This
study proposes the use of Enhanced Cuckoo Search Optimization combined
with Ensemble Machine Learning Classifiers (EMLC) to tackle the
identified challenges and improve the accuracy of breast cancer
classification. The system is structured into four key stages: pre-processing,
feature extraction, feature selection, and classification. During pre-
processing, statistical correlation analysis is applied to eliminate noise from
the dataset, thereby enhancing classification performance. The feature
extraction phase then derives more informative features from the cleaned
data to support more accurate classification. It is performed using Improved
Principal Component Analysis (IPCA), which extracts the prominent
features from the breast cancer dataset. Then, utilizing the best fitness values
of cuckoos, the ECSO algorithm is utilized to identify the relevant and
useful characteristics. Finally, using a training and testing model, the EMLC
algorithm is employed for classification. It classifies the features more
accurately using ensemble Enhanced Granular Neural Network (E-GNN),
Adaptive Neural Fuzzy Inference System (ANFIS) and Weighted Support
Vector Machine (WSVM) algorithms. The experimental findings show that
the proposed EMLC algorithm achieves superior performance compared to
existing approaches, offering improved precision, recall, F-measure,
accuracy, ROC curve results, AUC scores, and lower time complexity.

Keywords: Breast Cancer Classification, Feature Extraction, Feature
Selection, Enhanced Cuckoo Search Optimization and Ensemble Machine
Learning Classifiers (EMLC)

Introduction
The second most prevalent illness affecting women in

India is breast cancer, which is growing every year. Poor
survival rates are still caused by a lack of awareness
programs, scheduled viewing, and affordable treatment
options. There is the best chance of recovery if these
anomalies in breast cancer are found early. We can use
mammography for this early prediction. One of the most
popular and efficient methods for identifying and
screening breast cancer is this one. The fatal risk may be
decreased by early identification and effective cancer
therapy (Li et al., 2022; Aljuaid et al., 2022). While
diagnosing a condition, medical personnel are
susceptible to error. Regular detection of breast cancer

and subsequent adequate cancer treatment may lower the
risk. Every 4-6 weeks, a tumour assessment test is
advised. That makes it crucial to distinguish between
benign and malignant growths using categorization
characteristics (Wu et al., 2020).

Breast cancer is an internal tumour that may be
benign or malignant and is caused by unchecked cell
division. Researchers have investigated the cause of
breast cancer because many risk factors increase a
woman's risk. Breast cancer factors include age, genetic
risk, and family history (Wuniri et al., 2019). Both local
and systemic treatments are available for breast cancer.
Surgery, radiation, and other local treatments differ from
systemic therapies like chemotherapy and hormone
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therapy. Depending on the condition and disease severity,
various combinations of both therapies are employed for
the best results. Before mining occurs, these records are
filtered and cleaned to clear any unnecessary information
from the warehouse. Thus, across the breast cancer
dataset, feature selection is crucial.

Finding effective feature subsets (more discriminant)
and enhancing dataset quality (better and quicker results)
are crucial steps in the feature selection process. To
improve representation, several subsets of the retrieved
characteristics from the provided datasets have been
tested (Subasree et al., 2022). The feature selection
process and the classification algorithm determine how
accurate the breast cancer classifier will be. For the
supplied breast cancer dataset, the classifier may get
confused and produce inaccurate results if irrelevant and
improper characteristics are used Liu & Tang (2014);
Singh et al. (2023). By minimizing redundant breast
cancer dataset characteristics and feature subset
selection, an optimization-based solution to this issue is
achieved. When estimating kernel density to diagnose
breast cancer, it chooses the feature subset and sets the
kernel bandwidth.

Predicting categorical labels is the process of
classification. Based on the training set and the values of
a classifying characteristic, it is used to categorize the
data. One of the earliest diagnostic procedures used to
detect breast cancer is mammography. Breast cancer
recovery rates are known to be significantly increased by
early identification. Most medical facilities entrust the
analysis of mammograms to skilled radiologists.
However, human mistakes may happen at any time.
Fatigue of the observer is commonly a factor in errors,
which may lead to interobserver and interrater
differences. The quality of the images affects the
sensitivity of mammographic screening as well (Nasir
Khan et al., 2019; Ganesan et al., 2014; Malebary &
Hashmi, 2021). Automated methods for detecting and
classifying breast cancer images are being developed in
an attempt to reduce variability and standardize
diagnostic processes. A one-class classification pipeline
is used to classify images of breast cancer as either
benign or malignant. The sparse distribution of abnormal
mammograms simplifies the one-class outlier detection
problem. The features were extracted using trace, which
is a generalization of the Radon transform. A variety of
recently developed and deployed mammography image
analysis methods have been created to provide clinically
relevant features. There are several different classifiers
available, including the Gaussian Mixture Model
(GMM), nearest classifier, nearest neighbor, linear
discriminant classifier, and quadratic discriminant
classifier.

Machine Learning (ML) is widely used for
classifying breast cancer patterns because of its ability to

effectively identify important features within complex
breast cancer datasets (Naseem et al., 2022). To
determine whether the data is related to breast cancer or
not, SVM, a supervised pattern classification technique,
has been used in a dataset of breast cancer cases. The
SVM algorithm performs binary classification on the
given breast cancer dataset. Using a hyperplane, creating
a binary classifier that separates class members from
non-members in the input space is easy. After mapping to
a higher-dimensional feature space, SVM separates using
a maximum margin hyperplane and finds a nonlinear
decision function in the input space (Asri et al., 2016).
Sparsely linear points form the separation hyperplane
and are represented by the system using support vectors,
which are automatically recognized as a subset of
informative points.

This research project mainly aims to categorize breast
cancer using an ensemble machine-learning algorithm.
The accuracy of detection is not guaranteed despite much
research and techniques. Current approaches suffer from
noise and misclassification. The Ensemble Machine
Learning Classifiers (EMLC) method and Enhanced
Cuckoo Search Optimization (ECSO) technique are
developed in this study to address the problems
mentioned above and enhance classification performance
overall. The study's main contributions include pre-
processing, feature extraction, selection, and
classification. With the help of efficient algorithms, the
suggested strategy produces more accurate findings for
the provided collection of breast cancer images.

Related Work
Sameti et al. (2009) suggested that a retrospective

analysis of screening mammography performed before
discovering a malignant mass be done to extract image
features for detecting breast cancer early. In all, 58
individuals with breast cancer who had a positive biopsy
were examined. Each mammography that was performed
10 to 18 months before cancer was discovered is
assessed. There are two regions identified on each
mammographic projection of the atypical breast: (1) Area
one, which matched the location of the cancerous tumour
that later formed, and (2) an area that, on the same
mammography, resembled region one. In each projection
of the normal breast, a third area corresponding to region
one on the opposite breast was found. Sixty-two textural
and photometric image properties are then computed for
each highlighted place. According to a stepwise
discriminant analysis, six characteristics may most
effectively discriminate between normal and pathological
areas. The average classification using the best linear
classification function was 72%.

In Hamed et al. (2021), the INbreast dataset's full-
field digital mammograms are generally subjected to
three steps. The mammograms are pre-processed to
eliminate further artefacts before being cropped into
small, overlapping slices. Second, after establishing the
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YOLO-V4 model, masses are located using two different
methods: Whole mammograms and cropped slice
detection. Third, different feature extractors are utilized
to categorize the localized lesions and compare their
performance to YOLO. These include ResNet, VGG,
Inception, etc. YOLO-V4 as a detector with two channels
for comprehensive mammography and cropped slices in
a study to reduce data loss by reducing large
mammograms using experimental results. Our
methodology is more accurate than previously launched
breast cancer screening techniques overall in locating the
masses. Additionally, it has a more precise capacity to
differentiate between benign and malignant tumours.

In Padmanabhan & Sundararajan (2012) MATLAB, a
widely used simulation tool, and the MIAS dataset were
used to improve the present accuracy (diagnostic) of
digital mammograms. The method entails identifying and
categorizing tumour cells according to various disease
stages. We consider mammography's object detection,
identification, and classification processes to distinguish
between normal and malignant (benign or cancerous)
cells. It is said that thick breasts might make reading
conventional mammograms more challenging. There are
hardly any places where you can get such costly digital
mammograms, despite the claims made by newer
mammography methods for greater detection in thick
breast tissues. By employing the MATLAB numerical
analysis program for image processing applications to
analyze various breast structures (mammograms), this
issue may be reduced to a minimum. Results showed an
increase in accuracy of up to 91% from the current level
of 70%. The technology has successfully detected early
breast cancer in several breast tissues.

Baskaran et al. (2011) state that many healthcare
applications have successfully used recently emerging
machine learning-based prediction. A recent
development is the use of machine learning to anticipate
breast screening attendance before the mammography.
New predictor characteristics for such an algorithm are
presented. To make predictions, it discusses a novel
hybrid technique that uses neural networks with radial
basis functions and back-propagation. The algorithm was
created in an environment that relies on open-source
software. A 13-year dataset (1995-2008) was used to
evaluate the technique. This study compares the
algorithm, verifying its efficacy and accuracy across
several platforms. The algorithm's results show a nearly
80% accuracy rate and an 88% positive predictive value
and sensitivity. The 40-50% negative predictive value
and high specificity need further study. The method
should be tested on a larger scale since the first findings
are encouraging and give plenty of justification.

Loizidou et al. (2022) introduced machine learning
for the automated segmentation and categorization of
masses and the removal of temporally consecutive digital
mammograms. Two radiologists identified mass places
on 320 images from 80 patients (two time periods and

two breast views) and a dataset specifically constructed
for this research was used to assess the algorithm's
performance. In a leave-one-patient-out and k-fold cross-
validation procedure, 96 features are retrieved and 10
classifiers are evaluated. Neural networks provided
99.9% accurate mass detection. Instead of state-of-the-art
temporal analysis, the technique improved mass
classification from 92.6 to 98%. The statistical analysis
revealed a significant improvement, as shown by a p-
value of 0.05. In conclusion, these findings show that
detecting breast masses may be effectively accomplished
by subtracting the results of temporally subsequent
mammograms. According to a statement defining the
algorithm's clinical and translational significance, the
approach may help build automated breast cancer
computer-aided diagnostic tools that improve patient
prognosis.

In the study by Huang & Chen (2022), the authors
proposed the Hierarchical Clustering Random Forest
(HCRF) model, which integrates hierarchical clustering
with decision tree analysis to enhance classification
performance. The methodology involves applying
hierarchical clustering to a set of decision trees within a
random forest, enabling the identification and selection
of representative trees from distinct clusters
characterized by low inter-tree similarity and high
predictive accuracy. Additionally, the Variable
Importance Measure (VIM) technique is used to enhance
feature selection in order to improve the prediction of
breast cancer. The UCI Machine Learning Repository's
Wisconsin Breast Cancer (WBC) and Wisconsin
Diagnostic Breast Cancer (WDBC) datasets were used to
assess the model. For evaluation, performance criteria
including the Area Under the ROC Curve (AUC),
sensitivity, specificity, accuracy, and precision were used.
Results from experiments show that the HCRF model
produces better classification accuracy when paired with
VIM-based feature selection.

In the study by Zhou et al. (2020), the authors
introduced a novel Multi-Objective Feature Selection
(MO-FS) method that simultaneously considers
sensitivity and specificity as dual objective functions
during the feature selection process. To enhance the
efficiency and adaptability of the algorithm, they
proposed a modified entropy-based termination criterion
that dynamically determines the stopping point of the
optimization process, eliminating the need for a
predefined number of generations. Using the evidential
reasoning approach, we also developed a technique for
automatically choosing the best option from the Pareto-
optimal set for multi-objective learning. Additionally, we
created an adaptive mutation procedure to calculate the
mutation probability in MO-FS automatically. Results:
We assessed the MO-FS to determine the malignancy of
breast lesions in digital breast tomography and lung
nodules in low-dose CT. According to the experimental
findings, MO-FS's feature set outperformed feature
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selections made by other widely used approaches
regarding classification performance. The technique is
more flexible and successful in selecting radionics
features. In Lai et al. (2014), a novel multiscale 2-D
singular spectrum analysis with PCA (2-D-MSSP) for
noise-robust feature extraction and classification of
Hyperspectral Images (HSI). Unlike traditional methods
that require pre-corrected data, 2-D-MSSP effectively
extracts spatial-spectral features while removing noise in
both domains. It achieves high classification accuracy
even on uncorrected datasets and with limited training
samples. Experimental results validate its robustness
against 10 state-of-the-art classifiers.

Two sophisticated automated Breast Cancer (BC)
classification methods were created in the study by
Elkorany et al. (2022) by combining the Dragonfly
Algorithm (DA) and Whale Optimization Algorithm
(WOA) with Radial Basis Function Kernel Support
Vector Machines (RBF-SVM). The main goal was to
increase classification accuracy through effective SVM
parameter optimization. The Wisconsin Diagnostic
Breast Cancer (WDBC) and Wisconsin Breast Cancer
Database (WBCD) datasets were used to assess the
performance of the suggested WOA-SVM and DA-SVM
models. Classification accuracy (CA), confusion matrix,
area under the ROC curve (AUC), sensitivity, and
specificity were among the evaluation criteria.
Additionally, the study contrasted the suggested models
with well-known optimization techniques including
Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO), which are frequently used to train
SVM and Artificial Neural Network (ANN) classifiers.
In order to evaluate the efficacy of the WOA-SVM and
DA-SVM approaches, their feature selection skills were
also examined and compared to those of other models.
The experimental results demonstrate that the WOA-
SVM approach performs better than previous
classification methods on the WBCD dataset.

Materials
The experimental design of this study followed a

structured pipeline comprising dataset preparation, pre-
processing, feature extraction, feature selection, and
classification using ensemble machine learning models.
The CBIS-DDSM breast cancer dataset from Kaggle,
containing annotated digitized mammograms with
Regions of Interest (ROIs), was utilized for training and
evaluation. To enhance input quality, a Statistical
Correlation Coefficient (SCC)-based pre-processing
technique was employed to remove noisy and irrelevant
data. Feature extraction was conducted using Improved
Principal Component Analysis (IPCA) to reduce
dimensionality while preserving significant information.
Subsequently, the Enhanced Cuckoo Search
Optimization (ECSO) algorithm was applied to select the
most relevant features based on a fitness function
incorporating classification accuracy, relevance, and

redundancy. For classification, an ensemble machine
learning classifier (EMLC) was developed by combining
Enhanced Granular Neural Network (E-GNN), Adaptive
Neuro-Fuzzy Inference System (ANFIS), and Weighted
Support Vector Machine (WSVM), with final predictions
derived through a voting mechanism. Model
performance was assessed using accuracy, precision,
recall, F1-score, ROC, AUC, and execution time, and k-
fold cross-validation was implemented to ensure result
robustness and generalizability.

Proposed Methodology
This research hopes to improve the classification

process by examining breast tumour features. This study
first incorporated a statistical correlation analysis-based
pre-processing to improve the classifier's performance.
Then, the features are extracted from the Region of
Interest (ROI) mammogram images by Improved
Principal Component Analysis (IPCA). Then, the
prominent features are selected via the Enhanced Cuckoo
Search Optimization (ECSO) algorithm. We employed
ensemble learning in the suggested strategy to increase
accuracy. The Enhanced Granular Neural Network (E-
GNN), Adaptive Neural Fuzzy Inference System
(ANFIS), and Weighted Support Vector Machine
(WSVM) algorithms make up the three Machine
Learning (ML) classifiers that make up the ensemble
voting system.

Fig. 1: Overall methodological approach suggested

Figure (1) illustrates the overall process of the
proposed methodology. The data are taken from the
Breast Cancer Kaggle Dataset (Kaggle, 2021). The first

http://192.168.1.15/data/13150/fig1.png
http://192.168.1.15/data/13150/fig1.png
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(1)

(2)

(3)

(4)

(5)

step in processing any dataset is cleaning it to remove
typical issues like noise, outliers, and missing values that
are frequent in healthcare data. Next, we use feature
scaling and normalization approaches to ensure that
every feature has an equal impact on the model training.
Improved Principal Component Analysis (IPCA) may
reduce the data's dimensionality and extract useful
features while keeping the data's fundamental structure
intact. Ensuring patient confidentiality and conformity
with data protection standards like HIPAA or GDPR are
essential ethical issues in this study. For security reasons,
no personally identifying information is used and the
dataset is anonymized to make it impossible to abuse. To
prove that the ECSO-EMLC technique is effective, it is
compared against baseline approaches, including
decision trees, classical logistic regression, and
standalone Support Vector Machines (SVM). The
technology has the potential to surpass traditional
diagnostic methods in detecting breast cancer, as shown
by the findings that demonstrate substantial increases in
classification accuracy, sensitivity, and specificity.

Pre-Processing Using Statistical Correlation
Coefficient (SCC)

As the average of all related values of the second
variable (the dependent, result, response, or variable
being explained) and the degree of the link between the
two variables, the correlation may be defined (Xiong et
al., 2005). When the variable x serves as a random
covariate to the variable y meaning both x and y are
continuous variables that vary together, the sample
correlation coefficient  (r) (denoted as r) is employed
to evaluate the strength and direction of their linear
relationship. In this context, statistical analysis focuses
on assessing the linear association between the variables
rather than predicting one from the other.

Graphing and numerical approaches may evaluate a
regression equation's fit. To test a linear regression fit
with any number of predictors, the sample coefficient of
determination ( ) is useful. For a homoscedastic model
(wi = 1) with a constant term,  is the regression sum
of the ratio of the square ( ) to the total sum of
squares of mean deviation ( ):

Where  represents the anticipated value of y and 
represents the mean of y's values, summed across i = 1,
2,... n. SSE is a residual sum. R2 = 1−SSE/SST, where
SST is the sum of squares of y2 in a model without a
constant term. The R2 in Eq. (1) indicates the percentage
of variance around the mean  explained by the
regression. Thus, adding the independent variable x
reduces the total variance of  when R2 is large,
multiplying by 100 gives it as a percentage. Since 0 ≤

SSE ≤ SSYY, R2 does not exceed 1. The correlation
between y and  is R:

Usually termed the multiple correlation coefficient.
Comparing  of equations with differing coefficient
counts from the same data set is inappropriate. Even so,
we appreciate  in the regression printout. The square
of the correlation coefficient between x and y is used as
the coefficient of determination in simple regression with
a constant term, thus the notation:

The slope, a1, of the fitted regression line determines
whether this metric is positive or negative. If R2 is unity,
each regression line point and variance are fitted. A zero
coefficient means that the regression line is horizontal
and y is not a function of x. Regression coefficients are
similarly connected to the  correlation in more generic
regression situations, although more complicatedly.

The  and  covariance is the expected value of the
product of their deviations from their expected values
with a joint normal distribution. It measures the
correlation between two items. The sample covariance is:

Which means now that r ≤ 1.

An indicator of x-y correlation is covariance.
Depending on the slope, the covariance of two linearly
connected variables will be positive or negative. If x and
y are uncorrelated, the covariance is zero. However,
highly dependent random variables, frequently nonlinear,
might have zero covariance (correlation). Variance is a
random variable's covariance with itself, although
introductory textbooks disregard it. The standard
deviation (σ) is the square root of variance and is always
positive for populations and samples. In circumstances of
actual uncertainty, covariance must be considered.

Feature Extraction Using Improved Principal
Component Analysis (IPCA)

In order to identify latent information and categorize
data in order to differentiate between benign and
malignant tumors, the Improved Principal Component
Analysis (IPCA) algorithm is utilized for feature
extraction in this study. By making deductions from
characteristics like trouble interacting with others,
unusual hobbies, a range of skill levels, atypical sensory
responses (hypersensitivity or hyposensitivity to sight,
touch, taste, smell, or hearing), and repetitive behaviors
or body movements, the suggested system is intended to
determine whether a condition is normal.
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î)( i y
 

i)

R2

R2

r
 

=xy ±
 

=R =  2 1 −
 

S
 

YY

S
 

−a
 

S
 

YY 1
2

XX a
 

=1
 

S
 

YY

S
 

XX  

 

S
 

S
 

XX YY

S
 

XY

r
 

xy

x y

cov x, y =( )  

x
 − y

 −  

n−1
1 ∑ ( i x) ( i y)

cov x, y ≤( ) s
 

s
 

x y



Satyabrata Patro et al. / Journal of Computer Science 2025, 21 (7): 1621.1636
DOI: 10.3844/jcssp.2025.1621.1636

1626

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Principal Component Analysis (PCA) is utilized to
reduce the high intrinsic dimensionality of the feature
space by transforming it into a lower-dimensional
subspace, particularly effective when variables exhibit
strong correlations. This dimensionality reduction is
achieved by eliminating irrelevant components, thereby
enabling a more compact representation of the dataset.
As a classical multivariate analysis technique, PCA
facilitates linear feature extraction and is applied in this
research to generate informative feature vectors for the
breast cancer dataset.

However, standard PCA may result in the loss of
critical feature information, especially when applied to
small datasets, and may not effectively preserve class-
relevant information during compression. To address
these limitations, a modified version of PCA is
introduced, enhancing its capability to retain essential
discriminatory features and improve classification
performance.

In IPCA, normalize the jth element  of the ith
feature vector y concerning its standard deviation, ,
to minimize the impact of high eigenvalues. Thus, the
new feature vector  is expressed as:

Normalized feature vectors are used to create a new
feature subspace. By normalizing feature vectors by the
square root of their eigenvalues, this technique calculates
the separation between training and testing features.

This Equation may represent the linear transform
(PCA):

X, Y, and T are the original, altered, and transformed
matrix vectors. The Equation for solving the transform
matrix T:

Use the matrices I, S, U, and λ, the original image
covariance matrix, a square matrix with unity along the
diagonal, eigenvectors, and eigenvalues. To calculate 
and , use Eq. (2), with eigenvalues
arranged as . You may write the
eigenvectors as .

The IPCA generated the transformed matrix  from
breast cancer dataset training samples appropriate to a
specified application. Here's the Equation:

When comparing Eqs. (7 and 8), The primary
changes are the transform matrix, the covariance matrix
of training samples, and the breast cancer dataset.

The primary advantage of the Improved Principal
Component Analysis (IPCA) lies in its ability to reduce
dimensionality without significant information loss by
eliminating redundant data. PCA, when examined
through statistical and mathematical methods such as
eigenvalues and eigenvectors, provides a clearer
understanding of its mechanism. The IPCA technique
employs a mathematical framework that projects high-
dimensional data into a lower-dimensional space, with
the eigenvectors of the covariance matrix representing
this reduced space. The error-minimizing and
decorrelation properties of IPCA are particularly
beneficial for this study, enabling the extraction of
meaningful data and crucial acoustic features for breast
cancer classification.. Mean and standard deviation are
among the characteristics of the normal and breast cancer
patient input data that were gathered:

Typical Variation Standard deviation is sometimes
called root-mean-square since it indicates the square root
of the squared difference from the arithmetic mean:

Algorithm 1: IPCA

Input: Pre-processed breast cancer dataset
Output: Extracted informative features
Start

1. Calculate the mean value S' of the given breast cancer dataset
S

2. Subtract the mean value from each data point in the dataset to
center the data

3. Compute the covariance matrix C from the matrix A: 

4. Find the eigenvalues  of the
covariance matrix C

5. Calculate the eigenvectors corresponding to the eigenvalues
of matrix C

6. Represent any vector S as a linear combination of these
eigenvectors

7. Select only the largest eigenvalues to form a reduced-
dimensional dataset based on their significance

8. Match the combination of features in the breast cancer dataset
using the selected eigenvectors

9. Compute the features using the mean and standard deviation
(11 and 12)

10. Extract the most informative features from the dataset based
on the selected eigenvectors and computed statistics

End

The IPCA algorithm extracts the maximum and
minimum occurring synchro states and obtains more
informative features.
Feature Selection Via ECSO Algorithm

To choose important and pertinent features from the
given breast cancer dataset, the Enhanced Cuckoo Search
Optimization (ECSO) approach is used in this part. The
algorithm selects features as efficiently as possible by
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(13)

(14)

(15)

(16)

(17)

using the best fitness values. Inspired by nature, Cuckoo
Search (CS) is a contemporary metaheuristic
optimization algorithm that seeks out the best answers.
The aggressive reproductive approach and unique sounds
of Cuckoos are well-known. Brood parasitism is the term
for the practice of certain species, such as the Ani and
Guira cuckoos, laying their eggs in other birds' nests.
This strategy increases the likelihood of their eggs
hatching by taking advantage of the host bird's resources.
If the host bird detects the foreign eggs, it may either
destroy them or abandon the nest, prompting it to build a
new one. This concept of brood parasitism forms the
foundation of the Cuckoo Search Optimization (CSO)
algorithm (Alia & Taweel, 2021; Mohsin et al., 2020). A
cuckoo egg represents a new answer for each egg in the
nest. A cuckoo may replace the nest solution if it's
preferable. Levy flights, not isotropic random walks, are
better for improving this CSO method.

The conventional cuckoo search has been described
using the three idealized rules below:

The reproductive behaviour of cuckoos involves the
deposition of a single egg in a nest selected at
random
The next generations will receive the most optimal
habitats and the eggs of the highest excellence
The quantity of available host nests remains
constant and the host bird has a probability ranging
from 0-1 of discovering the egg laid by the cuckoo.
The bird host has two potential courses of action:
Either expel the egg from its nest or elect to forsake
it entirely, then construct a new nest.

A fraction   of the n host nests is replaced with new
nests, which can be utilized to approximate the final
hypothesis. The CSO has a large search area and is
relatively straightforward. Instead of using the typical
random walk to do a global search, it employs a Levy
flight, allowing CSO to scour the search area more
effectively.

Numerous host nests with plenty of eggs might
improve CSO (Gao et al., 2019). The three types of nests
that cuckoos typically choose for their egg-laying are as
follows. The common cuckoo selects several host nests
that lay eggs with similar characteristics. Other cuckoos
choose a variety of host nests with eggs that are distinct
from their own. In contrast to the light-coloured eggs of
their host birds, certain other cuckoo species lay cryptic,
black eggs. This tactic is utilized to keep the eggs hidden
from the host in cuckoos that parasitize hosts and have
dark, rounded nests.

Initial Population

This research uses each egg to represent a possible
set of features to identify the data properly. The top-
mated features from the breast cancer dataset statistical
analysis determine the characteristics.

Finding New Solutions and Levy Flight

The Levy flight is a technique for discovering novel
solutions to Eq. (4) based on ECSO. A levee walk around
the best solution so far should be used to produce some
of the new alternatives; this will speed up the local
search (Ma et al., 2021). The new solution for cuckoo i is
obtained via Levy flying and is shown below as :

The step size is . The step length follows the Levy
distribution:

Crossover and Mutation

Common cuckoos produce two eggs in their nests
via a crossover and the best egg is selected.
Using crossover and the uniform mutation operator,
a European-type cuckoo produces two eggs, from
which it selects the better one.
If otherwise, a random solution generates eggs
(cryptic)

Fitness Function

The selection method heavily relies on the fitness
function. The salient subset characteristics of the breast
cancer dataset are successfully chosen by applying the
optimal fitness function values. This means that the
fitness function, which the Equation may represent,
incorporates relevance and redundancy to direct CSO in
finding the optimal feature subset:

Where:

C stands for the class designation and X for the
selected collection of qualities. Every selected feature
and class label has a discrete random variable associated
with it. Through pairwise calculations, D determines how
relevant the selected feature subset is to the class labels.
Each pair of selected features' mutual information is
evaluated by R, which identifies any duplication in the
subset of features chosen. In the chosen feature subset,
fitness is a maximizing function to increase relevance
(D) and concurrently reduce redundancy (R). is a
constant value and . The relevant significance in
fitness function is indicated by α. (1- α) indicates the
proportionality of redundancy reduction. Since relevance
is deemed more significant than redundancy, we set α to
be bigger (1- α) than in the fitness function. ECSO
selects the key and essential subset characteristics from
the dataset more effectively.
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Algorithm 2: Enhanced Cuckoo Search Optimization
(ECSO)

Input: Breast Cancer Dataset
Fitness function: Classification Accuracy
Output: Optimally Selected Feature Subset
Initialize:

Generate an initial population of m eggs distributed
among n host nests (each egg represents a feature
subset)

Repeat until stopping criteria are met (t < MaxGeneration or
convergence condition):

For each nest do
Select a cuckoo type randomly:

If cuckoo_type == common cuckoo:
1. Apply crossover on the two best eggs in
the nest to generate two offspring
2. Evaluate and select the better offspring

Else if cuckoo_type == European cuckoo:
1. Select any two eggs randomly from the
nest
2. Perform crossover and uniform mutation
to create two new eggs
3. Evaluate and select the better egg

Else (cryptic cuckoo):
Generate a random egg (solution)

Fitness Evaluation:
Evaluate the fitness fi of the newly generated
egg using classification accuracy (as per Eq. 15)

Selection and Replacement:
1. Identify the egg with the weakest fitness in
the nest, say fj
2. Iffi >fj, replace egg j with the new egg i

Ranking and Sorting:
1. Rank all eggs in the population based on
fitness values
2. Retain the best solution(s)

Levy Flight Mutation:
Abandon a portion of the worst-performing eggs
Generate new eggs using Levy flights (as per
Eqs. 13 and 14)

End for each nest
Update the best egg (solution) across all nests
Feature Selection: Based on the final fitness ranking,
select the most relevant and significant features for
classification

According to the algorithm, subset features are
chosen using objective function fitness values. The levy
flight uses the best new solutions and reduces unneeded
features. To make the breast cancer dataset more
informative, the ECSO optimization technique is applied.

Classification Using Ensemble Machine Learning
Classifiers (EMLC)

Ensemble methods are meta-algorithms that combine
several machine learning techniques to create an
ensemble model. Ensemble approaches have been
successful in winning many prestigious machine learning
competitions because they usually produce better
predictions than a single model. Ensemble approaches in
machine learning use a variety of algorithms to get better
results and performance than any one method could. A
machine learning ensemble has a finite number of
possible models, as opposed to a statistical ensemble,
which can theoretically have an infinite number. More

flexibility in the ensemble methods' design is made
possible by this differentiation (Dietterich, 2000).

A Voting Classifier is a machine learning model that
aggregates the predictions from multiple individual
models to produce a more accurate output. The
predictions are made based on a voting mechanism,
where the majority vote determines the final result.
Unlike separate models that are individually trained and
evaluated, ensemble learning combines these individual
models into a unified model, where the final prediction is
based on the majority vote. Voting classifiers are
typically categorized into two types: Hard voting
classifiers and soft voting classifiers. Ensemble
algorithms have demonstrated exceptional performance
on challenging datasets, often setting new performance
benchmarks. In this study, three machine learning
classifiers—EGNN, ANFIS, and WSVM are employed
to classify the given dataset. Ultimately, the classification
result is derived based on the voting outcomes.

Enhanced Granular Neural Network (E-GNN)

Artificial neural networks made to process numerical
or granular data are known as Granular Neural Networks
(GNN). Online incremental learning from data streams is
the main goal of the GNN technique (Song & Pedrycz,
2013). As shown in Figure (2), there are two primary
processes in the GNN learning process. First, the original
numerical data is transformed into information granules,
which are intervals or, more generally, fuzzy sets. Then,
using this information rather than the actual raw input,
the neural network learns, adapts, and refines. The neural
network does not have to analyze all of the data because
there is usually more data than the information granules
that are required. Rather, it eliminates samples that don't
provide fresh insights.

Fig. 2: Granular neural networks are designed in two steps

In essence, GNN manages data streams using a
quick, incremental, one-pass learning process. Without
being aware of the statistical characteristics of the data or
classes beforehand, it might start the learning process.
Fuzzy hyperboxes, which create decision boundaries
between various classes, are used to granulate the feature
space. The main features of GNN are listed below:

Simultaneously handles samples with and without
labels
Adjusts its settings and structure to take into
account new learnings, rejecting the old ones;
Demonstrates the ability to perform nonlinear
separation

http://192.168.1.15/data/13150/fig2.png
http://192.168.1.15/data/13150/fig2.png
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Supports the growth of lifetime learning through
both destructive top-down and constructive bottom-
up approaches
Can deal with data uncertainty and drift detection
techniques

GNN Structure and Processing

The Graph Neural Network (GNN) acquires
knowledge from a continuous data stream denoted as
x[h], where h represents the time index ranging from 1 to
infinity. The presence or absence of a class label C[h]
may or may not be seen in training instances. Each
information granule, denoted as γ_i, belongs to a finite
collection of granules γ = {γ1,...,γc} in the feature space
X ⊆ Rn. These granules are connected with a specific
class, Ck, which belongs to a finite collection of classes
C = {C1,..., Cm} in the output space Y ⊆ N. Granules
from the input stream and T-S neurons connect the
feature and output spaces in the GNN.

Fig. 3: Granular neural network categorization structure

Figure (3) shows the 5-layer neural network. The
input layer feeds feature vectors 

 into the network,
whereas the granular layer contains information granules

throughout the feature space. Null neurons 
are included in the aggregation layer for partly
overlapping granules. After aggregating membership
values, class compatibility values are compared by the
decision layer  and output the class  associated with
the granule  whose compatibility rating is the greatest.
Class label indications are shown in the output layer.

 is input for all levels except the input
layer.

The GNN classifier's parameters and structure can be
altered to suit the needs of the particular application. The
number of classes can be automatically handled once it is

known. A maximum number of granules can be
established inside the model structure if processing time
and memory are constrained. The learning algorithm can
automatically change the number of granules and classes
in new situations.

The number of modules (or subgranules), the
learning method, the goal error, the proportion of training
data, the number of hidden layers, and the number of
neurons in each layer are among the factors that are
optimized in granular neural networks. Today, there are
many different optimization techniques accessible, but
choosing the right one for a certain application is
essential to getting the best results. This study adds an
adaptive mutation factor to improve GNN parameter
optimization.

Adaptive Mutation Factor (AMF)

This study proposes an improved approach to fix
these problems. This method uses an adaptive mutation
relationship type that factors neighbouring data into its
data. Two things affect this adaptive mutation factor: The
data intensities, denoted as , and the
spatial location of the neighbours, denoted as

, are important factors to consider, it is also
the neighbourhood's architecture also influences it.
Taking into account the following definition of adaptive
mutation:

Where  stands for the primary attraction's feature
and  for the secondary attraction's distance. The
parameters modify the two nearby attractions' potency λ
and ξ. To sum up, the best outcomes are provided by the
E-GNN model.

Fig. 4: Structure of ANFIS

Adaptive Neural Fuzzy Inference System (ANFIS)
Algorithm

To get superior classification results, the Hybrid
Optimized Adaptive Neuro Fuzzy Inference System
(HOANFIS) is presented. The fuzzy inference system
and the neural network are combined. The neural
network lends the system a feeling of flexibility, while

x h =[ ]
x1, ...,xj, ...,xn h ,h =( ) [ ] 1, ...

γi∀ TSni∀i

o
 

i
 

Ck

γ
 

i

x h ,h =[ ] 1, ...,

λ 0 < λ < 1( )

ξ 0 < ξ < 1( )

sd x
 , v  =2 ( j i) x

 − v
 1 − λH

 − ξF
 ∥ j i∥

2 ( ij ij)

H
 

ij

F
 

ij

http://192.168.1.15/data/13150/fig3.png
http://192.168.1.15/data/13150/fig3.png
http://192.168.1.15/data/13150/fig4.png
http://192.168.1.15/data/13150/fig4.png


Satyabrata Patro et al. / Journal of Computer Science 2025, 21 (7): 1621.1636
DOI: 10.3844/jcssp.2025.1621.1636

1630

(19)

(20)

(21)

(22)

the fuzzy logic accounts for the system's imprecision and
uncertainty. This hybrid approach uses the rules to
construct an initial fuzzy model and its input variables.
The final HOANFIS model of the system is then created
by using the neural network to refine the rules of the
original fuzzy model. For the supplied database, it is
utilized to achieve flexibility, rapid convergence, and
high accuracy. The construction of ANFIS is shown in
Figure (4).

Two sections make up ANFIS' internal organization.
Using network-like regulations, these two parts are
linked (Haznedar et al., 2021). ANFIS uses a neural
network to improve the fuzzy rules it initially discovered
using the supplied input data set. It is possible to define a
typical Takagi-Sugeno rule set as follows:

Fig. 5: HOANFIS algorithm

The linear output parameters are α, β, and r. See
Figure (4) for the ANFIS structure. ANFIS learns
optimum rules via hybrid learning. The learning process
involves repeated updates of antecedent and consequent
parameters, with one set held constant while the other is
updated. The Least-Square Error (LSE) approaches are
used by the Adaptive Neuro-Fuzzy Inference System
(ANFIS) to optimize the Consequent Parameters ( , ),
which subsequently updates the Antecedent Parameters
(a, b, c) in the backward pass. The computation of

gradients at each iteration may pose significant
challenges and carry the inherent possibility of
encountering local and global minima. The Particle
Swarm Optimization (PSO) method and ANFIS
algorithm are combined to prevent sluggish convergence.
It may provide an alternative remedy for this kind of
issue. HOANFIS' proposed flowchart is seen in Fig. (5).

The PSO approach draws its inspiration from how
birds search for food. According to their knowledge and
that of others, particles in this model alter their
placements and travel directions. The optimization
method is based on particle competition and cooperation
(Jiang et al., 2007). One may track the states of the
particles by their paths and velocities while using PSO to
solve optimization issues.

A fitness function projects each particle to identify
the best solution to the issue. To obtain the finest position
globally and locally, the particle Pi screens its individual
best, i.e., personal best named as  and global best
named as  to inform its position and velocity. Each
reiteration alters its position Xid, velocity Vid, and the
dth dimension using the associated conditions:

where, w = inertial weight

 is velocity in d dimension

c1 and c2 = constants named as acceleration factor

r1 and r2 = two dissimilar distributed arbitrary
numbers in the [0,1] range regularly.

The modified technique is repeatedly repeated until
one of two outcomes is reached: An acceptable  or
a predetermined number of iterations, . The ANFIS
algorithm is used to improve classification accuracy and
to produce optimum values. A greater weight is assigned
to a training feature that the previous classifier has not
taught. By lowering the necessary number of learning
epochs, the suggested HOANFIS is intended to lower the
computational cost of the traditional ANFIS when
dealing with huge volumes of training data. Accuracy
and training time metrics are considerably enhanced by
changing the feature's weights in the training set.

The novelty of the HOANFIS algorithm is improving
the convergence speed for the larger breast cancer
dataset. Optimizing internal parameters using the PSO
algorithm improves prediction accuracy, execution time,
and AUC metrics for given data.

The above analysis shows that the proposed hybrid
optimization-based ANFIS technique is highly efficient
for analyzing breast cancer data.
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Weight-Based Support Vector Machine (WSVM)
Algorithm

In this investigation, WSVM classifies. It finds a
linear separating hyperplane with the highest margin of
separation between data in a higher-dimensional
environment for categorizing data using machine
learning. The normal SVM algorithm has a long training
time. To overcome the issue, a weight-based SVM is
introduced in this study.

WSVM delivers near-optimal class separation. Linear
algebra and geometry may be used with nonlinearly
separated data in WSVM's high-dimensional feature
space. It increases the distance of either class from the
hyperplane while using the hyperplane to segregate the
greatest percentage of training data on the same class
(Xie et al., 2017). WSVM uses a variety of kernel
functions to enable inner products to be created directly
in feature space. This study's extracted features train the
WSVM to classify the given dataset. The WSVM
generally separates the high-dimensional space by
building a hyperplane. A model of the training data is
produced by the WSVM classifier using the labelled
vector of displacements of each VM cost and time. This
model is then used to classify displacements of unknown
data dynamically. The training dataset model is used
throughout the testing procedure. In training sets
containing more interesting data, WSVM is a maximum
margin hyperplane classifier with great classification
performance. Figure (6) shows the structure of the SVM
algorithm.

Fig. 6: Structure of the SVM algorithm

The basic idea behind the WSVM is to assign distinct
weights to individual data points, reflecting their relative
importance within the class. This approach enables
different data points to contribute to the learning process
of the decision surface to varying degrees. The training
data set changes if the weights are specified.

Where the scalar  is a data point given a
weight .

To improve generalization, the WSVM increases the
margin of separation while decreasing classification
error, accuracy, and time. Building a cost function starts
this procedure. WSVM weights the penalty term to
reduce the effect of less important data points even if C
is constant and all training data points are treated equally.
The constrained optimization problem is expressed as
follows:

where A is accuracy, T is time and E is error rate

Subject to:

It assigns the weight  to the data point 
formulated above. Thus, the dual formulation is subject
to:

SVM upper limits for  are constants, whereas
WSVM weight values  serve as dynamical
boundaries. It is focused on understanding the pattern of
breast cancer infection using weight values of SVM and
also identifies the earlier stages of breast cancer disease,
which improves the classification effectively.

Results and Discussion
To evaluate the effectiveness of the proposed method

in distinguishing different categories of breast cancer
images, two primary performance measures were
employed. Throughout all experiments, the model
parameters were optimized and hyperparameters were
fine-tuned using the validation set and training
procedures. The datasets used for experimentation were
sourced from the Breast Cancer dataset available on
Kaggle, specifically the CBIS-DDSM (Curated Breast
Imaging Subset of the Digital Database for Screening
Mammography), an enhanced version of the DDSM.
This dataset includes 2,620 digitized mammographic
images annotated with verified pathology information for
normal, benign, and malignant cases. The curated dataset
also features updated Region of Interest (ROI)
segmentations, bounding boxes, and diagnostic labels,
with all images converted to DICOM format to ensure
consistency and standardization. A certified
mammographer curated this subset from the full DDSM
collection. True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN) were the
basic values used to calculate a number of binary
classification metrics for performance evaluation. The
percentage of accurately anticipated positive cases to all
predicted positives was referred to as precision. Thex
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percentage of true positives that the model properly
recognized is known as recall (or sensitivity). The F1-
score, which is the harmonic mean of precision and
recall, was employed to provide a fair evaluation of
performance because these two measures frequently
trade off. As a measure of overall performance, accuracy
was determined by dividing the number of properly
predicted cases by the total number of predictions.

The performance estimate was made more robust and
less biased by using k-fold cross-validation. Each
iteration employed k−1 folds for training and the
remaining fold for testing after the dataset was divided
into k folds of equal size. Using a different fold as the
test set, this procedure was carried out k times. A more
accurate and broadly applicable assessment of the
model's predictive power was provided by the final
performance measures, which were derived by averaging
the outcomes across all k iterations. The suggested
ECSO-EMLC method is evaluated against GONN, BI-
RADS, FS-ResNet CNN, and EMLC classification for
breast cancer classification in terms of recall, precision,
accuracy, f-measure, AUC, ROC, and execution time.

Calculating precision:

While recall denotes the completeness of the
retrieved pertinent instances, precision relates to the
caliber of the categorization findings. A high precision
value in classification tasks indicates that the algorithm
properly detects a higher percentage of pertinent cases in
comparison to the total number of examples it projected
to be affirmative. Precision, which measures the
percentage of correctly predicted positive instances
among all of the model's positive predictions, is
specifically defined as the ratio of true positives (TP) to
the total of true positives plus false positives (TP + FP).

Fig. 7: Precision

As illustrated in Figure (7) the comparison of
classification accuracy across various methodologies is
presented, where the x-axis represents the different
algorithms and the y-axis indicates the corresponding
accuracy values. The proposed ECSO-EMLC algorithm
demonstrates superior performance on the breast cancer
dataset compared to existing techniques, including
GONN, BI-RADS, FS-ResNetCNN, and the standard
EMLC approach, all of which exhibit lower precision

levels. The enhanced accuracy of ECSO-EMLC is
attributed to its effective feature selection mechanism,
which optimally identifies the most relevant attributes
for classification. This improvement underscores the
robustness of the proposed method in accurately
classifying breast cancer cases.

Recall

The recall value is determined in the manner
described below:

The following representation of the comparison
graph:

Recall and precision are calculated as the total
number of relevant documents divided by the number of
relevant documents returned by a search.

Fig. 8: Recall

In Figure (8) both existing and recommended
methodologies are used to evaluate the comparison
measure recall. Approaches are on the x-axis and recall is
on the y-axis. Our ECSO-EMLC algorithm provides
greater recall for the breast cancer dataset than current
approaches such as GONN, BI-RADS, FS-ResNet CNN,
and EMLC algorithms. The results conclude that the
proposed ECSO-EMLC improves breast cancer
classification accuracy by carefully selecting
characteristics for the best subset.

F-Measure

-score is defined as:

Figure (9) illustrates a comparative analysis of F-
measure values obtained from both existing and the
proposed methodologies. In the plot, the y-axis
represents the F-measure scores, while the x-axis denotes
the different algorithms evaluated. The proposed ECSO-
EMLC algorithm achieves a significantly higher F-
measure on the breast cancer dataset compared to
existing methods, including GONN, BI-RADS, FS-
ResNetCNN, and the baseline EMLC, all of which
demonstrate relatively lower F-measure performance.
These results confirm that the ECSO-EMLC approach
enhances classification performance by effectively

Precision =
 

True positive+False positive
True positive

Recall =  

True positive+False negative
True positive

F1

F1 − score =  

precision+recall

2×precision×recall
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selecting the most discriminative features, thereby
improving the overall predictive capability of the model.

Fig. 9: F-measure

Accuracy

Accuracy, a key performance metric, is computed by
dividing the sum of correctly classified instances—true
positives (Tₚ) and true negatives (Tₙ)—by the total
number of evaluated instances, which includes true
positives, true negatives, false positives (Fₚ), and false
negatives (Fₙ). Mathematically, accuracy = (Tₚ + Tₙ) /
(Tₚ + Tₙ + Fₚ + Fₙ) and it quantifies the model’s overall
classification effectiveness. This is how the accuracy is
calculated:

Fig. 10: Accuracy

As shown in Figure (10) both existing and
recommended techniques evaluate the comparison
metric's accuracy. The y-axis shows accuracy, while the
x-axis shows methods. GONN, BI-RADS, and FS-Res
Net are a few of the current techniques. CNN and EMLC
algorithms perform less accurately for the provided
breast cancer dataset, but the suggested ECSO-EMLC
approach does. The suggested approach focuses on
choosing the most relevant data using IPCA, which
successfully increases the accuracy of features across the
breast cancer dataset. Consequently, according to the
results, the suggested ECSO-EMLC boosts the accuracy
of breast cancer classification by choosing the right
characteristics.

AUC

A binary classification model's overall performance is
measured by the Receiver Operating Characteristic
(ROC) curve's Area Under the Curve (AUC). The True
Positive Rate (TPR) versus False Positive Rate (FPR)
trade-off across different classification thresholds is

depicted graphically by the ROC curve. Better model
discrimination between the positive and negative classes
is indicated by a higher AUC score.

As shown in Figure (11) AUC compares the present
and recommended approaches. The y-axis shows AUC,
while the x-axis shows methods. Compared to existing
methods like GONN, BI-RADS, FS-ResNet CNN, and
EMLC, the proposed ECSO-EMLC algorithm provides a
higher AUC for the presented datasets. Pre-processing is
performed to improve the classification accuracy. The
findings conclude that using optimized features, the
ECSO-EMLC technique effectively handles dataset
performance.

Fig. 11: AUC

ROC

A graphical tool for assessing a classification model's
diagnostic performance across different threshold
settings is the Receiver Operating Characteristic (ROC)
curve. Plotting the True Positive Rate (TPR) against the
False Positive Rate (FPR) gives information on how well
the model can differentiate between classes at various
decision boundaries.

Fig. 12: ROC

In Figure (12) the existing and recommended
techniques were used to evaluate the comparison
measure using ROC. For the x-axis, false positive rates
are determined, while the y-axis shows real positive
rates. The findings show that the suggested ECSO-
EMLC method improves dataset performance via
optimized features.

Time Complexity

The algorithm is better when the proposed method
provides lower time complexity.

As shown in Figure (13) current and recommended
approaches evaluate the comparison measure's execution
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time. The x-axis shows methods and the y-axis shows
execution time. The suggested ECSO-EMLC technique
has a reduced execution time for the provided breast
cancer dataset compared to the current methods, such as
GONN, BI-RADS, FS-ResNetCNN, and EMLC.
Consequently, the analysis's findings indicate that the
suggested ECSO-EMLC could increase classification
accuracy by carefully choosing characteristics.

Fig. 13: Execution time

Conclusion
This study proposes the Enhanced Cuckoo Search

Optimization with Ensemble Multi-Level Classification
(ECSO-EMLC) approach to enhance breast cancer
classification accuracy. Initially, statistical correlation-
based preprocessing is applied to improve classifier
efficiency. Features are extracted from mammographic
Regions of Interest (ROIs) using Incremental Principal
Component Analysis (IPCA). However, IPCA alone
leads to high computational complexity due to the large
number of extracted wavelet coefficients. To address
this, the ECSO algorithm, inspired by swarm
intelligence, is employed for optimal feature selection
and to reduce computational overhead. In this method,
the update coefficient for each cuckoo is determined by
its distance from the global best solution—cuckoos
farther away receive higher update coefficients to
promote faster convergence, while those closer conduct
finer local searches to enhance solution accuracy.

To further boost predictive performance, an ensemble
learning strategy is implemented, integrating three
classifiers: Enhanced Granular Neural Network (E-
GNN), Adaptive Neuro-Fuzzy Inference System
(ANFIS), and Weighted Support Vector Machine
(WSVM). Experimental results indicate that the
inclusion of discriminative features such as nodule
shape, intensity, population size, margin, dimension,
granularity, and texture significantly improves
classification performance in terms of both accuracy and
model training effectiveness. However, this study has
limitations such as the breast cancer classification model
may not work as well on other datasets with different
features, even if it was successful on the chosen dataset.
The model's prediction precision and applicability are
susceptible to variations in the quality of the input data,
the distribution of features, and any imbalances between
classes from various sources. Further, the study's main
focus is on a controlled experimental environment,

which could not adequately represent the intricacies and
unpredictability of real-life applications. For example,
model performance might be impacted by noise or
missing values in clinical data. To overcome these
obstacles, the model's resilience and flexibility would
have to be evaluated with more testing on other datasets,
including real-world clinical data.
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