
© 2025 Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins. This open-access article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license.

Review Article

Maintenance and Evolution Processes of Embedded Software:
A Systematic Literature Review

Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins

Institute of Science and Technology, UNIFESP, São José dos Campos-SP, Brazil

Article history
Received: 05-06-2024
Revised: 07-08-2024
Accepted: 28-09-2024

Corresponding Author:
Aloysio Augusto Rabello de
Carvalho
Institute of Science and Technology,
UNIFESP, São José dos Campos-
SP, Brazil
Email: aloysio.rabello@unifesp.br

Abstract: The relevance of embedded systems has increased considerably
due to industrial automation and the adoption of IoT and medical devices.
This process demands the adaptation of software engineering techniques that
involve the maintenance and evolution of software for use in embedded
systems. We conducted this Systematic Literature Review (SLR) to
investigate the state of the art on the topics of maintenance and evolution of
software applied to embedded systems. The purpose was to identify their
key characteristics using a total of 67 primary studies from 1992-2023. The
results of this review can encourage future research into improving the
software maintenance and evolution process. The current state of the art
suggests a need for more research in the field, mainly in the area of unified
processes to support software maintenance and evolution. The main findings
in this research include the impact of maintenance and evolution on the
supporting processes, the software life cycle, their relationships, the
essential maintenance strategies, code inspection and analysis, review of
technical debt, code refactoring, difficulties in applying protocols and
strategies, component obsolescence analysis, and modification protocols.

Keywords: Maintenance, Evolution, Embedded Software, Embedded
System

Introduction
Currently, the importance of embedded systems for

the automotive industry, medical devices, consumer
electronics, electronic voting machines, and the Internet
of Things (IoT) is indisputable and their maintenance
and evolution are determinants for the development of
new products and technologies (Vishwakarma et al.,
2019; Sasirekha et al., 2019).

Embedded systems are responsible for controlling
and monitoring a wide range of devices, from industrial
machinery to medical devices. They are vital for the
operation of many critical systems and processes and
their importance will only increase as the IoT continues
to grow (Vii et al., 2019; Choudhury et al., 2008).

The maintenance of embedded software is a complex
and challenging task, but it is crucial to ensure the
reliable and safe operation of systems (Borges and
Rodrigues, 2011). Engineers in embedded software must
have a deep understanding of the systems and processes
involved, as well as the tools and techniques necessary to
effectively perform maintenance activities (Ruchkin et
al., 2015; Raghunathan et al., 2005).

The evolution of embedded systems is a continuous
process and maintenance engineers must always be up-

to-date on the latest trends and technologies (Srovnal and
Penhaker, 2007). They must also be capable of
identifying and resolving issues quickly and efficiently to
minimize the impact of maintenance on system operation
(Zeng et al., 2016; von Knethen, 2002).

The search for scientific articles was conducted using
six research sources related to the maintenance and
evolution of embedded software. The period from 1992
to 2023 was chosen to capture the evolution and
development of embedded systems technologies over
three decades. This timeframe spans from the early
widespread use of embedded systems in industrial and
consumer applications to recent innovations driven by
the Internet of Things (IoT).

Major Changes and Trends in Embedded Systems
Development (1992-2023) included:

1. In the 1990s, industrial automation began to gain
traction with the implementation of embedded
systems in machinery and industrial processes. This
led to increased efficiency and precision in
industrial operations.

2. The 2000s witnessed the explosive growth of
mobile devices, such as smartphones and tablets,
which heavily relied on embedded systems to

Journal of Computer Science



Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1540

provide advanced functionalities in a compact form
factor.

3. The Internet of Things (IoT) emerged as a dominant
force in the 2010s, connecting a vast array of smart
devices that depend on embedded systems for
communication and data processing. This expanded
the scope and complexity of embedded systems.

4. Integration of AI and Machine Learning (2020s).
Recently, there has been an increasing integration of
artificial intelligence and machine learning into
embedded systems, enabling functionalities such as
voice and image recognition, which are crucial for
modern applications including autonomous vehicles
and smart healthcare devices.

5. Security and Reliability (2020s). With the rise of
cyber threats, the security of embedded systems has
become a critical priority. There is a growing focus
on developing robust security techniques to protect
data and ensure the reliable operation of critical
devices.

These changes and trends reflect the continuous
evolution of embedded systems, adapting to new
technological and market demands. This study examines
how the maintenance and evolution of embedded
software have kept pace with these transformations,
providing insights into best practices and challenges
encountered over this period.

The aim of this SLR is to investigate current practices
and advancements regarding the maintenance and
evolution process of embedded software, in an attempt to
identify processes, strategies, code quality effectiveness,
and the reduction of maintenance time and failures.

As an initial part of the doctoral dissertation, we
conducted this SLR following Kitchenham’s
methodology. The SLR was divided into three stages:
Planning, execution, and analysis of the results obtained,
as presented throughout this study (Kitchenham and
Charters, 2007).

The primary reason for the SLR was the lack of
published reviews with well-defined methodologies
about the maintenance and evolution of embedded
software, containing objective comparisons in the
literature. The principal objectives of this SLR were to
investigate the maintenance and evolution of embedded
software, identifying the principal methodologies,
techniques, and studies in the field, strategies in use, as
well as their respective advantages and disadvantages.
Other objectives include analyzing the research and
development advances in the area and identifying gaps or
improvements that can address current issues.

Background

This section aims to provide a solid foundation for
understanding the essential concepts that will be
explored throughout the study. The theoretical and
contextual fundamentals necessary to contextualize the

analyses and results discussed later will be presented.
Additionally, other relevant academic works that served
as a basis for the development of this study will be
highlighted.

Definitions

To define the scope and clarify the terms adopted in
this review, ensuring consistency, we present the
following definitions, organized in alphabetical order:

Software life cycle: A process that encompasses all
stages from creation to deprecation. It includes
phases such as requirement analysis, design,
implementation, testing, maintenance, and
evolution. These stages are adapted to the specific
needs of embedded systems, taking into account
hardware and software constraints.
Software evolution: A continuous process of
enhancing and updating software over time to meet
market demands and new technologies. This
includes performance improvements, bug fixes,
addition of new features, and adaptation to changes
in system and user requirements.
Maintenance: Aimed at ensuring the continuous and
reliable operation of the system over time. This
includes bug fixes, security updates, performance
optimizations, and adaptations to changes in
requirements or the operational environment.
Embedded system: A specialized system designed to
perform specific functions within a larger device or
system. It is characterized by being embedded in
dedicated hardware and executing pre-defined tasks
autonomously and efficiently.
Technical debt: Refers to the accumulation of
shortcuts, compromises, or incomplete solutions
made during the development process that may lead
to future problems or inefficiencies.
Code refactoring: This involves restructuring
existing code without changing its external behavior
to improve readability, maintainability, and
efficiency. This process helps eliminate technical
debt, reduce complexity, and enhance the software’s
adaptability to future changes.
Code inspection: A systematic review process where
developers analyze source code for defects,
compliance with coding standards, and adherence to
best practices. This proactive approach helps
identify and rectify issues early in the development
lifecycle, ensuring higher software quality and
reliability.

Related Work

Khezami et al. (2021) conducted a systematic
literature review using 109 studies from 2006 to
2020 to address the following research questions:
”What are the software maintenance activities for
Cyber-Physical Systems (CPS)?”; ”What are the
techniques used for the automation of software



Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1541

maintenance for CPS?”; ”What are the common
evaluation methods used to validate software
maintenance techniques for CPS?”; ”What are the
main types of software maintenance used for CPS?”
In this SLR, it was possible to conclude about four
different areas: Maintenance; techniques; types; and
evaluation of methods applied to CPS. The results
of this SLR can help developers and researchers
identify the status, structure, and potential gaps in
the field.
Cico et al. (2023) conducted a systematic review of
Artificial Intelligence (AI) and its application across
the entire domain of Software Engineering (SE), as
evidenced by an increase in SLRs. This SLR aimed
to provide an overview of existing systematic
reviews in the field of AI supporting the five
principal software engineering processes:
Requirements, design, development, testing, and
maintenance. Utilizing 11 reviews published
between 2000 and 2021, including results from 513
primary studies, their conclusion was that reviews
on AI-assisted software testing are the most
common, followed by software maintenance and
development. The study can help researchers find
missing evaluations on AI and SE-assisted topics to
further consolidate this research area.
Shen et al. (2012) conducted a systematic review
involving embedded software and its relationship
with agile development methods using 40 primary
studies to address the research questions: “What is
the general information of embedded software
development that is related to Agile Methods?”;
“What is the current status of applying agile
software development methods to embedded
development?”; and “What are the implications of
these studies for the industry and the research
community?”. This SLR shed light on the usage of
methodologies such as Extreme Programming,
Scrum, Test-Driven Development, Feature-Driven
Development, Adaptive Software Development,
Rational Unified Process (RUP), and Crystal Agile
in embedded software development.
Queiroz et al. Gadelha Queiroz and Vaccaro Braga
(2014) conducted a systematic review studying the
Product Line Engineering (PLE) and Model-Driven
Engineering (MDE) methodologies applied to the
development of Safety-Critical Embedded Systems
(SCES). These combined methods offer a solution
to reduce complexity and time-to-market of
systems. Using 19 primary studies, it was possible
to conclude that the number of studies using PLE
with MDE to build SCES is relatively small but has
gradually increased in recent years. Approaches
diverge on what is necessary to build model-driven
products. Most approaches do not consider
differentiating hardware and software variation.
Most studies propose the use of UML and feature

diagrams. The studies present implemented case
studies in different tools and most of them are free.
Approaches do not cover the entire development
lifecycle.
Lakshman et al. Lakshman and Eisty (2022)
conducted a systematic review studying Internet of
Things (IoT) devices and Tiny Machine Learning
(TinyML) that allowed for the deployment of ML
models for embedded vision, bringing together the
power of IoT and ML. Through the SLR, it was
possible to aggregate the challenges reported by
TinyML developers and identify approaches in
software engineering, machine learning, and
embedded systems addressing the key challenges of
TinyML-based embedded vision IoT.
Garousi et al. (2018) conducted an SLR using 272
primary studies on embedded software testing. The
review provides an index of the most used testing
methodologies in embedded systems, such as
criteria-based, test-case design and requirements,
automated test-code generation, test management,
and integration tests.

Although the above works address various aspects
related to the maintenance and evolution of embedded
software, none of these works conduct an extensive
identification and mapping of applicable approaches. Our
SLR offers a broader and more detailed examination of
the field. It identifies key methodologies, validation
techniques, and future research directions, contributing
to a more holistic understanding of the challenges and
opportunities in this domain.

The methodologies discussed in this section include
hardware and software co-design, co-synthesis,
hierarchical abstraction models, and partitioning. Our
SLR extends this by cataloging all methodologies
presented in the articles and analyzing their validation
methods. Validation techniques used in the articles from
the “Related Work” include experimentation,
comparison, case studies, and simulation. Our SLR
highlights the predominance of experimental validation
and provides a detailed account of other validation
methods employed across various studies. The key
findings from the ”Related Work” emphasize the need
for efficient maintenance processes, the integration of AI
in software engineering, and the application of agile
methodologies in embedded systems. Our SLR
corroborates these findings but also identifies significant
gaps and areas for future research, particularly in the
automation of maintenance activities and the
comprehensive application of AI in embedded systems.

Research Methodology

This section presents the planning process of the
SLR, how the PICOC table was filled, the search string
and the databases of papers used, and the inclusion and
exclusion criteria for the selected studies.



Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1542

The following terms are used to fill the PICOC table
adopted in the SLR:

Population: Embedded software maintenance and
evolution processes,

Intervention: Embedded software maintenance and
evolution strategies, for example, code inspection
strategies, code refactoring, component obsolescence
analysis,

Comparison: Embedded software maintenance and
evolution processes,

Outcome: Code quality effectiveness, maintenance
time reduction, defect reduction after maintenance,

Context: Embedded software development.

The search string used to retrieve articles was as
follows: (”Embedded Software”) AND ((”Evolution”)
OR (”Maintenance”) OR (”updating”) OR
(”refactoring”)). The string was formulated for articles
related to embedded systems and addressing the topics of
evolution, maintenance, and a few synonyms and it was
based on the keywords we used in the PICOC table.

Justification for the Choice of Databases

While we have taken several measures to minimize
biases and limitations in our SLR, it is crucial to
recognize that no process is completely free from biases.
The discussions above provide transparency about the
limitations encountered and how we attempted to
mitigate them, ensuring that readers can interpret the
results with a clear understanding of the potential sources
of bias.

This SLR searched for scientific papers using six
research sources related to the maintenance and
evolution of embedded software. The databases are listed
in Table (1) and represent the principal ones in the field
of technology and computer science currently. They were
chosen to minimize the possibility of not finding relevant
papers.
Table 1: Used research sources

Source URL
ACM Digital Library http://portal.acm.org
IEEE Digital Library http://ieeexplore.ieee.org
ISI Web of Science http://www.isiknowledge.com
ScienceDirect http://www.sciencedirect.com
Scopus http://www.scopus.com
Springer Link http://link.springer.com

ACM Digital Library

Reason: The ACM Digital Library is one of the
leading sources of research in computer science and
software engineering. It provides access to a vast
collection of conference proceedings, journals, and
magazines, offering comprehensive coverage of the latest
research and developments in embedded systems.

Criterion: Selected for its relevance and significant
impact on the research community in embedded systems
and software engineering.

IEEE Digital Library

Reason: The IEEE Digital Library is renowned for its
extensive collection of publications in electrical
engineering, electronics, and computer science. It is a
crucial source of information on technological
advancements, standards, and practices in the embedded
systems industry.

Criterion: Chosen for its authority and credibility in
the field of embedded systems, as well as for the wide
range of topics covered.

ISI Web of Science

Reason: The ISI Web of Science is a
multidisciplinary database that includes comprehensive
citation indices, enabling the identification of highly
cited and influential articles. It is valuable for tracking
the impact of research over time.

Criterion: Selected for its ability to provide a
comprehensive and interconnected view of the most
influential research and its citations, essential for a
systematic literature review.

ScienceDirect

Reason: ScienceDirect offers access to a vast
collection of peer-reviewed journals, particularly in the
exact sciences and engineering. It is an important source
of up-to-date and high-quality articles.

Criterion: Chosen for its broad coverage of relevant
topics and the reputation of its journals, ensuring access
to rigorous and peer-reviewed research.

Scopus

Reason: Scopus is one of the largest abstract and
citation databases of academic literature, covering a wide
range of disciplines. It is known for its ability to track
global scientific production and its citations.

Criterion: Selected for its comprehensiveness and
ability to provide impact metrics and research trends,
essential for a complete and up-to-date analysis of the
field.

Springer Link

Reason: Springer Link offers access to a wide range
of books, journals, and conference papers in various
scientific areas, including engineering and computer
science.

Criterion: Chosen for the quality and relevance of its
publications, as well as the availability of up-to-date and
peer-reviewed content, fundamental for a comprehensive
systematic review.



Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1543

Considered Limitations

We acknowledge that the choice of these databases
may have limited the inclusion of some relevant studies
published in other sources. However, the selected
databases were chosen due to their reputation,
comprehensiveness, and specific relevance to the study
area. Limitations such as access availability to certain
articles and variation in journal indexing were also
considered during the search process.

Discussion on Possible Biases and Limitations in
the Search and Selection Process

Although we followed a rigorous methodology to
ensure the comprehensiveness and quality of our
Systematic Literature Review (SLR), it is important to
recognize and discuss possible biases and limitations that
may have impacted the search and selection process of
the studies. Below are some of the main considerations:

Publication Bias

Description: Publication bias occurs when studies
with positive or significant results are more likely to be
published than those with negative or non-significant
results.

Impact: This can lead to an overestimation of the
effects or conclusions drawn from the review, as
important studies with negative results may not have
been included. Mitigation: To mitigate this bias, we
included both conference papers and journal articles and
used multiple databases to ensure a more comprehensive
search.

Selection Bias

Description: Selection bias can occur due to the
inclusion and exclusion criteria applied during the
screening of studies.

Impact: Relevant studies may have been excluded if
they did not meet specific defined criteria, even if they
contained valuable information.

Mitigation: We defined clear and rigorous inclusion
and exclusion criteria and conducted independent
double-checking during screening to reduce the risk of
inadvertent exclusion of relevant studies.

Database Limitations

Description: Each database has its own limitations in
terms of coverage and accessibility.

Impact: Some relevant studies may not be indexed in
the chosen databases, which can limit the
comprehensiveness of the review.

Mitigation: We chose six of the most recognized and
comprehensive databases in the field of software
engineering and embedded systems. However, we

acknowledge that studies published in other databases or
non-indexed sources may not have been included.

Time and Resource Limitations

Description: Conducting a comprehensive systematic
review is a time-consuming and resource-intensive
process. Impact: Time and resource constraints may have
limited the extent of the search and the depth of the
analysis.

Mitigation: We prioritized quality over quantity,
ensuring that selected studies were thoroughly reviewed
and data were extracted rigorously and consistently.

Linguistic Limitations

Description: Studies published in languages other
than English were excluded, which may have led to the
omission of relevant research published in other
languages.

Impact: This can introduce a linguistic bias in the
review. Mitigation: We acknowledge this limitation and
suggest that future reviews consider including studies in
other languages for a more global perspective.

Inclusion and Exclusion Criteria

Papers that present strategies on how they can be
integrated into a single and efficient process of
maintenance and evolution of embedded software.

Papers presenting software tools available to support
embedded software maintenance and evolution
processes. Papers presenting current models and
processes supporting embedded software maintenance
and evolution.

Papers presenting an integrative process of embedded
software maintenance and evolution.

Papers that describe the impact of software
maintenance and evolution on its lifecycle.

Papers presenting maintenance strategies, code
inspection and analysis, technical debt review, code
refactoring, component obsolescence analysis, and
modification protocols.

Exclusion Criteria: Duplicated papers; papers not
written in English; short papers; and papers out of scope.

Research Questions

The research questions were developed based on the
PICOC table, which allowed the identification of the key
dimensions to be investigated in this SLR.

To conduct the SLR, the following research questions
presented in Table (2) were adopted.

Study Selection Process

After conducting a search in all the articles
previously mentioned, a total of 6844 articles were



Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1544

returned for inclusion in this SLR selection process. The
selection process was carried out in five stages: The first
stage was the search, the second involved reading the
titles, the third stage consisted of reading the abstracts,
the fourth stage involved reading the introduction and
conclusion of the selected articles, and the fifth stage
involved reading the complete articles. From stages one
to four, articles that did not meet the inclusion criteria or
met the exclusion criteria, such as duplicated articles and
irrelevant ones, were discarded. In the fifth stage, along
with the complete reading of the articles, the data
extraction table was filled out. The following Figure (1)
presents an infographic that illustrates the steps taken
from the search to the completion of the article selection
process to be used in this SLR.
Table 2: Research questions for the systematic review

ID Questions Objective
Q01 How can software evolution and

maintenance modify the life cycle
of embedded software?

This question aims to
investigate possible
modifications in the life
cycle of embedded
software resulting from the
software maintenance and
evolution process.

Q02 What are the current models and
processes supporting the
maintenance and evolution of
embedded software? How do
these processes and models
compare to each other?

This question aims to
identify the models
currently in use in
embedded systems
development and whether
multiple models can be
used in the same project.

Q03 What are the maintenance, code
inspection and analysis, technical
debt review, code refactoring,
component obsolescence analysis,
modification protocols, and other
strategies used in embedded
software maintenance and
evolution processes?

This question was designed
to catalog the strategies
and protocols adopted in
the processes of
maintenance and evolution
of embedded.

Q3.1 What are the difficulties (or gaps)
encountered in the application of
the studied software maintenance
and evolution strategies?

This question aims to
identify the difficulties
professionals encounter in
applying embedded
software maintenance and
evolution strategies.

Q3.2 How can these strategies be
integrated into a single and
efficient process of embedded
software maintenance and
evolution?

This question attempts to
find possibilities of
integration among the
strategies found in the
SLR.

Q04 What are the available software
tools to support embedded
software maintenance and
evolution processes? How does
the tool developed in this study
compare to existing tools?

This question tries to
define the tools supporting
embedded software
development used by
industry professionals.

Q05 How can an integrative process of
embedded software maintenance
and evolution be specified?

This question verifies how
a process can be specified
and what are the key
characteristics necessary to
support embedded software
maintenance and evolution.

Fig. 1: Study selection steps

Data Extraction Spreadsheet

For the data extraction of the articles accepted in this
SLR, a spreadsheet was filled in with the relevant
information of each article to facilitate future insights,
conclusions, and discussions related to the context of this
review.

The spreadsheet has the following layout: One row
for each article and one column for each question.

Results and Analysis
This section presents the most important findings of

the SLR and discusses the results in light of the research
questions.

Q1 - How can Software Evolution and Maintenance
Modify the Life Cycle of Embedded Software?

The initial analysis of the results was conducted with
the first research question: Does the study investigate the
relationship between evolution/maintenance and life
cycle? In this context, 12 articles addressed this question,
with 5 providing a complete answer and 7 providing a
partial one. The essential characteristics related to the
maintenance and evolution of software that influence the
lifecycle of embedded software include:

Lack of a systematic approach in early development
stages: This can result in a rigid system posing a
challenge for its maintenance and evolution, such as
code or component reuse (Nam and Lee, 2003)
Absence of continuous modeling and consistent
description: Ismail and Jerraya (1995) mention that
the absence of continuous modeling and consistent
description of hardware and software can retard the
refinement of the embedded system
Intimate connection of lifecycle with evolution and
interactions: Liao et al. (1997) states that the
lifecycle is intimately connected to the evolution
and interactions of the hardware and software
components, emphasizing the importance of
considering evolution and maintenance in design
decisions. This article highlights that the choices
during hardware-software synthesis must take into

http://192.168.1.15/data/13074/fig1.jpeg
http://192.168.1.15/data/13074/fig1.jpeg


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1545

account not only the immediate performance but
also the evolution and maintenance capacity over
the years.
Flexibility and innovation in high-technology
projects: Iguider et al. (2019) points out the
flexibility, innovation, and momentum in dealing
with uncertainties and complexities in high-
technology projects, where system life cycles can be
dynamic and subject to continuous changes
Movement of functionalities between hardware and
software: Sabella et al. (2017) affirms the
importance of allowing the movement of
functionalities between hardware and software to
address changes in requirements as the design
evolves
Autonomous management of software development
and project life cycles: Although the article by Lin
and Chen (2017) does not directly address the
relationship between maintenance and life cycle, it
mentions that the ACCLIB framework can
autonomously manage software development and
project life cycles, as illustrated in Fig. (2).

Although little was found on the life cycles of
embedded systems during our research, it is possible to
infer from the selected articles that maintenance and
evolution strategies can significantly impact the project’s
life cycle:

Worst-case scenario: It may be necessary to revert
to the initial stage (requirements gathering) if there
is inadequate planning, affecting the entire project
as requirements are crucial for development
(Sabella et al., 2017)
Delaying the final stage: A project with good
software maintenance and evolution can extend the
lifespan of the embedded system without the need
for replacement, resulting in resource savings such
as personnel and hardware

Q2 - What are the Current Models and Processes
Supporting the Maintenance and Evolution of
Embedded Software? How do these Processes and
Models Compare to Each Other?

The second research question adopted to assess the
quality of the selected articles was: Does the article
respond to how maintenance/evolution modifies the life
cycle? For this question, partial answers were found in
the following articles:

The use of agile methodologies ensures a safer,
more agile, and flexible approach to dealing with
the uncertainty and complexity inherent in the life
cycles of these systems (Iguider et al., 2019)
The importance of employing incremental testing
and proto-testing to ensure the quality of software-

hardware across all life cycles (Iguider et al., 2019)
Jayakumar and Khatri (2004) emphasize the use of
a modular design to ensure simplified maintenance
during system life cycles.
Finally, Zhang et al. (2017) addresses the hardware
life cycle, with its emphasis more directed towards
functional verification and logical simulation of
integrated circuits. It discusses the importance of
simulation in verifying the correctness of an
integrated circuit and presents a platform for
efficient parallel simulation of high-level
specifications using the RTL/C/C++ language.

In the articles selected for this SLR, it was not
possible to find a specific model for software
maintenance and evolution. However, many articles use
some development methodology to maintain and evolve
embedded systems, for example:

The Software Development Life Cycle (SDLC) is a
software development process model that describes
the phases of software development, testing,
deployment, and maintenance. Although it is not a
specific model for embedded systems development,
it has been used by Nam and Lee (2003)
The Embedded Software Development Lifecycle
(ESDL) is a software development process that is
specific to embedded software. Articles typically
describe the phases of specification, design,
implementation, testing, deployment, and
maintenance of embedded software (Jayakumar and
Khatri, 2004)
Architecture-oriented Software Development
(AOSD) is a software development process that
emphasizes the importance of software architecture.
The selected articles typically describe the phases of
requirements analysis, architecture, implementation,
testing, and deployment of software (Iguider et al.,
2019)

No relation or comparison between the models or
processes used for the evolution and maintenance of
embedded systems was found in the articles.

Fig. 2: Actions and implications in software maintenance and
evolution

http://192.168.1.15/data/13074/fig2.png
http://192.168.1.15/data/13074/fig2.png


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1546

Q3 - What are the Maintenance, Code Inspection
and Analysis, Technical Debt Review, Code
Refactoring, Component Obsolescence Analysis,
Modification Protocols, and Other Strategies Used
in Embedded Software Maintenance and Evolution
Processes?

For the third research question, only two articles
addressed the topic. Olukotun et al. (1994) partially
answers this question, discussing strategies such as
hierarchical modeling, formal and functional
specification, the use of design and simulation in the
early stages of the project, as well as the importance of
effective testing to verify development and ensure
system correctness. On the other hand, the article by Li
et al. (2023) focuses on analyzing self-admitted technical
debt in embedded systems and developers’ attitudes
toward this debt. Strategies such as analyzing sources of
technical debt, applying machine learning techniques,
and managing technical debt are addressed in this
context.

Fig. 3: Strategies used in embedded software maintenance and
evolution

From the data collected in this SLR, it was possible
to find the key strategies for the maintenance and
evolution of embedded software, such as Code
inspections and analysis, technical debt review, code
refactoring, component obsolescence analysis, and
modification protocols, as can be seen in Figure (3):

Code inspections and analysis: This strategy
involves the software source-code review to identify
quality issues such as bugs, coding errors, and
excessive complexity. The inspection and analysis
of code can be manual or supported by automated
tools.
Technical debt review: This strategy involves the
assessment of technical debt, which is the cost of
software evolution and maintenance due to quality
issues, such as excessive complexity, and lack of
documentation and tests. The technical debt review
can be manual or supported by automated tools.
Code refactoring: This strategy involves modifying
the software’s source code to improve its quality
without altering its functional behavior. Code
refactoring can be done manually or with the
assistance of automated tools.

Component obsolescence analysis: This strategy
involves evaluating software components to identify
those that are obsolete or no longer needed.
Component obsolescence analysis can be done
manually or with the assistance of automated tools.
Modification protocols: This strategy involves
defining a set of rules and procedures for making
modifications to the software. Modification
protocols help ensure that modifications are carried
out in a controlled and secure manner.

Q3.1 - What are the Difficulties (or Gaps) Encountered
in the Application of the Studied Software Maintenance
and Evolution Strategies?

The issue of scoring on the difficulties in
implementing the studied software maintenance and
evolution strategies was investigated, resulting in 19
articles with comprehensive answers and 3 articles with
partial answers. Among the partial responses, the
following observations stand out: Article Liao et al.
(1997) emphasizes the importance of making design
decisions that consider both hardware and software, as
well as evaluating the dynamic and static properties of
the system and the costs associated with hardware. An
article by Karthik et al. (2018) reveals that the
difficulties in implementing the strategies lie in seeking
efficient solutions in terms of hardware and execution
time while respecting global area and execution time
constraints.

From the articles that fully address the question:

Ismail et al. (1994) discusses the challenge
concerning the automatic determination of an
appropriate set of instructions extensible for a
specific application as well as the need for
additional research in system-level design
methodologies and Network-on-Chip (NoC)
architectures. It also focuses on the growing gap
between the technology available and the real
complexities of System-on-Chip (SoCs)
Buchenrieder et al. (1993) highlights difficulties
such as the pressure to reduce the time to market
electronic devices, the increase in the costs of
engineering and manufacturing, the need to
reconfigure, and the programmability of SoCs.
Srinivasan et al. (1998) focuses on the specific
challenges faced when designing integrated circuits
given the cross-talk problem in Deep Sub-Micron
(DSM) design.
Ernst et al. (1993) identifies the problems in
applying the strategies of embedded systems
development, including the increasing complexity
of the design space and the difficulty in finding an
optimal solution for hardware and software
partitioning.
Ronkainen and Abrahamsson (2003) discuss
challenges related to hardware/software co-

http://192.168.1.15/data/13074/fig3.jpeg
http://192.168.1.15/data/13074/fig3.jpeg


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1547

synthesis for embedded systems, highlighting the
importance of minimizing communication costs and
improving parallelism for system performance
Huang et al. (2012) addresses challenges faced by
hardware and software designers due to changes in
computer architecture, including the need to
consider energy consumption and parallelism
constraints at unprecedented levels.
Sabella et al. (2017); and Ortega-Cabezas et al.
(2020) mention the inherent uncertainty and
complexity in high-technology projects, the need to
deal with emerging and unknown technologies, and
the importance of addressing innovation and risk
management challenges
Sabella et al. (2017) highlights the difficulty of
specifying a detailed hardware-software interface
and the need to deal with changes in system
requirements during the design process.
Zhang et al. (2017) discuss challenges in
developing hardware for accelerating
computationally intensive algorithms, emphasizing
the need for collaboration among engineers from
different fields.
Lin and Chen (2017) emphasize the design effort
required to design a hardware accelerator and
highlight the limitations of traditional approaches to
addressing this problem.
Zuo et al. (2017); and Yousuf and Gordon-Ross
(2016) mention the challenge of achieving optimal
SoC design due to the vast design space of
hardware accelerators and the challenge of task
partitioning between accelerators and CPUs
Lora et al. (2019) presents difficulties in the design
process of partial reconfiguration and proposes a
solution to simplify it.
Finally, Sabella et al. (2017) highlights the pressure
and the need to meet delivery deadlines as factors
leading developers to incur technical debt.

Fig. 4: Cited difficulties

A graph with the most cited difficulties can be seen in
Figure (4) and the most cited gaps can be seen in Fig.
(5). A total of 26 articles were examined regarding the
availability of software tools to support the
maintenance/evolution process. The major difficulties
identified include: Difficulty in making design decisions

that consider hardware and software; gaps in
microcontroller complexity; pressure to reduce the time
to market for electronic products; considering hardware
design alternatives for each task; minimizing
communication cost and improving parallelism; changes
in computer architecture; inherent complexity in high-
tech projects; difficulty in specifying a detailed
hardware-software interface; achieving an optimal SoC
design; complexity of the design processes of partial
reconfiguration; the pressure and the need to meet
delivery deadlines.

Fig. 5: Cited gaps

Q3.2 - How Can These Strategies be Integrated into a
Single and Efficient Process of Embedded Software
Maintenance and Evolution?

There is no right answer to this question, as the best
approach to integrating two or more embedded software
maintenance and evolution strategies depends on the
specifics of each project.

It is important to clearly define the objectives of each
maintenance and evolution strategy. This can ensure that
the strategies are aligned and that efforts are directed
towards the most relevant areas. Identifying integration
points between strategies is important so that strategies
are efficiently integrated and that data and processes are
shared effectively. Developing an integration plan that
outlines the necessary steps for integrating strategies is
also essential because well-defined objectives guarantee
successful integration and mitigate risks (Nam and Lee,
2003; Ortega-Cabezas et al., 2020; Lora et al., 2019), as
can be seen in Figure 6.

The integration of two or more strategies for
embedded software maintenance and evolution can be a
complex process, but it can be extremely beneficial for
the project.

http://192.168.1.15/data/13074/fig4.png
http://192.168.1.15/data/13074/fig4.png
http://192.168.1.15/data/13074/fig5.png
http://192.168.1.15/data/13074/fig5.png


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1548

Q4 - What are the Available Software Tools to
Support Embedded Software Maintenance and
Evolution Processes? How Does the Tool
Developed in this Study Compare to Existing Tools?

The analysis of the articles revealed a variety of
crucial tools to support the maintenance and evolution
process of embedded software. These tools were
categorized as follows:

Solar: This is a co-design environment that includes
a partitioning tool, significantly enhancing the
efficiency of the development process
Vivado: Developed by Xilinx, Vivado is a widely
used software in the semiconductor industry. It
offers a vast range of tools and supports various
platforms, including processors and Field
Programmable Gate Arrays (FPGAs)
Xilinx’s SDK: This tool is used for programming in
the C language and also for fault injection
campaigns controlled by MicroBlaze processors
LLVM: A compiler infrastructure developed to
optimize the compilation, linking, and execution
times of software written in various languages
HIFSuite: A framework in a customized virtual
platform that facilitates the integration of models
from different domains and abstraction levels
ACCLIB: A framework that automates the
identification, matching, and integration of
hardware accelerators into computing systems,
simplifying the integration process for developers
SnoopP (Snooping Profiler): This tool provides
accurate profiling information that can significantly
influence system partitioning and design
Bluespec Codesign Language (BCL): A tool for
handling hardware-software development, allowing
hardware and software partition specifications in a
single language
CoDeveloper and Impulse C: These tools are used
for developing reconfigurable architectures and for
generating Very High-speed Integrated Circuit
Hardware Description Language (VHDL) from a
standard C language description
Retargetable Tool Generation: Used for evaluating
customizations and rapid iteration during design
exploration
Computer-Aided Design (CAD) and Drafting Tools:
Used to create hardware electrical schematics
SystemC Language: Used to generate Hardware
Description Language (HDL) and model description
Green Flash Project: A project providing highly
configurable and accurate simulation of node
architectures
Matlab and LabView: High-level applications used
for generating HDL.
ROSE Compiler Framework: A framework offering
automatic extraction and extrapolation of memory

traces and interconnection
Structural Simulation Toolkit (SST)/macro: A large-
scale interconnection simulator

It’s important to note that the data was collected only
from articles that cited tools available for use or provided
detailed descriptions of their functionalities. There were
no comparisons with classical tools for supporting the
maintenance and evolution of embedded software. A
graph depicting the types of all tools listed by the
accepted articles is presented in Figure (7).

No data was found presenting comparisons between
developed tools and any classical tool for supporting the
maintenance and evolution of embedded software.

Fig. 6: Steps to integrate maintenance and evolution strategies

Fig. 7: Type of Tools Found in This SLR

Q5 - How Can an Integrative Process of Embedded
Software Maintenance and Evolution Be Specified?

No evidence was found to answer this research
question.

Development Methodologies Used in the Selected
Articles

During the execution of this SLR, all methodologies
presented in the articles were cataloged. For this purpose,
the methodologies used (even when more than one
methodology was used) and their validations were taken
into consideration. Below, we present the data collected
in light of the methodologies used in the articles.

http://192.168.1.15/data/13074/fig6.png
http://192.168.1.15/data/13074/fig6.png
http://192.168.1.15/data/13074/fig7.png
http://192.168.1.15/data/13074/fig7.png


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1549

Fig. 8: Methodologies used in the articles selected in this SLR

In Figure (8) there is a chart representing all the
methodologies used in the articles. Only methodologies
that contain some degree of validation were counted.

A significant difference can be observed between the
numbers attributed to hardware and software codesign
compared to the numbers of other methodologies.
Although this methodology was created in the 1990s, it
can be inferred that it is still essential for the
development of embedded systems:

Hardware and software co-design is a development
methodology that involves integrating hardware and
software design from the beginning of projects. It is
typically defined in 5 stages, such as System
requirements definition; hardware design; software
design; hardware and software integration; and
system testing.
Hardware and software co-synthesis, which ranked
second, is a development methodology that
combines both hardware and software to transform
a high-level description into a hardware project
(logical and layout) and a low-level software
description (which can be a detailed description or
even code).
The hierarchical abstraction model methodology is
based on the four main levels of abstraction during
development: business rule level; conceptual level;
logical level; and finally, the physical level.
Hardware and software partitioning is a
development methodology that involves dividing a
system into independent hardware and software
components. This can be done to facilitate system
development, maintenance, and updates.

Validations Used in the Selected Articles

During the execution of this SLR, all forms of
validation described in the accepted articles were
cataloged. The validations used were taken into
consideration (even when more than one validation was
used). Below, we present the data collected regarding the
validations in the articles.

In Figure (9) you can find a chart representing all the
validation methods used in the articles. A significant
advantage can be observed for experimental validation,
followed by comparison, case study, and simulation:

Experimentation: This validation consists of
manually testing the system. It was often used in
conjunction with comparison (where two systems
are compared) or even conducted with the user.
Comparison: This involves comparing the system
with others, typically well-established ones.
Comparisons can be manual or automatic and can
evaluate performance, energy efficiency, execution
time, failures, and even metrics such as function
points per number of lines.
Case study: This is a detailed description of an
event or situation that occurs in the real world. Case
studies are used to document and analyze
experiences, identify problems and opportunities,
and develop solutions. Articles that compare
expected behavior with the actual behavior of the
system were identified and validated. For example,
finding how the embedded system handled different
data inputs and how the system behaved under
different loads (usage intensity)
Simulation: This validation technique was
predominant in the articles of this SLR, particularly
in virtual simulations, where the entire hardware
and software of the embedded system were
virtualized to conduct unit, integration and some
comparative tests

Fig. 9: Validation methods used by the accepted articles

Analysis of the selected studies according to the
established criteria

During the execution of this SLR, ten questions with
scores were used. These questions served to give each
article an impact coefficient. For each question that the
article answered, one point was assigned. Partial answers
were assigned half a point. If the article did not contain
any answer to the question, no score was assigned.
Figure (10) shows the score of each article selected in
this SLR.

The use of this scoring was assigned to provide a
quantitative measure of impact for each article. All these
articles were selected for the SLR and none was
excluded due to low relevance. The most relevant article
was Cauwels et al. (2018) with a score of 6.5 out of 10.

http://192.168.1.15/data/13074/fig8.png
http://192.168.1.15/data/13074/fig8.png
http://192.168.1.15/data/13074/fig9.png
http://192.168.1.15/data/13074/fig9.png


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1550

Fig. 10: Scores of selected articles

Conclusion
The execution of this SLR offers insights into how

the maintenance and evolution of embedded software can
modify project lifecycles, the current support processes,
as well as their relationship. It includes maintenance
strategies, code inspection and analysis, technical debt
review, code refactoring, component obsolescence
analysis, modification protocols, and other strategies
used in the maintenance and evolution processes of
embedded software. In addition, it presents the
difficulties encountered in the application of
maintenance and evolution strategies, how these
strategies can be integrated into a single process and the
software tools used to support the maintenance and
evolution of software.

In this SLR, it was possible to obtain some
information about the impact of maintenance and
evolution on the lifecycle of embedded systems. There
was evidence that evolution can reveal when the project
requirements gathering was mistakenly executed and
caused rework, bringing a negative impact. This phase is
the most complex to revise as it can generate a cascade
effect that requires extensive modifications throughout
the project to meet new requirements. There was also
evidence that maintenance and evolution can delay the
last phase of the lifecycle, discontinuation, meaning that
a good maintenance and evolution process can extend the
life of an embedded system.

The three main data on the support models for the
maintenance and evolution of embedded software found
were: SDLC, ESDL, and AoSD. It was not possible to
find sufficient data in the papers on how these models
compare.

The selected articles provided us with information on
code inspection, technical debt review, code refactoring,
and component obsolescence analysis, which were the
techniques found for modification protocols and support
strategies for the maintenance and evolution of
embedded software.

The challenges for applying a protocol or a support
process for software maintenance identified were time,
cost, project complexity, emerging and unknown
technologies, appropriacy to overall runtime, gap in
microcontroller complexity, requirement changes, and
interaction with the client.

It presents how strategies can be integrated into a
single support process for the maintenance and evolution
of embedded software, which can be summarized in
three steps: Clearly define the objectives of each
maintenance and evolution strategy; identify integration
points between the strategies; develop an integration plan
that outlines the necessary steps to integrate the
strategies.

From the results obtained regarding the main tools
used to support the development, maintenance, and
evolution of embedded software, we can mention Solar;
Vivado; Xilinx’s SDK; LLVM; HIFSuite; CoDeveloper;
Impulse C; ACCLIB; SnoopP (Snooping Profiler);
Bluespec Codesign Language (BCL); CAD tools;
SystemC language; Matlab and LabView.

SLR Limitations

The conduct of a systematic literature review is
valuable because its results are evaluated objectively
following defined protocols, which are rigorously carried
out, thus attempting to eliminate any bias that may arise.

However, even by strictly following all the steps
proposed by articles and taking all precautions, there are
still threats that can affect the results of the systematic
review and bias the conclusions drawn from this SLR.
The major threats are:

Search libraries: Although the 6 most used libraries
in the field of Computer Science were selected
(ACM Digital Library, IEEE Digital Library, ISI
Web of Science, Science@Direct, Scopus, and
Springer Link), there are probably other relevant
papers to this SLR that are not published in these
libraries
Definition of search strings: The search string
selection was developed following guidelines for
conducting the SLR and tests were performed with
modifications of terms (such as synonyms, for
example), order, and logical operators. However,
even following guidelines, it is difficult to
determine if the string used is an optimal string.

Recommendations for Future Research

Based on the findings of this systematic literature
review, several areas require further investigation to
advance the understanding and development of
maintenance and evolution models for embedded
software. The following recommendations are proposed
to guide future research endeavors:

http://192.168.1.15/data/13074/fig10.jpeg
http://192.168.1.15/data/13074/fig10.jpeg


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1551

1. In-depth Exploration of Specific Models for
Maintenance and Evolution of Embedded Software:
During the execution of this SLR, limited evidence
was found regarding specific models tailored for the
maintenance and evolution of embedded software.
Future research should aim to conduct a more
detailed and focused search on existing models
within this niche. Emphasis should be placed on
validating models through empirical studies and
case analyses in real-world embedded systems
environments.

2. Comprehensive Analysis of Relationships and
Comparisons Involving Evolution and Maintenance
Models: There is a need for more extensive research
into the relationships and comparative analyses of
different models or processes used for the evolution
and maintenance of embedded software. Future
studies should systematically compare existing
models to identify strengths, weaknesses, and
contextual suitability. This involves evaluating
various approaches.

3. Investigation of Integrative Maintenance and
Evolution Processes: Embedded software
maintenance and evolution often require integrative
processes that differ from classical software
engineering approaches. Future research should
focus on specifying these integrative processes,
detailing how they accommodate the unique
constraints and requirements of embedded systems.

4. Development of Tailored Metrics and Evaluation
Frameworks: The development of specific metrics
and evaluation frameworks for assessing the
effectiveness of maintenance and evolution
processes in embedded software is crucial. Future
research should aim to establish standardized
metrics that reflect the unique aspects of embedded
systems, such as real-time performance, power
consumption, and hardware dependency.

By addressing these areas, future research can
significantly enhance the understanding and
effectiveness of maintenance and evolution in embedded
software, ultimately leading to more reliable and
efficient embedded systems.

Acknowledgment
I am deeply grateful to my advisors for their

invaluable guidance and to all the professors at
UNIFESP for their continuous support and
encouragement. I extend my special thanks to CAPES
for providing financial assistance through a scholarship.
Finally, I offer my heartfelt gratitude to my family for
their unwavering support and understanding throughout
this journey.

Funding Information
This study was supported by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior - Brasil

(CAPES) - Funding Code 88887.809591/2023-00.

Ethics
This research did not involve human or animal

subjects and no ethical approval was required.

Author’s Contributions
Aloysio Augusto Rabello de Carvalho: Data
collection, Conceptualization, methodology, formal
analysis, validation, writing original draft & editing.
Luiz Eduardo Galvão Martins:
Conceptualization, methodology, formal analysis,
validation, writing review & editing.

References
Borges, R. W., & Rodrigues, E. L. L. (2011). Embedded

System Design: An Overview of Brazilian
Development. 2011 IEEE Ninth International
Symposium on Parallel and Distributed Processing
with Applications Workshops, 141-146.
https://doi.org/10.1109/ispaw.2011.13

Buchenrieder, K., Sedlmeier, A., & Veith, C. (1993).
HW/SW Co-Design With PRAMs Using CODES.
Computer Hardware Description Languages and
Their Applications, 65-78.
https://doi.org/10.1016/b978-0-444-81641-2.50010-1

Cauwels, M., Zambreno, J., & Jones, P. H. (2018).
HW/SW Configurable LQG Controller Using a
Sequential Discrete Kalman Filter. 2018
International Conference on ReConFigurable
Computing and FPGAs (ReConFig), 1-8.
https://doi.org/10.1109/reconfig.2018.8641738

Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D.,
Harrison, B., Hemingway, B., Hightower, J.,
Klasnja, P., Koscher, K., LaMarca, A., Landay, J.
A., LeGrand, L., Lester, J., Rahimi, A., Rea, A., &
Wyatt, D. (2008). The Mobile Sensing Platform:
An Embedded Activity Recognition System. IEEE
Pervasive Computing, 7(2), 32-41.
https://doi.org/10.1109/mprv.2008.39

Cico, O., Cico, B., & Cico, A. (2023). AI-Assisted
Software Engineering: A Tertiary Study. 2023 12th
Mediterranean Conference on Embedded
Computing (MECO), 1-6.
https://doi.org/10.1109/meco58584.2023.10154972

Ernst, R., Henkel, J., & Benner, T. (1993). Hardware-
software cosynthesis for microcontrollers. IEEE
Design & Test of Computers, 10(4), 64-75.
https://doi.org/10.1109/54.245964

Gadelha Queiroz, P. G., & Vaccare Braga, R. T. (2014).
Development of Critical Embedded Systems Using
Model-Driven and Product Lines Techniques: A
Systematic Review. 2014 Eighth Brazilian
Symposium on Software Components, Architectures
and Reuse, 74-83.
https://doi.org/10.1109/sbcars.2014.19

https://doi.org/10.1109/ispaw.2011.13
https://doi.org/10.1016/b978-0-444-81641-2.50010-1
https://doi.org/10.1109/reconfig.2018.8641738
https://doi.org/10.1109/mprv.2008.39
https://doi.org/10.1109/meco58584.2023.10154972
https://doi.org/10.1109/54.245964
https://doi.org/10.1109/sbcars.2014.19


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1552

Garousi, V., Felderer, M., Karapicak, C. M., & Yilmaz,
U. (2018). What We Know about Testing
Embedded Software. IEEE Software, 35(4), 62-69.
https://doi.org/10.1109/ms.2018.2801541

Huang, P. M., Darrin, A. G., & Knuth, A. A. (2012).
Agile Hardware and Software System Engineering
for Innovation. 2012 IEEE Aerospace Conference,
1-10. https://doi.org/10.1109/aero.2012.6187425

Iguider, A., Bousselam, K., Elissati, O., Chami, M., &
En-Nouaary, A. (2019). Embedded Sstems
Hardware Software Partitioning Using Minimax
Algorithm. Proceedings of the 4th International
Conference on Smart City Applications, 1-6.
https://doi.org/10.1145/3368756.3369009

Ismail, T. B., Abid, M., & Jerraya, A. (1994). COSMOS:
A Codesign Approach for Communicating
Systems. Third International Workshop on
Hardware/Software Codesign, 17-24.
https://doi.org/10.1109/hsc.1994.336727

Ismail, T. B., & Jerraya, A. A. (1995). Synthesis Steps
and Design Models for Codesign. Computer, 28(2),
44-53. https://doi.org/10.1109/2.347999

Jayakumar, N., & Khatri, S. P. (2004). A Metal and Via
Maskset Programmable VLSI Design Methodology
Using PLAs. IEEE/ACM International Conference
on Computer Aided Design, 2004. ICCAD-2004.,
590-594.
https://doi.org/10.1109/iccad.2004.1382645

Karthik, S., Priyadarsini, K., & Jeanshilpa, V. (2018).
Vlsi Systems for Simultaneous in Logic
Simulation. 2018 International Conference on
Recent Trends in Electrical, Control and
Communication (RTECC), 23-27.
https://doi.org/10.1109/rtecc.2018.8625665

Khezami, N., Kessentini, M., & Ferreira, T. D. N. (2021).
A Systematic Literature Review on Software
Maintenance for Cyber-Physical Systems. IEEE
Access, 9, 159858-159872.
https://doi.org/10.1109/access.2021.3126681

Kitchenham, B. A., & Charters, S. (2007). Guidelines for
Performing Systematic Literature Reviews in
Software Engineering.

Lakshman, S. B., & Eisty, N. U. (2022). Software
Engineering Approaches for TinyML Based IoT
Embedded Vision. Proceedings of the 4th
International Workshop on Software Engineering
Research and Practice for the IoT, 33-40.
https://doi.org/10.1145/3528227.3528569

Li, Y., Soliman, M., Avgeriou, P., & Somers, L. (2023).
Self-Admitted Technical Debt in the Embedded
Systems Industry: An Exploratory Case Study.
IEEE Transactions on Software Engineering, 49(4),
2545-2565.
https://doi.org/10.1109/tse.2022.3224378

Liao, S., Tjiang, S., & Gupta, R. (1997). An Efficient
Implementation Of Reactivity For Modeling
Hardware In The Scenic Design Environment.
Proceedings of the 34th Design Automation
Conference, 70-75.
https://doi.org/10.1109/dac.1997.597119

Lin, C.-W., & Chen, C.-H. (2017). A Processor and
Cache Online Self-Testing Methodology for OS-
Managed Platform. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 25(8),
2346-2359.
https://doi.org/10.1109/tvlsi.2017.2698506

Lora, M., Vinco, S., & Fummi, F. (2019). Translation,
Abstraction and Integration for Effective Smart
System Design. IEEE Transactions on Computers,
68(10), 1525-1538.
https://doi.org/10.1109/tc.2019.2909209

Nam, T.-J., & Lee, W. (2003). Integrating Hardware and
Software: Augmented Reality Based Prototyping
Method for Digital Products. CHI '03 Extended
Abstracts on Human Factors in Computer Systems
- CHI '03, 956-957.
https://doi.org/10.1145/766090.766092

Olukotun, K. A., Helaihel, R., Levitt, J., & Ramirez, R.
(1994). A Software-Hardware Cosynthesis
Approach to Digital System Simulation. IEEE
Micro, 14(4), 48-58.
https://doi.org/10.1109/40.296157

Ortega-Cabezas, P. M., Colmenar-Santos, A., Borge-
Diez, D., & Blanes-Peiró, J. J. (2020). Application
of Rule-Based Expert Systems in Hardware-in-the-
Loop Simulation Case Study: Software and
Performance Validation of an Engine Electronic
Control Unit. Journal of Software: Evolution and
Process, 32(1), e2223.
https://doi.org/10.1002/smr.2223

Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., &
Srivastava, M. (2005). Design Considerations for
Solar Energy Harvesting Wireless Embedded
Systems. IPSN 2005. Fourth International
Symposium on Information Processing in Sensor
Networks, 2005., 457-462.
https://doi.org/10.1109/ipsn.2005.1440973

Ronkainen, J., & Abrahamsson, P. (2003). Software
Development under Stringent Hardware
Constraints: Do Agile Methods Have a Chance?
Extreme Programming and Agile Processes in
Software Engineering, 73-79.
https://doi.org/10.1007/3-540-44870-5_10

Ruchkin, V., Romanchuk, V., Fulin, V., Kostrov, B., &
Ruchkina, E. (2015). Parallelism in Embedded
Microprocessor Systems Based on Clustering. 2015
4th Mediterranean Conference on Embedded
Computing (MECO), 45-50.
https://doi.org/10.1109/meco.2015.7181951

Sabella, D., Serrano, P., Stea, G., Virdis, A., Tinnirello,
I., Giuliano, F., Garlisi, D., Vlacheas, P.,
Demestichas, P., Foteinos, V., Bartzoudis, N.,
Payaro, M., & Medela, A. (2017). A Flexible and
Reconfigurable 5G Networking Architecture Based
on Context and Content Information. 2017
European Conference on Networks and
Communications (EuCNC), 1-6.
https://doi.org/10.1109/eucnc.2017.7980669

https://doi.org/10.1109/ms.2018.2801541
https://doi.org/10.1109/aero.2012.6187425
https://doi.org/10.1145/3368756.3369009
https://doi.org/10.1109/hsc.1994.336727
https://doi.org/10.1109/2.347999
https://doi.org/10.1109/iccad.2004.1382645
https://doi.org/10.1109/rtecc.2018.8625665
https://doi.org/10.1109/access.2021.3126681
https://doi.org/10.1145/3528227.3528569
https://doi.org/10.1109/tse.2022.3224378
https://doi.org/10.1109/dac.1997.597119
https://doi.org/10.1109/tvlsi.2017.2698506
https://doi.org/10.1109/tc.2019.2909209
https://doi.org/10.1145/766090.766092
https://doi.org/10.1109/40.296157
https://doi.org/10.1002/smr.2223
https://doi.org/10.1109/ipsn.2005.1440973
https://doi.org/10.1007/3-540-44870-5_10
https://doi.org/10.1109/meco.2015.7181951
https://doi.org/10.1109/eucnc.2017.7980669


Aloysio Augusto Rabello de Carvalho and Luiz Eduardo Galvão Martins / Journal of Computer Science 2025, 21 (7): 1539.1553
DOI: 10.3844/jcssp.2025.1539.1553

1553

Sasirekha, G. V. K., Sai Venketesh, D., Adhisaya, T.,
Aswini, P., Bapat, J., & Das, D. (2019). Robotic
Extension to IoT Testbed for Indoor Environment
Supervision. 2019 Third International Conference
on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud) (I-SMAC), 29-35.
https://doi.org/10.1109/i-smac47947.2019.9032498

Shen, M., Yang, W., Rong, G., & Shao, D. (2012).
Applying agile Methods to Embedded Software
Development: A Systematic Review. 2012 Second
International Workshop on Software Engineering
for Embedded Systems (SEES), 30-36.
https://doi.org/10.1109/sees.2012.6225488

Srinivasan, V., Radhakrishnan, S., & Vemuri, R. (1998).
Hardware Software partitioning with integrated
hardware design space exploration. Proceedings
Design, Automation and Test in Europe, 28-35.
https://doi.org/10.1109/date.1998.655833

Srovnal, V., & Penhaker, M. (2007). Health Maintenance
Embedded Systems in Home Care Applications.
Second International Conference on Systems
(ICONS'07), 17-17.
https://doi.org/10.1109/icons.2007.29

Vii, S., Kaur, H., Sharma, N., & Jain, A. (2019). A
solitary approach to test path prioritization using
significance of centrality measures. 2019 4th
International Conference on Internet of Things:
Smart Innovation and Usages (IoT-SIU), 1-6.
https://doi.org/10.1109/iot-siu.2019.8777639

Vishwakarma, S. K., Upadhyaya, P., Kumari, B., &
Mishra, A. K. (2019). Smart Energy Efficient
Home Automation System Using IoT. 2019 4th
International Conference on Internet of Things:
Smart Innovation and Usages (IoT-SIU), 1-4.
https://doi.org/10.1109/iot-siu.2019.8777607

von Knethen, A. (2002). Change-oriented requirements
traceability. Support for evolution of embedded
systems. International Conference on Software
Maintenance, 2002. Proceedings., 482-485.
https://doi.org/10.1109/icsm.2002.1167808

Yousuf, S., & Gordon-Ross, A. (2016). An Automated
Hardware/Software Co-Design Flow for Partially
Reconfigurable FPGAs. 2016 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 30-
35.
https://doi.org/10.1109/isvlsi.2016.73

Zeng, D., Gu, L., Guo, S., Cheng, Z., & Yu, S. (2016).
Joint Optimization of Task Scheduling and Image
Placement in Fog Computing Supported Software-
Defined Embedded System. IEEE Transactions on
Computers, 65(12), 3702-3712.
https://doi.org/10.1109/tc.2016.2536019

Zhang, P., Zambreno, J., & Jones, P. H. (2017). An
embedded scalable linear model predictive
hardware-based controller using ADMM. 2017
IEEE 28th International Conference on
Application-Specific Systems, Architectures and
Processors (ASAP), 176-183.
https://doi.org/10.1109/asap.2017.7995276

Zuo, W., Pouchet, L.-N., Ayupov, A., Kim, T., Lin, C.-
W., Shiraishi, S., & Chen, D. (2017). Accurate
High-level Modeling and Automated
Hardware/Software Co-design for Effective SoC
Design Space Exploration. Proceedings of the 54th
Annual Design Automation Conference 2017, 1-6.
https://doi.org/10.1145/3061639.3062195

https://doi.org/10.1109/i-smac47947.2019.9032498
https://doi.org/10.1109/sees.2012.6225488
https://doi.org/10.1109/date.1998.655833
https://doi.org/10.1109/icons.2007.29
https://doi.org/10.1109/iot-siu.2019.8777639
https://doi.org/10.1109/iot-siu.2019.8777607
https://doi.org/10.1109/icsm.2002.1167808
https://doi.org/10.1109/isvlsi.2016.73
https://doi.org/10.1109/tc.2016.2536019
https://doi.org/10.1109/asap.2017.7995276
https://doi.org/10.1145/3061639.3062195

