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Abstract: Artificial Intelligence (AI) is rapidly evolving every day to 

become increasingly potent and dependable. AI systems are becoming more 

sophisticated and are being utilized across various domains with the goal of 

enhancing human existence. Within the healthcare system, artificial 

intelligence finds application in handling and documenting large volumes of 

medical data, conducting analyses of healthcare systems, advancing 

pharmaceutical development, and aiding physicians in decision-making 

processes. Machines excel over humans in executing repetitive tasks 

consistently and reliably. In addition, the performance has recently been 

enhanced by the emersion of deep learning techniques. Breast cancer 

presents a significant danger to women globally as it reached 25.4% of new 

cases diagnosed with cancer types. Its danger increases with its ability to 

spread outside the breast through blood vessels and lymph vessels. The 

availability of histopathological images and the advancement in AI and 

machine learning techniques give new horizons for more investigation and 

studies of breast histopathology images. In this study, we demonstrate the 

different steps for detecting and classifying breast cancer through a journey 

from the preparation of breast tissue specimens to classification clarifying 

the different techniques used. Furthermore, we will discuss the challenges 

and solutions for histopathology images and the automated systems used. 
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Introduction  

Cancer ranks among the primary reasons for mortality 

on a global scale, as it reached nearly 10 million deaths in 

2020 (WHO, 2022). Cancer is the transformation of 

normal cells to malfunctioning behavior that increases 

rapidly by attacking and destroying another cell. Breast 

cancer was the top one over other cancer type for women 

worldwide in 2018 (WCRFI, 2020; Ponraj and Canessane, 

2023). The top seven cancer types are shown in Fig. 1. 

Numerous types of cancer can be effectively treated 

with a high likelihood of cure if identified early and 

managed appropriately. However, cancer diagnosis is a 

very time-consuming process as the pathologist needs to 

examine stained specimens mounted on a glass slide 

through a microscope. The digital scanner for the Whole 

Slide Image (WSI), opens the doors for computer vision 

to tackle the analysis of the WSI to reduce diagnosis time. 

Whole Slide Image (WSI) is a way of laboratory steps to 

get histopathological images, either by examining them 

manually under the microscope or by digitalizing the slide 

with different magnifications by special scanners 

(Duenweg et al., 2023). 
 

 
 
Fig. 1: Cancer type ratio for women worldwide in 2018 

(WCRFI, 2020) 
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Many reviews have discussed the history of 

histopathological image analysis and the different machine-

learning techniques used (Bhargava and Madabhushi, 

2016; Shen et al., 2017; Gurcan et al., 2009; Litjens et al., 

2017; Xing and Yang, 2016) and we will describe the WSI 

analysis using different pathology-oriented applications 

based on machine learning techniques. 

The typical steps for the WSI analysis are shown in 

Fig. 2. The preprocessing steps start with image sampling 

by taking many patches of small size (e.g., 255×255). 

These patches may be taken overlapped, randomly, or by 

mixing between them. Then the feature extraction is 

performed. Before deep learning, traditional features such 

as Local Binary Pattern (LBP) and Gray Level Co-

occurrence Matrix (GLCM) were extracted. Whereas, 

deep learning or Convolutional Neural Networks (CNN), 

optimize the extracted features and classifiers 

simultaneously, surpassing traditional features in 

histopathological image analysis (Pankaja and Sivagami, 

2024; Hou et al., 2016; Xu et al., 2016; Sheikhzadeh et al., 

2018; Litjens et al., 2016). 

The last step in WSI analysis is the classification of 

patches as cancer or normal. The classification is 

performed via suitable machine-learning techniques. 

Machine Learning (ML) is categorized into two core 

types; supervised and unsupervised learning. 

Additionally, there are derivatives conducted from these 

two core types, such as multiple-instance learning and 

semi-supervised learning. In this review, we demonstrate 

the different steps for detecting and classifying breast 

cancer through a journey from the preparation of breast 

tissue specimens to classification clarifying the different 

techniques used. Furthermore, we will explore the 

challenges and solutions of histopathology images and the 

automated systems used. 

Tissue Preparation and Datasets 

This section clarifies the typical laboratory workflow 

to prepare the tissue, staining processes, and histological 

slide digitization. In addition to histopathology datasets 

that may be used for breast cancer classification. 

Image Acquisition and Imaging 

The typical steps for Whole Slide Images (WSI) 

image start by taking a small tissue from a suspicious 

area of the breast by Fine Needle Aspiration (FNA). 

Then, the biopsy specimen (i.e., a small tissue) is molded 

in a wax cube at the laboratory, as in step 1 in Fig. 3. The 

wax cube is sliced into patches using a microtome, as in 

step 2 in Fig. 3. The average slice thickness is 3-5 μm 

(Veta et al., 2014). Each wax slice is mounted on glass 

slides from which the WSI is performed, as in step 3 in 

Fig. 3. However, the slices need to be stained to get clear 

visualizations in Fig. . 3.  

Hematoxylin and Eosin (H and E) stain stands as the 

most widely employed stain in medical diagnoses. H and 

E stains produce blue, violet-red stains to biopsy tissue. 

WSI images always vary due to laboratory stain protocol, 

staining process, and brightness of the scanner. Finally, a 

special gigapixel scanners, WSI scanners, are used. This 

scanner automates all the scanning processes including 

feeding the scanning platform with the slides, detecting, 

focusing on relevant tissue areas, acquiring images, 

compressing, storing, and recordkeeping on a laboratory 

information system (Veta et al., 2014). WSI scanner can 

achieve spatial resolution with 0.25 μm/pixel by 40X 

magnification. The WSI images are saved in a multiscale 

pyramid resolution structure in Fig. . 4.  

 

 
 
Fig. 2: Digital pathological image analysis steps 

(Sheikhzadeh et al., 2018) 

 

 
 
Fig. 3: The process of acquiring WSI images (Dimitriou et al., 

2019; Wang et al., 2012) 

 

 
 
Fig. 4: Typical WSI image with multiscale pyramid resolution 

(Wang et al., 2012) 
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Datasets 

The emersion of machine learning techniques in WSI 

analysis creates the need to collect histopathology 

datasets. This need was developed by many medical 

imaging conferences and workshops since 2007 (Yan et al., 

2020). The public datasets are used as benchmarks, which 

introduce a fair metric for comparing the published works 

as it gives precise task definition and assessment metrics. 

For breast cancer, there are small datasets that provide 

the four main classes: (Normal tissue, benign, in situ, and 

invasive carcinoma) for automatic classification such as 

Bioimaging (Bioimaging, 2015) and BACH (Aresta et al., 

2019). Bioimaging (2015) contains 249 WSI images, 

which it extended to 3771 breast cancer images in 

cooperation with Peking University International Hospital 

(Yan et al., 2020). The grand challenge on breast cancer 

histology images (BACH) (Aresta et al., 2019) provides 

400 WSI images divided by 100 images per class. In 

addition, there is a breast cancer dataset that provides two 

classes (normal-cancerous) for classification such as 

CAMELYON 17 (Litjens et al., 2018) dataset. It contains 

681 color images with large size (200,000100,000) 

pixels which will need special tools to work on it. 

Nevertheless, the appearance of deep learning creates 

the need for large datasets to build efficient models. For 

that, large-scale general high-resolution histopathological 

WSI images are collected such as (TCGA) (Saha et al., 

2017) and (GTEx) (Sathish et al., 2017; Selvi and Suganthi, 

2018). The Cancer Genome Atlas (TCGA) (Saha et al., 

2017) includes more than 10,000 WSIs from several 

cancer types, whereas Genotype-Tissue Expression 

(GTEx) (Sathish et al., 2017; Selvi and Suganthi, 2018) 

includes more than 20,000 WSIs from several tissues. The 

advantage of these datasets is that they provide a genomic 

profile, which can be used to build a relationship between 

genome type and morphology. 

Materials and Methods 

In the following section, the typically basic stages for 

analyzing the WSI are discussed.  

Preprocessing Stage 

This stage is responsible for enhancing the quality of the 

images by manipulating noises and adequate contrast which 

improves feature extraction. This is performed by using the 

spatial domain and frequency domain. The spatial domain 

works on image pixels directly, while the frequency domain 

works on the Fourier transform of the image (Krithiga and 

Geetha, 2021). This improvement may look’s not 

significant to the human eye but it enhances the automation 

process significantly. Furthermore, image preprocessing 

could be a simple operation such as resizing or converting 

images to grayscale to reduce the computation time. 

Segmentation Stage 

Segmentation is the core part of histopathology image 

analysis in different applications. It extracts the Region of 

Interest (ROI) and neglects regions with less information. 

Some segmentation techniques use bottom-up manner 

like region growth (Pan et al., 2006) and Watershed 

segmentation (Alsubaie et al., 2018) to extract 

morphometric features and determine nuclear 

pleomorphism grade, identify lymphocyte infiltration, 

malignancy detection and assess tubule formation such in 

(Dimopoulos et al., 2014; Hu et al., 2018; Tosta et al., 

2017; Vink et al., 2013). There is an application that 

works on high-dimensional histopathological images that 

uses two stages of segmentation to extract cellular 

carcinoma structures such as in (Albayrak and Bilgin, 

2019; Bejnordi et al., 2015a; Jia et al., 2017). 

Feature Extraction Stage 

Histological images require a representation 

characteristic of tissues and tumor cells in a measurable 

manner De Matos et al., 2019; Das et al., 2020). The 

measurable evaluation of tissue and organ function 

depends on capturing appropriate features to describe 

cellular and tissue structures accurately. Feature 

extraction is the operation of image reduction to get a 

compressed feature vector. The extracted features need to 

be sufficiently distinct and identifiable to automatically 

classify tissues as either normal or malignant and assign 

corresponding grades (Das et al., 2020). 

The feature extraction may be a handcrafted feature 

where the most important feature is extracted like texture, 

color, and shape of breast cancer histopathological 

images. However, cancerous cells and normal cells need 

other special features that can be automatically extracted 

using deep learning techniques (Krithiga and Geetha, 2021). 

Shape-Based Features 

The cell shape is a significant feature in detecting 
cancer cells and the cancer degree. The most significant 

shape (or morphometric) features for the cell are nuclei 
area, convex area, and outline. Whereas, the 
morphometric features of cancer cells are dark nucleoli, 
prominent, cytoplasm scarcity, cells abnormal growth, 
an erratic organization of chromosomes, and non-
uniform cell size and shape (Lee et al., 2023). The grade 

progression is increased by using the mean values of 
these features for the nuclear and cell outline as shown 
in Dundar et al. (2011); Kolarević et al. (2018); 
Prvulović et al. (2010). 

The shape-based analysis can distinguish between 55 

breast diseases, 62 carcinoma cases, and 7 Atypical Ductal 

Hyperplasia (ADH) with WSI taken by Fine Needle 

Aspiration Cytology (FNAC), as in Niwas et al. (2010).  

The Hu-moment invariant (Žunić and Žunić, 2014) is 

a widely utilized global shape feature descriptor for 
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extracting cell features, irrespective of the cell's 

orientation, size, and position, as well as its ability to learn 

new patterns. Hu-moment produces a 7-d feature vector 

from the image. 

Knowing the cancer degree is crucial for devising 

treatment strategies and predicting patient prognosis in 

specific types of cancer, including primary brain tumors, 

soft tissue sarcoma, as well as prostate and breast cancer. 

Color‑Intensity Based Features 

This feature helps in determining the color distribution 

of the stain of WSI. The main idea is to keep tracking the 

repetition of each color, as in Li and Plataniotis (2015). 

However, this feature alone is not enough for detection as 

there are many variable factors that can affect the color 

distribution. Nevertheless, this feature can give great add 

value for image preprocessing and stain color 

normalization (Sukumar and Gnanamurthy, 2016). 

Textural Based Features 

Texture refers to the characteristic quality of an image 

that conveys details about the surface and visual attributes 

of objects depicted within the image. The texture has two 

categories regular and stochastic based on the degree of 

randomness. In a regular texture, the elementary 

components of an object are arranged periodically, 

whereas in a stochastic texture, these components are 

organized randomly. 

The histopathological images fall into the category of 

stochastic texture because of the random distribution of 

cells. The Gray-Level Cooccurrence Matrix (GLCM) is 

employed for extracting second-order statistical texture 

features, calculating these features based on the spatial 

relationship of pixels (Kazmar et al., 2010). 

Automatic Features Extraction 

CNN convolutional base layers can be used as an 

automatic feature extractor. CNN Convolutional base 

consists of several convolutional layers, sub-sampling 

layers, and activation layers subsequently, that 

subsequently extract important features from the image. 

The convolutional layer is responsible for parameter 

sharing and local connectivity by defining important 

parameters like the stride value, filter size, use of zero-

padding, and number of channels. The sub-sampling 

layers are responsible for decreasing the computations 

number and learning parameters and reducing overfitting 

by reducing the spatial size of the network. while the 

activation layers activate a few nodes per time to increase 

computation efficiency (Zhang et al., 1990). Deep 

learning has proven in state of art studies that it has more 

accurate results (Vink et al., 2013). 

Feature Selection Stage 

Feature selection involves identifying the most 

impactful feature from a high-dimensional feature space. 

Removing irrelevant information from high-dimensional 

input results in reduced overall training time while 

preserving the original accuracy (Saha et al., 2017). The 

feature selection method primarily relies on evaluating the 

performance of every potential combination of different 

features and subsequently choosing the optimal 

combination based on the results (Salman et al., 2014).  

Choosing those distinctive features is more essential than 

choosing the classifier itself. The classification accuracy will 

be enhanced by increasing the number of selected features 

from all features (Ponraj and Canessane, 2023; Wang et al., 

2014). The most popular feature selection strategies: 

 

1) Filter; execute various combinations of statistical 

features to identify the subset of features that yield 

the most accurate predictive analysis. The Chi-

squared (Jin et al., 2006) can be considered as an 

example, which tests information gain and 

correlation coefficient scores. As in (Wang et al., 

2012) they employed a predictive model to assess a 

combination of features and assign a score based on 

the accuracy of the model 

2) Wrapper; manipulate features selection set as a search 

problem involves evaluating and comparing different 

combinations to other combinations. (Wang et al., 

2016a) they employed a Chain-like Agent Genetic 

Algorithm (CAGA) to acquire the optimal subset of 

features for the SVM classifier 

3) Embedded; identify which features contribute most 

effectively to the accuracy of the model during its 

creation process. Yuan et al. (2019), used the Least 

Absolute Shrinkage and Selection Operator (LASSO) 

logistic regression model for detecting breast cancer 

 

Classification Stage 

Classifiers are the algorithms that can teach computers 

how to distinguish objects based on a set of features. 

Based on the available data, traditional classifiers can be 

supervised for the labeled data, unsupervised for the 

unlabeled data, and semi-supervised for mixed data 

(Vink et al., 2013; Shin et al., 2016). 

The supervised classifier’s goal is to train a model 

from labeled data of WSI that can infer input image to its 

labeled class, (Vang et al., 2018; Sharma and Mehra, 

2020; Zalloum et al., 2022). The commonly utilized 

classifiers are random forest and support vector machine. 

Whereas, the unsupervised classifier’s goal is to train a 

model that can distinct the hidden structure of unlabeled 

data and put them in clusters, (Lee et al., 2020). The used 

algorithms are K-mean, autoencoders, and Principal 

Component Analysis (PCA).  
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WSI Automated Systems 

In this section, automated systems for WSI will be 

demonstrated. 

Computer-Assisted Diagnoses 

Computer-Assisted Diagnoses (CAD) (Cicerone and 
Camp Jr, 2019) are the most recent research interest, as 
their main goal is to do the diagnosis task of the 

pathologist. It depends on supervised learning to process 
WSI and infer the disease category. CAD has proved that 
it has the same or higher accuracy outcome than manual 
diagnosis and in less time as the pathologist doesn't 
search each inch in the WSI manually for the infected 
parts (Litjens et al., 2016). 

Additional tasks in diagnosis encompass identifying or 
delineating the Region of Interest (ROI), such as tumor 
regions within Whole Slide Images (WSI) (Spanhol et al., 
2016; Kieffer et al., 2017), assessing immunostaining 
scores (Sheikhzadeh et al., 2018; Mungle et al., 2017), 
determining cancer staging (Wang et al., 2016b-2015), 

detecting mitosis (Shah et al., 2017; Ludovic et al., 2013), 
segmenting glands Chen et al., 2016; Gertych et al., 2015; 
Sirinukunwattana et al., 2017) and detection and 
quantification of vascular invasion (Caie et al., 2014). 

Content-Based Image Retrieval 

The Content Based Image Retrieval (CBIR) (Latif et al., 

2019; Sridhar et al., 2015) is an unsupervised machine 

learning model that inquires input images to retrieve 

similar images. In digital pathology, this system is used in 

diagnosis where professional pathologists can inquire 

about rare cases. In addition, it is used in education and 

research where novice pathologists can retrieve similar 

cases or images of the tissue. 

In the CBIR system, a high-speed search is required in 
addition to its accuracy. Many different techniques have 

been used to reduce image feature dimensions like 
hashing (Sparks and Madabhushi, 2016) used for high-
speed search and principal component analysis and fast 
approximate nearest neighbor search such as K-D tree 
(Medjahed et al., 2013).  

Histopathological Image Analysis Problems and 

Solutions 

This section will explore the characteristics of 

pathological images and the challenges that may face 

machine learning. 

Gigantic Image Size 

Natural images, like cats or dog images, can keep their 
features after resizing to 256×256 as an input for the deep 
learning model. However, the pathological image will 

lose its feature distinction with resizing and the cell 
texture has no orientation. This problem was overcome by 
dividing the single WSI image into patches, each patch is 

processed individually then the ROI can be extracted from 
the opposition of cancer patches (Dimitriou et al., 2019). 
There are also wide horizons in this area on how to 
integrate these patches, make accurate decisions, and 
avoid the outlier patches. 

Furthermore, the computation power of CPU, GPU, 

and memory has significantly improved in the last decade 
allowing to processing of large patches (960×960) with 
more accuracy (Krithiga and Geetha, 2021).  

Insufficient Labeled Images 

This is a challenge for pathological images as it is 

existing in small numbers. In addition, it needs to be 

labeled accurately at patch level and pixel level by 

professional pathologists in relatively very large WSI 

slides. On the other hand, general image labeling can be 

collected and labeled by normal people and there are existing 

large datasets such as ImageNet (Russakovsky et al., 2015). 

There are researchers have reused trained models on 
public image datasets like ImageNet, as in Gutman et al. 

(2016), and have shown significant results. Other 
researchers have used the available specific dataset but its 
main drawback is that it is used for specific diseases with 
specific conditions like magnification level, stain type, 
image resolution, etc.  

The researchers handle insufficient labeled images by 

one of the following approaches. 

Efficient Expansion of Label Data  

Pathologists have used different approaches that speed 

up the labeling process and annotation. One of these 
approaches is surrounding the ROI parts and applying an 
image retrieval algorithm to them (Huang and Racoceanu, 
2018). Other approaches are also used as eye movement 
tracing (Brunye et al., 2014), mouse cursor tracing 
(Raghunath et al., 2012), and analysis for pathologist 

viewport (histogram of time elapsed, screen coordinates 
and zooming levels) (Mercan et al., 2016). However, 
extracting ROI by tracking is not always accurate to the 
exact boundaries. 

On the other hand, active learning is used as an 
effective approach by many researchers Nalisnik et al. 

(2017); Doyle et al. (2011); Padmanabhan et al. (2014); 
Zhu et al. (2014); Xu et al. (2014); Wang et al. (2016a). 
Active learning is a supervised approach that utilizes a 
few labeled images to increase discrimination performance 
by choosing the most valuable unlabeled samples to be 
labeled. The implementation of this approach was applied 

by variance reduction (Padmanabhan et al., 2014), 
query-by-committee (Doyle et al., 2011), and 
hypothesis space reduction (Zhu et al., 2014) to extract 
valuable unlabeled samples. 

Utilization of Unlabeled Information or Weak Label 

Even if we do have not the exact ROI position, the 

information assigned with WSI of the existence of cancer 
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or not can be helpful if it is used as a weak label. The main 

idea of a weak label is that it divides each WSI into 

patches to be like a “bag” of numerous patches in machine 

learning settings. A Whole Slide Image (WSI) is 

classified as cancerous if it contains at least one cancer 

tissue patch; otherwise, it is labeled as normal. This 

introduces the problem of weakly-supervised learning 

(Xu et al., 2014; Jia et al., 2017) or multiple instance 

problems (Xu et al., 2017a; Dietterich et al., 1997).  

The weakly supervised learning (Sparks and 

Madabhushi, 2016; Peikari et al., 2015; Miyato et al., 

2018; Rasmus et al., 2015) utilized both labeled and 

unlabeled data. The real distribution of labeled data is 

estimated using the unlabeled data. Particular 

effectiveness is observed when samples in the same class 

form a well-discriminative cluster. 

The multi-instance learning utilizes labeled bags. A 

method applied to histopathological image analysis 

includes a support vector machine-based approach 

(BenTaieb et al., 2017) a boosting-based approach 

(Salman et al., 2014), and a deep learning-based approach 

(Jia et al., 2017).  

Utilization by Reusing Parameters by Transfer 

Learning 

Machine transfer learning can overcome the limitation 

posed by the small size of the available dataset. In this 

methodology, instead of training the model on the dataset 

from scratch a modified pretrained model for a similar 

task was used and optimized the parameters for 

histopathology images. For CNN networks, this is 

typically done by replacing the network's final three fully 

connected layers. The parameters of the old trained model 

can be used without any modification (Xu et al., 2017b). 

It also can be used as initial parameters then we retrain the 

part or full layers with the new data as in Kieffer et al. 

(2017); Xu et al. (2017a); Bayramoglu and Heikkilä 

(2016); Han et al. (2017); Song et al. (2015); Romo et al. 

(2014); Doyle et al. (2006); Kather et al. (2016); 

Rexhepaj et al. (2013); Doyle et al. (2007); Linder et al. 

(2012); Wang et al. (2017); Bejnordi et al. (2015b); Yan et al. 

(2020); Vang et al. (2018); Kohl et al. (2018); Vesal et al. 

(2018); Sharma and Mehra (2020); Celik et al. (2020); 

Yari et al. (2020); Zainudin et al. (2020); Burçak et al. 

(2021); Hameed et al. (2020); Wadhwa and Kaur (2020). 

Many recent researches have proven that transfer 

learning for CNN model results exceeded the trained 

model from scratch (Kohl et al., 2018). 

Different Levels of Magnification Yield Differing 

Levels of Information 

Pathologist WSI diagnosis typically tests the tissue 

structure under different magnifications. Each 

magnification level shows a certain structure that infers 

different information in Fig. . 5. 

 
 
Fig. 5: Histopathological image with different magnification 

levels, the left side shows low magnification power and the 

right image shows high magnification power. The image 

was taken from TCGA (Albayrak and Bilgin, 2019) 
 

There are researchers have utilized images at different 

magnification levels (Song et al., 2015; Romo et al., 2014; 

Doyle et al., 2006). As discussed before, processing WSI 

with its original resolution is hard. The resizing or 

dividing into patches is relevant to the magnification level 

and there is an argument on which magnification level is 

the most informative for diagnosis (Wang et al., 2016a; 

Liu et al., 2017). 

WSI as Order-Less Texture-Like Image 

From the CNN training model point of view, nature 

images differ from histopathological images. Natural 

images are represented as objects with orientation and 

color, whereas histopathological images are represented 

as patterns or textures. There have been methods that 

intensively utilize texture structure, such as the Gabor 

filter bank (Sharma and Mehra, 2020), local binary pattern 

(Saito et al., 2016), and gray level co-occurrence matrix 

(Ojala et al., 1996) and whereas, CNN can be trained on 

texture using data augmentation by shift and rotate, for 

example. In addition, a deep texture representation using 

a CNN is recently developed (Wang et al., 2017; Lin et al., 

2015). A layer of CNN correlation matrix of features is used 

to get deep texture representation regarding the variance of 

cell position, with no constraint on WSI image size. 

Color Variation and Artifacts 

WSI preparation is not an easy straightforward 

process. The steps differ from one laboratory to another 

as they may follow different protocols. These protocols 

include the used stain material. Since most of the steps are 

done manually, there are undesired effects that may affect the 

WSI image as the slice may bent, or wrinkled, different 

thicknesses may lead to blurred parts, and may the slice be 

marked by a color marker (i.e., Marker pen), Fig. 6. Since 

these artifacts may affect the result, there are specific 

algorithm to detect blurring area (Wu et al., 2015) and tissue 

fold (Kothari et al., 2013) used as preprocessing stage. 

Color variation (Srinidhi et al., 2021) is another 
significant artifact in Fig. . 7. This difference depends on 
the stain manufacture, staining time condition tissue 
thickness, and scanning models. If there is a dataset that 

has sufficient images from all color variations, this will 
not become a problem for CNN training, but such a 
dataset is not available till now. 
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Fig. 6: Different artifacts, the top image is marked by a color 

marker, the bottom left has blur artifacts, and the bottom 

right are folded image 

 

 
 
Fig. 7: Color variation of WSI due to two stain 

 

Many researchers have done preprocessing algorithms 

to avoid this issue. Converting images to grayscale, 

performing color normalization, and applying color 

augmentation (Lafarge et al., 2017; Lin et al., 2018). Gray 

scale sounds easy implementation but it is not 

recommended because it will lose a lot of important 

information. While color normalization tries to normalize 

the color-magnitude and distribution to be like the trained 

CNN model, which is more reliable for WSI diagnosis tasks. 

Color augmentation (Srinidhi et al., 2021) is a 

process of applying random values on brightness, 

contrast, hue, and saturation. The main advantage is 

that it has easy implementation and is suitable for WSI 

with small color variation. Excessive utilization of 

color augmentation may result in a distortion of color 

information, causing the classifier to lose the 

distinction between objects, so it may be better if 

combined with color normalization. 

Results and Discussion 

This survey mainly focused on breast cancer diagnosis 

using histopathological images. Recently, CNN has 

proven its effectiveness in feature extraction and 

classification in breast classification (Krithiga and Geetha, 

2021; Kohl et al., 2018). For that, we gathered the recent 

researches that had worked on breast cancer classification 

using CNN, either binary or multi-classification. The binary 

classification researches are shown in Table 1, whereas the 

multi-classification researches are shown in Table 2. 

The used CNN models had been modified and tuned 

to adapt the new features of WSI, using transfer learning. 

Transfer learning achieved more accurate results than 

training the CNN from scratch (Kohl et al., 2018). 

Therefore, different authors tried a combination of 

different classifiers in parallel and then used a voting 

technique in order to get the best results.  

 
Table 1: The breast cancer research with binary class classification using CNN techniques 

Ref. 

Number  Task Method Classifier Dataset 

Kohl et al. Tumor segmentation VGG-161 based on ImageNet Fully connected CNN layer BACH 2018 and CAMELYON 

(2018) 

Sharma Segmentation WSI to normal VGG-16 SVM BreakHis 

and Mehra and infected 

2020 

Celik et al. Segmentation WSI to DenseNet Fully connected CNN layer IDC 

(2020) Normal and infected ResNet-50   

Yari et al.  Binary and multiclass DenseNet-121 Fully connected layer BreakHis 

(2020) classification  ResNet-50 (FC-8) 

Zainudin et al. Binary classification 6 ,13 ,17 and 19 Layers CNN Soft max layer MITOS ATYPHIA 

(2020) 

Burçak et al. Binary classification Custom model Soft max layer BreakHis 

2021) 

Hameed et al. Binary classification Ensemble VGG-16 and VGG-19 Soft max layer Custom dataset with 544 WSI 

(2020)    Hameed et al. (2020) 

Wadhwa and Binary classification DenseNet-201 Fine-tuned CNN Layers BreakHis 

Kaur (2020) 
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Table 2: The breast cancer research with multi-class classification using CNN techniques 

Ref. Number Task Method Classifier Dataset 

Vang et al. (2018) Multi-class classification for WSI Inception V3 • Majority Voting ICIAR 2018 
   • Gradient Boosting  
   Machine (GBM) 
   • Logistic Regression (LR) 
Vesal et al. (2018) Multi-class classification for WSI ResNet50 based on Softmax Classifier BACH 2018 
  ImageNet 
Yan et al. (2020) Multi-class classification for WSI Inception V3 as  LSTM for fuse patches features  Extended Bioimaging (2015) 
  Feature extraction and gives final classification Yan et al. (2020) 
Yari et al. (2020) Binary and multiclass classification DenseNet-121 Fully Connected layer (FC-8) BreakHis 
  ResNet-50 

 

Conclusion 

In this survey, we provided an intensive study on 

breast cancer diagnosis based on histopathology image 

analysis. We had mentioned the way of WSI preparation 

and different available datasets. Furthermore, we 

provided an overview of different methodologies used for 

preprocessing, segmentation, feature extraction, feature 

selection, and classification. Then, the main WSI analysis 

challenges and difficulties are discussed in detail and the 

methods to overcome them. Finally, an intensive study of 

WSI analysis for breast cancer using various deep-

learning CNN networks is discussed.  
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