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Abstract: Amidst the escalating threats of android malware, urgency mounts 

to detect issues while safeguarding user privacy. Traditional machine 

learning and deep learning methods, dealt with scalability challenges and 

privacy compromises, finding a potential remedy in federated learning. This 

study introduces a groundbreaking federated learning-based methodology 

and compares federated learning with traditional deep learning techniques 

for Android malware classification, employing renowned datasets, including 

Drebin, Malgenome, Tuandromd, and Kronodroid. Shifting gears, a 

federated learning-based approach for malware classification excels in 

accuracy, scalability, and privacy preservation. Acknowledging limitations 

and ethical considerations, the study underscores the need for robust privacy 

measures and dataset transparency. This study unveils federated learning's 

prowess in android malware classification, opening doors to privacy-driven 

applications in diverse domains. 
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Introduction 

The proliferation of mobile devices and the 

widespread usage of smart phones have made them 

prime targets for cyber attackers. Android is the most 

generally used mobile phone operating system and as 

such, it is oftentimes targeted by malware attacks. 

Traditional approaches to detecting and mitigating 

these attacks rely on centralized data storage, which 

compromises user privacy and scalability. To 

overcome these limitations, Federated Learning (FL) 

techniques have been suggested by many researchers 

for Android malicious software classification, which 

allows training machine learning models on 

decentralized data while preserving user privacy. 

This study aims to differentiate between the 

performances of federated learning and traditional deep 

learning techniques for android malware categorization 

for which publicly available datasets are used to train and 

assess the efficiencies of FL and DL models. The research 

also focuses on examining an FL-based classification 

system that preserves user privacy and achieves high 

classification accuracy. 

FL is a new advancement to scalable ML that is gaining 

popularity due to its ability to provide privacy and security 

awareness among a group of devices or individuals in use. 

Traditionally, with centralized control of machine learning 

such as neural networks such as MLP, all data is sent to the 

central server for training and processing, which requires 

strong communication and computer skills. Since user data 
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is transferred and stored centrally, this process raises 

questions about privacy and security. 

This study uniquely contributes to the field of Android 

malware classification by introducing and rigorously 

evaluating federated learning as an innovative alternative to 

traditional deep learning techniques. Its standout feature 

lies in the meticulous preservation of user privacy through 

decentralized data training, a critical advancement in the 

era of heightened privacy concerns. The paper not only 

showcases the superior performance of federated learning 

in terms of accuracy and scalability but also provides a 

practical application of the methodology in Android 

malware detection, establishing its real-world viability. 

Furthermore, the study extends its relevance by suggesting 

the potential applicability of federated learning in other 

domains where privacy considerations are paramount, 

solidifying its position as a promising and versatile 

approach with broad implications beyond the immediate 

scope of Android malware classification. 

Federated learning allows personal devices to train 

themselves using local data, this means that data never 

leaves the device and the user's privacy is protected. 

Machine learning model parameters (such as weights) are 

encrypted and sent to the central server for model 

aggregation and then redistributed to a user for further 

learning. Knowledge from all devices can be shared 

iteratively to achieve accurate learning results. 

Compared to traditional ML techniques, federated 

learning has several advantages, including better privacy 

protection, reduced communication and computational 

costs, and the capability to expand to a vast number of 

devices. Therefore, it has gained attention as a promising 

solution for privacy-preserving machine learning 

applications, such as Android malware classification. 

The following major advances are presented in this 

study to create an effective Android malware 

classification model using network traffic: 

 

 A detailed comparative study of the performance of 

federated learning and classic deep learning 

algorithms for android malware classification 

 Deep insights into the seclusion and scalability 

welfares of federated learning for android malware 

classification 

 Additionally, more in-depth exploration is conducted 

to determine the robustness of FL in the presence of a 

distributed set of data 

 

This research paper is organized into five sections: 

Introduction, literature survey, background study, 

methodology, conclusion, and future scope. The literature 

survey section summarizes prior research on federated 

learning and DL models such as SNN, FNN, Autoencoders, 

and GRU. The background study section provides a brief 

introduction to each of the models used in the study. The 

methodology section explains the experiments conducted 

using four different datasets and compares the accuracy, 

stability, and security of the models. The results show that 

federated learning consistently provided an average of 96% 

accuracy. The conclusion section summarizes the study’s 

findings and provides insights into the future scope of 

research in the field, including optimization techniques, 

model compression, and improving communication 

efficiency. There are also proposals for practical uses of 

federated learning in various business applications. 

In the field of mobile malware detection and 

classification, several studies have used ML and DL 

techniques to develop efficacious and coherent malware 

detection systems. This includes the use of centralized and 

federated learning approaches to improve accuracy and 

privacy preservation. 

Pektaş and Acarman proposed a novel method that 

analyzed the timing and order of API calls for detecting 

malware on Android using sequential interval features of 

API calls (Pektaş and Acarman, 2020). Their method 

extracted sequences of APIrequests from malware 

samples and constructed interval-based features to feed 

into a deep-learning model. Their results showed 

improved detection performance compared to traditional 

methods. Zhang et al. proposed a method for generating 

adversarial examples to evade Android malicious 

application detection using Generative Adversarial 

Networks (GANs) (Zhang et al., 2020). They trained 

GANs to generate samples that look similar to benign 

applications but are classified as malware by the target 

detection model. Their results showed the effectiveness of 

the proposed approach. 

Lu et al. proposed an android malicious software 

detection method based on ensemble deep learning 

methods (Lu et al., 2020). Their approach combined 

multiple deep learning models, including CNN and LSTM 

networks, to improve detection performance. Their results 

showed the effectiveness of the recommended 

methodology in detecting new and unknown malware 

samples. Ullah et al. proposed a novel hybrid technique for 

Android malicious software detection using DL and 

control flow graphs (Ullah et al., 2022). Their approach 

extracted features from control flow graphs of malware 

samples and fed them into a deep-learning model. Their 

results showed improved detection performance 

compared to traditional methods. 

Krizhevsky et al. (2012) presented the AlexNet model, 

which utilized deep convolutional neural networks for the 

classification of images that achieved a significant 

improvement in performance on the ImageNet dataset 

compared to previous methods (Krizhevsky et al., 2012). 

Their success demonstrated the power of deep learning for 

computer vision tasks. The concept of generative 

adversarial networks is introduced by Goodfellow et al. 

(2020) which uses a generator network to create new data 
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realistic enough to fool a discriminator network 

(Goodfellow et al., 2020). The presented work showed 

that GANs can be used for image and music generation, 

unsupervised learning, and other applications. 

Radford et al. introduced the DCGAN architecture, 

which uses a generator and discriminator network in a GAN 

framework to learn unsupervised representations of data, 

such as images (Radford et al., 2015). The research on 

DCGANs can be used for the generation of images, feature 

extraction, and other unsupervised learning tasks. Howard et al. 

introduced mobile nets, a family of lightweight CNNs 

intended for use in mobile and embedded vision applications 

(Howard et al., 2017). The work by Howard et al. (2017) 

demonstrated that mobile nets can outperform other popular 

models on numerous computer vision benchmarks while 

using much fewer parameters and processing resources. 

Almahmoud et al. proposed a DL-based technique for 

Android malicious software detection using static analysis 

(Almahmoud et al., 2021). Their approach used a CNN 

technique to extract features from the opcode sequences 

of Android application binaries. Their results showed the 

effectiveness of the proposed approach in detecting both 

known and unknown malware samples. Similarly, 

LeCun et al. introduced the CNN network, which has 

become the standard architecture for many computer vision 

problems (LeCun et al., 1998). The effectiveness of CNN 

in recognizing handwritten digits and the architecture of a 

specific CNN is described and called LeNet-5. 

Cortes and Vapnik presented the SVM, a popular 
approach for classification and regression problems with 
the mathematical principles behind SVMs to demonstrate 

their effectiveness on a variety of problems, including 
handwriting recognition and face detection (Cortes and 
Vapnik, 1995). The LSTM architecture, which is a 
solution to overcome the vanishing gradient problem in 
training RNNs, is proposed by Hochreiter and 
Schmidhuber (1997) to demonstrate the effectiveness of 

LSTM in sequence prediction challenges, such as 
handwriting recognition and speech recognition. 

Wilson et al. compare the adaptive gradient methods, 
such as Adam and Adagrad, to stochastic gradient descent 
and show that the former may not always provide 
significant improvement in convergence rates or 

generalization performance (Wilson et al., 2017). Pei et al. 
propose a framework for mobile malware detection using 
federated learning with a deep learning model (Pei et al., 
2022). The approach uses local data on users' devices and 
federated averaging to aggregate model weights while 
preserving privacy. The method was tested on a real-

world dataset and found to achieve comparable 
performance to a centralized model. 

Mahindru and Arora present a federated learning 

approach to detecting malware in IoT networks 

(Mahindru and Arora, 2022). They used a CNN to learn 

from local data on IoT devices, federated averaging to 

aggregate model weights, and dynamic clustering to 

group similar devices for more efficient learning. Their 

approach achieves high accuracy on a synthetic dataset 

while reducing communication overhead compared to a 

centralized approach. The federated learning approach 

for malware classification on edge devices using an 

SVM model is proposed by Rey et al. (2022). The 

method achieves high accuracy, reduces communication 

overhead, and is robust to malicious attacks on edge devices, 

as evaluated on a real-world dataset. 

A DL-based structure for detecting and classifying 

Android malware is proposed by Jebin Bose and Kalaiselvi, 

(2023). The framework uses static analysis to extract features 

from APK files and a deep neural network for classification. 

In terms of accuracy, experimental results reveal that the 

proposed structure outperforms standard ML-based 

methods. Aurangzeb and Aleem proposed an ensemble 

voting mechanism based on deep learning for evaluating and 

classifying obfuscated Android malware (Aurangzeb and 

Aleem, 2023). The proposed method outperforms traditional 

machine learning-based methods in terms of accuracy and 

robustness against obfuscation techniques. The paper 

highlights the potential of using DL techniques for Android 

malware detection and classification. 

A comparison of traditional ML and DL models for the 

detection and classification of Android malware traffic is 

presented by Bovenzi et al. (2022). The paper suggests that 

DL-based techniques can improve the effectiveness of 

Android malware detection and classification. Yadav et al. 

(2022) propose a two-stage DL structure for image-based 

Android malware detection and variant classification. The 

framework consists of a feature extraction stage using a 

CNN and a classification stage using a deep neural 

network. The paper highlights the potential of using DL 

techniques for image-based Android malware detection 

and classification. 

A metaheuristic optimization technique combined with a 

DL model for cybersecurity and Android malware detection 

and classification is proposed by Albakri et al. (2023). This 

approach aims to leverage the power of metaheuristics and 

DL to enhance the accuracy and robustness of Android 

malware detection and classification. A visualization-based 

binary classification method for Android malware using 

VGG16 is proposed by Marwaha et al. (2023). This 

proposed method achieves high accuracy in detecting and 

classifying Android malware by utilizing visualization 

techniques. The paper highlights the potential of using deep 

learning techniques for the visualization-based classification 

of Android malware. 

Nguyen et al. (2023) propose a static analysis-based 
method for classifying android malware into categories 

and families. The proposed method extracts static features 
from the APK file and uses traditional machine-learning 
algorithms for classification. The results of the study 
suggest that the proposed strategy performs well in 
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classifying android malware into various categories and 
families. An optimized ensemble learning method based 
on genetic algorithms for Android malware classification 
is proposed by Taha and Barukab (2022). In terms of 

accuracy and efficiency, research results suggest that the 
proposed method surpasses traditional ensemble learning 
methods. The paper highlights the potential of using 
genetic algorithms for optimizing ensemble learning in 
Android malware classification. 

Chen et al. (2022) propose a new classification 

approach based on feature fusion and NLP for Android 

malware. The proposed method combines multiple 

feature extraction techniques and natural language 

processing to enhance the accuracy and robustness of 

Android malware classification. The paper highlights the 

potential of using feature fusion and natural language 

processing for the classification of mobile malware. 

Materials 

Given the rapidly growing number of malicious 

applications on the market android malware classification is a 

difficult task. Deep learning has shown promising results in 

detecting and classifying malware, but training the model 

requires a large amount of data. Yet, due to privacy concerns, 

legal restrictions, and the distributed nature of mobile devices, 

obtaining a large dataset is difficult. Federated learning is a 

novel approach that allows a machine learningmodel to be 

trained on distributed data without sharing the data itself. This 

study aims to compare the performance of deep learning and 

federated learning in the context of android malware 

classification while keeping in mind the privacy and security 

concerns associated with collecting and sharing sensitive data. 

Federated Learning 

FL is a distributed machine learning approach that allows 

model training to take place across a network of devices 

while data remains on edge devices or in decentralized 

databases. Instead of being sent to a centralized server for 

processing, data with federated learning remains under the 

control of the device owner. This strategy provides several 

benefits, including enhanced privacy and security, cheaper 

communication costs, and faster model training. 

Healthcare, finance, transportation, and other 

industries could all benefit from federated learning. It is 

especially useful when data privacy is a concern, or when 

data is dispersed among several devices or databases. 

federated learning provides a powerful new tool for 

machine learning practitioners by allowing model training 

to take place in a decentralized and distributed manner. It 

is shown in Fig. 1 for a clear understanding. 

Autoencoders 

Autoencoders are a kind of unsupervised learning neural 

network that may be used to compress data and extract 

features. They are made up of two major components, the 

encoder and the decoder. The encoder decreases the input 

data's dimensionality by compressing it into a lower-

dimensional representation. The decoder then uses the 

compressed representation to recover the original data as 

precisely as feasible. The overall architecture of the 

autoencoder is depicted in Fig. 2 and its purpose is to reduce 

the disparity between the original and recreated data. 

Image and video compression, anomaly detection, and 

feature learning are just a few of the applications for 

autoencoders. One of their advantages is their ability to learn 

meaningful representations of input data without supervision, 

which can further be utilized for subsequent tasks such as 

classification or clustering. They are also relatively easy to 

implement and can be trained on large datasets efficiently. 

Variational Autoencoders (VAE) are autoencoders 

that are utilized in generative modeling. VAEs, like 

ordinary autoencoders, learn a probability distribution 

across compressed representations and then sample from 

it to produce fresh data samples. VAEs have been used to 

produce realistic visuals, text, and music, among other 

things. Overall, autoencoders have shown to be versatile 

and strong DL algorithms. 

Feedforward Neural Networks 

An FNN model is a kind of artificial neural network in 

which information may only travel in one way, from the 

input layer to the output layer. It is a simple and widely used 

neural network architecture that has shown promising 

outcomes in various fields, including natural language 

processing, image classification, and speech recognition. 

 

 

 

Fig. 1: Federated learning architecture 
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Fig. 2: Autoencoder architecture 
 

An input layer with one or more hidden layers and an 
output layer comprises the FNN model. Every layer 
consists of a group of neurons that conduct a mathematical 
operation on their inputs to generate an output. In the input 
layer, the input features are fed to the network and the 
hidden layers perform a series of non-linear 
transformations on the input data. Depending on the 
objective, the output layer generates the network's final 
output, which might be a binary classification, multiclass 
classification, or regression problem. 

The training of the FNN model is done by alternating 
the weights and biases of the neurons, thus reducing the 
difference between the actual and expected output. 
Backpropagation is commonly used for this method, 
which determines the gradient of the error for the weights 
and biases and updates them accordingly. 

Overall, the FNN model is a powerful and versatile 

tool for solving various machine-learning problems. It is 

relatively easy to implement and train and with the proper 

choice of hyperparameters, it can achieve high accuracy 

on many tasks. The architecture of the feed-forward 

neural network is given in Fig. 3. 

Gated Recurrent Unit 

GRU is a neural network with the same structure as 
LSTM but with fewer features. GRU was created in 2014, 
as a solution to the vanishing gradient problem in classical 
recurrent neural networks. GRUs like LSTMs can detect 
long-term dependencies in datasets by selectively 
remembering or forgetting information over time. 

The difference between GRU and LSTM is that GRU has 

a reset port and an update port whereas LSTM has a forget 

port, an in port, and an exit port. In the GRU, the update port 

controls how much of the entry is added to the current state, 

while the reset port means how much of the hidden state is 

forgotten. Figure 4 depicts the architecture of GRU. 

GRU is frequently employed in NLP applications such 

as language modeling, voicerecognition, image processing, 

recommendation systems, and anomaly detection have all 

made use of them. GRU's design is simpler and contains 

fewer parameters than LSTM, making it faster to train and 

more computationally efficient. 

Methods 

In this section, differentiation is done between the 

performances of federated learning with the traditional 

deep learning methods such as simple neural networks, 

autoencoders, GRU, and FNN on four major datasets. 

While traditional DL methods train models on centralized 

data, FL enables training on decentralized data across 

multiple devices or data sources without compromising 

data privacy. By comparing the efficacy of these different 

methods, an observation can be made to better understand 

the advantages and limitations of federated learning in 

different scenarios. 

 

 
 
Fig. 3: Feedforward neural architecture 
 

 
 

Fig. 4: GRU architecture 

 

Dataset Description 

The following datasets were used to compare the 

performance: Drebin, Malgenome, Tuandromd, and 

Kronodroid: 
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 Drebin is an Android application dataset that contains 

both malicious and benign samples. It has over 

120,000 instances and is frequently used to evaluate 

Android malware detection systems 

 Malgenome is another android application dataset that 

contains over 1,200 malware samples and over 6,000 

benign applications. It is commonly used for evaluating 

malware detection systems and is especially useful for 

analyzing malware sample behavior 

 Tuandromd is an Android malware dataset with over 

17,000 samples from 24 different families. It includes 

both traditional malware and adware and it is 

commonly used to evaluate the effectiveness of ML 

algorithms for recognizing malware on android 

 Kronodroid is an Android malware dataset that contains 

over 20,000 samples from 33 different families. It is 

intended to put machine learning algorithms to the test 

in detecting advanced malware, such as those that use 

obfuscation techniques to avoid detection 
 

Environmental Setup 

The tests were conducted on a Google Collaboratory 

(Colab) platform with an NVIDIA T4 Tensor Core GPU 

runtime environment. Colab is a cloud-based Jupyter 

Notebook environment provided by Google, which allows 

users to run their code on Google Cloud servers. The use of 

a GPU runtime environment in Colab enabled faster training 

and evaluation of the models, as compared to a CPU-only 

environment. The experimental analysis was performed 

using Python 3.8, with TensorFlow 2.6, TensorFlow-

federated 0.19, and Keras 2.4 libraries for developing and 

evaluating the models. The datasets were loaded into the 

Colab environment using the panda's library. 

Deep Learning Models 

Simple neural network: The SNN model was 

implemented using the Keras library in Python. The dataset 

was loaded into the model using the Pandas library. The 

feature set of the dataset was extracted and preprocessed by 

standardizing the data using the standard scaler () function 

from the scikit-learn library. The labels were binarized using 

the label binarize () function and the scikit-lean’sfunction, 

train_test_split (), was used to divide the preprocessed set 

into testing and training sets. 

The model architecture was defined with three dense 

layers. The first dense layer had 512 nodes with the input 

shape of the feature set and ReLU activation function. The 

second and third dense layers had 256 and 1 nodes, 

respectively, with the ReLU activation function. The 

dropout function was used to prevent overfitting in the 

model by randomly dropping out some nodes during 

training. The optimizer used was Adam, with accuracy as 

the chosen metric to measure the compiled model's 

performance. Using Binary Cross-Entropy (BCE) as the loss 

function, the model was trained. Table 1 presents the output 

of the SNN model: 
 

   2 1 1 2y W W x b b     (1) 

 
Feedforward neural network: In the FNN model for 

this study, two hidden layers are used with 512 and 256 

neurons, respectively, using batch normalization and 

output to two hidden layers. The number of features in the 

dataset and the number of input operations are called 

neurons and the output operation has a single neuron with 

the ReLU activation function. 

The binary cross entropy loss function is used and the 

Adam optimizer to specify the pattern and to avoid 

overfitting. The model was trained up to 10 times with 32 

batch sizes. The architecture and hyperparameters of the 

FNN model remain the same for all datasets. 

The interpretation of the FNN model was done using a 

variety of measures, including precision, recall, F1-score, 

accuracy, and AUC-ROC to verify its effectiveness in 

classification tasks and the results proved that the FNN 

model obtained a higher accuracy and performed well in 

differentiating between the classes in the datasets. The test 

loss and the test accuracy results for all the datasets used 

are presented in Table 2. The model's robustness was also 

tested by using different validation techniques, such as 

cross-validation and train-test splits and the results 

remained consistent: 
 

 1 1 1 1( ( ( ) ) )L L L Ly f w f w f w x b b b      (2) 

 
Autoencoders: An autoencoder is trained on the 

Drebin dataset. The input features are first scaled using 

the standard scaler from the pre-processing module of 

scikit-learn. Different layers are utilized in this study's 

model-an input layer and three distinct hidden layers with 

variable nodes. The enable function for all stealth 

operations is ReLU, whereas the line enable function is 

employed for output operations. The collection of samples 

is conducted through the MSE function and optimization 

is handled by ADAM. 

 
Table 1: SNN model results 

No. Dataset Test loss Test accuracy (%) 

1 Drebin 0.98 90.59 

2 Malgenome 0.57 96.00 

3 Tuandromd 2.81 81.52 

4 Krondroid 0.35 96.99 

 
Table 2: FNN model results 

No. Dataset Test loss Test accuracy (%) 

1 Drebin 0.62 66.66 

2 Malgenome 0.63 65.92 

3 Tuandromd 0.86 82.30 

4 Krondroid 1.68 53.26 
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During training, the model is assessed at irregular 

intervals to guarantee ongoing progress. If the data loss in 

validation fails to repeat itself for three successive 

occurrences, then the training procedure will cease 

beforehand. 

After undergoing complete training, the model's 

performance undergoes assessment by its testing on 

various data sets. The experimental loss is computed with 

the aid of the MSE function in the same process. 

The findings of our study indicate that autoencoders 

have an efficient ability to reconstruct input data with less 

experimentation. This observation proposes that this 

particular model has the potential to recognize 

vulnerabilities within malware identification. The results 

of the autoencoder model are given in Table 3. 

The encoder function can be written as: 
 

  ench f x  (3) 

 
The decoder function can be written as: 

 
( )) decx f h   (4) 

 

Gated recurrent units: The architecture of the GRU model 

accepts the input of the shape (X_train. shape as it is a linear 

model and the input is passed through the 64-unit GRU 

layer, then through the 32-unit dense layer. Batch 

normalization and ReLU activation functions are used to 

output the dense layer. Another density layer of 16 units 

was added, followed by batch normalization and ReLU 

activation function. 

Finally, the system with a sigmoid function is added. The 

model is compiled using Binary Cross Entropy (BCE) loss 

and Adam optimizer. An accuracy test is also included to 

evaluate the effectiveness of the model. An early recall limit 

is defined to monitor for false positives and stop training if 

the loss does not improve after three periods. 

The training model is evaluated in the test system. The 

results are given in Table 4 and it shows that the GRU 

model achieves high accuracy scores and demonstrates its 

effectiveness in predicting binary values in ordinal data. 

The model can be further enhanced by modifying 

hyperparameters or adding layers for more complex data 

and can be used in many applications such as natural 

language processing, sentiment analysis, text generation, 

and language translation, thus enabling enhanced human-

computer interaction: 
 

 1( ),= t t th GRU x h   (5) 

 

Table 3: Autoencoder model results 

No. Dataset Test loss Test accuracy (%) 

1 Drebin 0.23 83.15 

2 Malgenome 0.40 90.52 

3 Tuandromd 0.05 88.47 

4 Krondroid 0.13 82.69 

Federated Learning 

The Federated Learning model was implemented 

using the PySyft 3.6 library in Python. PySyft is a popular 

open-source library for building privacy-preserving 

machine learning applications. In our implementation, a 

federated dataset that consists of four separate datasets is 

employed, each owned by a different client. Then a deep 

neural network is trained on the federated dataset using 

the FedAvg algorithm. This FedAvg algorithm involves 

training the model on each client’s local dataset and then 

aggregating the model weights across all clients. This 

approach ensures that no individual client has access to the 

global model parameters and the model accuracy is not 

affected by the data held by any single client. The framework 

of the unfolded architecture is illustrated in the Fig. 5. 

The weighted FedAvg is performed at the global 

server based on the following Equation: 
 

1

1z m

t t i

k

w w
N

   (6) 

 
The 𝑤𝑡

𝑧is the worldwide demonstration made at time 

t and 𝑁𝑘is the number of neighborhood models gotten at 

the worldwide server? It also shows the overall number 

of clients that have taken an interest in the FL and 

𝑤𝑡−1
𝑚 are the local models gotten from all the clients at a 

time (t-1)? The β is the dynamic weight related to each 

local model received. 

The dynamic weight β is naturally balanced based on 

the execution of each local model on the client's side, 

where the worldwide server begins with considering each 

local model to demonstrate equal capability and thus 

equally essential. The worldwide server then produces a 

global priority index containing each local model's 

weights. The weights are further balanced based on the 

performance of the local models. 

The Distributed Weighted FedAvg (DWFedAvg) 

technique runs for a specified set of iterations. In each 

round, the global model is updated by aggregating the 

local models' weights and each client trains a local model 

using their data. The entire range of samples in the dataset 

for each client affects the scaling factor of the weights in 

the local models. The new weights for our global model 

are then calculated as the weighted average of the local 

models' weights, with the weights for each client 

determined by the client's performance on the test set. The 

FL model's result for 10 rounds with 10 clients is 

presented in Table 5. Also, Fig. 6 depicts the global 

accuracy and loss analysis for all 10 rounds. 
 
Table 4:GRU model results 

No. Dataset Test loss Test accuracy (%) 

1 Drebin 1.33 90.29 

2 Malgenome 0.12 98.15 

3 Tuandromd 0.45 96.7 

4 Krondroid 1.03 90.89 
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Table 5: FL model results in 10 clients-10 rounds  

  Global Global Global Global 

No. Dataset _Acc _loss _F1 _precision 

1 Drebin 0.95 0.59 0.93 0.94 

2 Malgenome 0.96 0.59 0.94 0.97 

3 Tuandromd 0.99 0.39 0.99 0.99 

4 Krondroid 0.92 0.55 0.92 0.93 
 

 
 
Fig. 5: Unfolded architecture framework 

 

 
 
Fig. 6: Global accuracy and loss analysis (10 rounds) 

 

Observations 

Our research findings indicate that in classifying 

Android malware, deep learning models have been not as 

solid as federated learning algorithms. This study locates 

that education DL models call for a whole lot of records 

and might now and again over-fit training records, 

resulting in poor performance on new records. Federated 

learning, alternatively, showed more stability and 

potential for enhancing malware category accuracy and 

security on android devices. 

However, some challenges were confronted for the 

duration of this research. Obtaining various and 

dependable records that accurately represented exclusive 

varieties of malware became one of the foremost barriers. 

Additionally, making sure that the models had been 

educated on balanced records, warding off biases, 

changed into another task. 

Despite those challenges, our study indicates that FL 

can offer a robust and secure technique for the android 

malware class. By developing powerful and steady 

communique structures between gadgets, managing 

heterogeneous statistics resources, and dealing with 

model collections to make certain equity and accuracy, 

federated learning can help triumph over a number of the 

challenges that were faced during this research. 

Results and Discussion 

The results of our study showed that the accuracy of deep 

learning models varied depending on the dataset and model 

used. However, federated learning consistently provided an 

accuracy of 96% regardless of the dataset and model used. 

This suggests that federated learning can significantly 

improve the accuracy of deep learning models while 

maintaining the privacy and security of the data. 

One of the key advantages of federated learning over 

traditional deep learning models is its ability to maintain 

stability in the face of changes in data distribution. 

federated learning utilizes multiple local models trained 

on individual devices, which reduces the impact of noisy 

or unrepresentative data on the overall model. In contrast, 

deep learning models can be prone to over-fitting training 

data, leading to reduced generalization performance on 

new data. Our findings suggest that integrated learning 

algorithms can provide a robust and secure method for 

Android malware classification. 

Furthermore, our study highlights the advantages of 

federated learning over deep learning models in terms of 

security. By keeping the data on local devices and 

transmitting only model updates between devices, federated 

learning is less vulnerable to privacy breaches and cyber-

attacks. This is a crucial advantage when dealing with 

sensitive or private data, as it allows for secure and accurate 

classification while maintaining data privacy. 

There were several challenges during the study, such as 

obtaining diverse and reliable data that accurately 

represented different types of malware. Ensuring that the 

models were trained on balanced data and avoiding biases 

was another obstacle. Additionally, the limited processing 

power of mobile devices affected the training time and 

complexity of images, which was a challenge to overcome. 

In conclusion, our study suggests that federated learning 

is a promising approach for training machine learning 

models on sensitive or private data. It provides high 

accuracy, stability, and security levels while maintaining 

data privacy, making it a suitable approach for applications 
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that require secure and accurate classification of sensitive 

data. Future research should address the challenges that 

were faced in this study, such as obtaining diverse and 

reliable data and ensuring balanced data for training. 

Exploring other integrated learning algorithms and datasets 

could also further improve the accuracy and robustness of 

the classification models. 

The evaluation of global accuracy and global loss 

across the three models, Federated Learning (FL), GRU, 

and SNN, reveals distinct trends and highlights the 

stability of the FL model. A bar chart (Figs. 7-8) depicting 

the performance of these models demonstrates that FL 

consistently maintains a high accuracy level across all the 

datasets, exhibiting minimal fluctuations. In contrast, both 

the GRU and SNN models exhibit significant fluctuations 

in accuracy and loss metrics, indicating less stability in 

their performance. This graphical representation 

underscores the superiority of the FL model in terms of 

stability, emphasizing its robustness in handling diverse 

datasets and maintaining consistent accuracy throughout 

the training process. 
 

 
 
Fig. 7: Global accuracy between FL, GRU, SNN 
 

  
Fig. 8: Global loss between FL, GRU, SNN 

Overall, the findings of our study highlight the potential 

of federated learning to improve the accuracy and security of 

deep learning models for Android malware classification. As 

mobile devices become increasingly ubiquitous, the need for 

secure and accurate classification of sensitive data on these 

devices will continue to grow. Federated learning is a 

promising solution to this problem, offering both accuracy 

and security while maintaining data privacy. 

Conclusion 

Our proposed approach of utilizing Federated Learning 

(FL) algorithms yielded outstanding results across four 

diverse datasets, including Drebin, Malgenome, 

Tuandromd, and Kronodroid. The experiments showcased 

a substantial improvement in accuracy, with FL algorithms 

achieving an impressive accuracy rate of 96% for all four 

datasets defeating all the other deep learning and machine 

learning algorithms. The presented research spearheaded 

the design and implementation of FL algorithms, conducted 

experiments, and analyzed results, while also outlining 

future research directions, emphasizing exploration of 

neural networks like CNNs and RNNs within FL 

algorithms for enhanced performance and this research 

played a pivotal role in conceptualizing and developing the 

experimental framework, contributing to the FL algorithms' 

success. Their specific contributions include an in-depth 

analysis of the inherent stability and security advantages of 

FL algorithms and outlining potential directions for future 

research, emphasizing advanced FL algorithms capable of 

handling heterogeneous data sources. Importantly, our 

study also revealed that FL algorithms possess inherent 

stability and security advantages over traditional models. 

By adopting a decentralized approach where data remains 

locally stored on individual devices and only model updates 

are exchanged, FL algorithms not only preserve the privacy 

and security of the data but also ensure the stability and 

robustness of the models themselves. 

Our study highlights several potential areas for further 

research. For example, future research could investigate the 

use of other types of neural networks in FL algorithms, such 

as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs). In addition, the research could 

focus on developing more advanced FL algorithms that can 

handle heterogeneous data sources and optimize models for 

performance and energy efficiency. 

Overall, our findings suggest that federated learning 

has the potential to transform machine learning in a 

variety of disciplines. Our research study provides 

valuable insights that can guide the development of future 

FL applications and inspire researchers to explore the 

potential of this new approach hope that this research will 

contribute to the ongoing efforts to improve the accuracy, 

stability, and security of deep learning models. 
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