

 © 2024 Narayan Subramanian, Logesh Ravi, Mithin Jain Shaan, Malathi Devarajan, Tanupriya Choudhury, Ketan Kotecha

and Subramaniyaswamy Vairavasundaram. This open-access article is distributed under a Creative Commons Attribution

(CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Securing Mobile Devices from Malware: A Faceoff Between

Federated Learning and Deep Learning Models for Android

Malware Classification

1Narayan Subramanian, 2Logesh Ravi, 1Mithin Jain Shaan, 1Malathi Devarajan, 3,4Tanupriya Choudhury,
5Ketan Kotecha and 6Subramaniyaswamy Vairavasundaram

1School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
2School of Electronics Engineering, Centre for Advanced Data Science, Vellore Institute of Technology, Chennai, Tamil Nadu, India
3Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
4Department of Computer Science and Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University),

Pune, Maharashtra, India
5Symbiosis Centre for Applied Artificial Intelligence, Symbiosis Institute of Technology, Symbiosis International

(Deemed University), Pune, India
6School of Computing, SASTRA Deemed University, Thanjavur, Tamilnadu, India

Article history

Received: 20-10-2023

Revised: 02-11-2023

Accepted: 30-11-2023

Corresponding Author:

Tanupriya Choudhury

Department of Computer

Science and Engineering,

Graphic Era Deemed to be

University, Dehradun, 248002,

Uttarakhand, India;

Department of Computer

Science and Engineering,

Symbiosis Institute of

Technology, Symbiosis

International (Deemed

University), Pune, Maharashtra,

India
Email: tanupriyachoudhury.cse@geu.ac.in

Abstract: Amidst the escalating threats of android malware, urgency mounts

to detect issues while safeguarding user privacy. Traditional machine

learning and deep learning methods, dealt with scalability challenges and

privacy compromises, finding a potential remedy in federated learning. This

study introduces a groundbreaking federated learning-based methodology

and compares federated learning with traditional deep learning techniques

for Android malware classification, employing renowned datasets, including

Drebin, Malgenome, Tuandromd, and Kronodroid. Shifting gears, a

federated learning-based approach for malware classification excels in

accuracy, scalability, and privacy preservation. Acknowledging limitations

and ethical considerations, the study underscores the need for robust privacy

measures and dataset transparency. This study unveils federated learning's

prowess in android malware classification, opening doors to privacy-driven

applications in diverse domains.

Keywords: Android Malware, Machine Learning, Deep Learning, Federated

Learning, Privacy Preservation, Scalability

Introduction

The proliferation of mobile devices and the

widespread usage of smart phones have made them

prime targets for cyber attackers. Android is the most

generally used mobile phone operating system and as

such, it is oftentimes targeted by malware attacks.

Traditional approaches to detecting and mitigating

these attacks rely on centralized data storage, which

compromises user privacy and scalability. To

overcome these limitations, Federated Learning (FL)

techniques have been suggested by many researchers

for Android malicious software classification, which

allows training machine learning models on

decentralized data while preserving user privacy.

This study aims to differentiate between the

performances of federated learning and traditional deep

learning techniques for android malware categorization

for which publicly available datasets are used to train and

assess the efficiencies of FL and DL models. The research

also focuses on examining an FL-based classification

system that preserves user privacy and achieves high

classification accuracy.

FL is a new advancement to scalable ML that is gaining

popularity due to its ability to provide privacy and security

awareness among a group of devices or individuals in use.

Traditionally, with centralized control of machine learning

such as neural networks such as MLP, all data is sent to the

central server for training and processing, which requires

strong communication and computer skills. Since user data

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

255

is transferred and stored centrally, this process raises

questions about privacy and security.

This study uniquely contributes to the field of Android

malware classification by introducing and rigorously

evaluating federated learning as an innovative alternative to

traditional deep learning techniques. Its standout feature

lies in the meticulous preservation of user privacy through

decentralized data training, a critical advancement in the

era of heightened privacy concerns. The paper not only

showcases the superior performance of federated learning

in terms of accuracy and scalability but also provides a

practical application of the methodology in Android

malware detection, establishing its real-world viability.

Furthermore, the study extends its relevance by suggesting

the potential applicability of federated learning in other

domains where privacy considerations are paramount,

solidifying its position as a promising and versatile

approach with broad implications beyond the immediate

scope of Android malware classification.

Federated learning allows personal devices to train

themselves using local data, this means that data never

leaves the device and the user's privacy is protected.

Machine learning model parameters (such as weights) are

encrypted and sent to the central server for model

aggregation and then redistributed to a user for further

learning. Knowledge from all devices can be shared

iteratively to achieve accurate learning results.

Compared to traditional ML techniques, federated

learning has several advantages, including better privacy

protection, reduced communication and computational

costs, and the capability to expand to a vast number of

devices. Therefore, it has gained attention as a promising

solution for privacy-preserving machine learning

applications, such as Android malware classification.

The following major advances are presented in this

study to create an effective Android malware

classification model using network traffic:

 A detailed comparative study of the performance of

federated learning and classic deep learning

algorithms for android malware classification

 Deep insights into the seclusion and scalability

welfares of federated learning for android malware

classification

 Additionally, more in-depth exploration is conducted

to determine the robustness of FL in the presence of a

distributed set of data

This research paper is organized into five sections:

Introduction, literature survey, background study,

methodology, conclusion, and future scope. The literature

survey section summarizes prior research on federated

learning and DL models such as SNN, FNN, Autoencoders,

and GRU. The background study section provides a brief

introduction to each of the models used in the study. The

methodology section explains the experiments conducted

using four different datasets and compares the accuracy,

stability, and security of the models. The results show that

federated learning consistently provided an average of 96%

accuracy. The conclusion section summarizes the study’s

findings and provides insights into the future scope of

research in the field, including optimization techniques,

model compression, and improving communication

efficiency. There are also proposals for practical uses of

federated learning in various business applications.

In the field of mobile malware detection and

classification, several studies have used ML and DL

techniques to develop efficacious and coherent malware

detection systems. This includes the use of centralized and

federated learning approaches to improve accuracy and

privacy preservation.

Pektaş and Acarman proposed a novel method that

analyzed the timing and order of API calls for detecting

malware on Android using sequential interval features of

API calls (Pektaş and Acarman, 2020). Their method

extracted sequences of APIrequests from malware

samples and constructed interval-based features to feed

into a deep-learning model. Their results showed

improved detection performance compared to traditional

methods. Zhang et al. proposed a method for generating

adversarial examples to evade Android malicious

application detection using Generative Adversarial

Networks (GANs) (Zhang et al., 2020). They trained

GANs to generate samples that look similar to benign

applications but are classified as malware by the target

detection model. Their results showed the effectiveness of

the proposed approach.

Lu et al. proposed an android malicious software

detection method based on ensemble deep learning

methods (Lu et al., 2020). Their approach combined

multiple deep learning models, including CNN and LSTM

networks, to improve detection performance. Their results

showed the effectiveness of the recommended

methodology in detecting new and unknown malware

samples. Ullah et al. proposed a novel hybrid technique for

Android malicious software detection using DL and

control flow graphs (Ullah et al., 2022). Their approach

extracted features from control flow graphs of malware

samples and fed them into a deep-learning model. Their

results showed improved detection performance

compared to traditional methods.

Krizhevsky et al. (2012) presented the AlexNet model,

which utilized deep convolutional neural networks for the

classification of images that achieved a significant

improvement in performance on the ImageNet dataset

compared to previous methods (Krizhevsky et al., 2012).

Their success demonstrated the power of deep learning for

computer vision tasks. The concept of generative

adversarial networks is introduced by Goodfellow et al.

(2020) which uses a generator network to create new data

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

256

realistic enough to fool a discriminator network

(Goodfellow et al., 2020). The presented work showed

that GANs can be used for image and music generation,

unsupervised learning, and other applications.

Radford et al. introduced the DCGAN architecture,

which uses a generator and discriminator network in a GAN

framework to learn unsupervised representations of data,

such as images (Radford et al., 2015). The research on

DCGANs can be used for the generation of images, feature

extraction, and other unsupervised learning tasks. Howard et al.

introduced mobile nets, a family of lightweight CNNs

intended for use in mobile and embedded vision applications

(Howard et al., 2017). The work by Howard et al. (2017)

demonstrated that mobile nets can outperform other popular

models on numerous computer vision benchmarks while

using much fewer parameters and processing resources.

Almahmoud et al. proposed a DL-based technique for

Android malicious software detection using static analysis

(Almahmoud et al., 2021). Their approach used a CNN

technique to extract features from the opcode sequences

of Android application binaries. Their results showed the

effectiveness of the proposed approach in detecting both

known and unknown malware samples. Similarly,

LeCun et al. introduced the CNN network, which has

become the standard architecture for many computer vision

problems (LeCun et al., 1998). The effectiveness of CNN

in recognizing handwritten digits and the architecture of a

specific CNN is described and called LeNet-5.

Cortes and Vapnik presented the SVM, a popular
approach for classification and regression problems with
the mathematical principles behind SVMs to demonstrate

their effectiveness on a variety of problems, including
handwriting recognition and face detection (Cortes and
Vapnik, 1995). The LSTM architecture, which is a
solution to overcome the vanishing gradient problem in
training RNNs, is proposed by Hochreiter and
Schmidhuber (1997) to demonstrate the effectiveness of

LSTM in sequence prediction challenges, such as
handwriting recognition and speech recognition.

Wilson et al. compare the adaptive gradient methods,
such as Adam and Adagrad, to stochastic gradient descent
and show that the former may not always provide
significant improvement in convergence rates or

generalization performance (Wilson et al., 2017). Pei et al.
propose a framework for mobile malware detection using
federated learning with a deep learning model (Pei et al.,
2022). The approach uses local data on users' devices and
federated averaging to aggregate model weights while
preserving privacy. The method was tested on a real-

world dataset and found to achieve comparable
performance to a centralized model.

Mahindru and Arora present a federated learning

approach to detecting malware in IoT networks

(Mahindru and Arora, 2022). They used a CNN to learn

from local data on IoT devices, federated averaging to

aggregate model weights, and dynamic clustering to

group similar devices for more efficient learning. Their

approach achieves high accuracy on a synthetic dataset

while reducing communication overhead compared to a

centralized approach. The federated learning approach

for malware classification on edge devices using an

SVM model is proposed by Rey et al. (2022). The

method achieves high accuracy, reduces communication

overhead, and is robust to malicious attacks on edge devices,

as evaluated on a real-world dataset.

A DL-based structure for detecting and classifying

Android malware is proposed by Jebin Bose and Kalaiselvi,

(2023). The framework uses static analysis to extract features

from APK files and a deep neural network for classification.

In terms of accuracy, experimental results reveal that the

proposed structure outperforms standard ML-based

methods. Aurangzeb and Aleem proposed an ensemble

voting mechanism based on deep learning for evaluating and

classifying obfuscated Android malware (Aurangzeb and

Aleem, 2023). The proposed method outperforms traditional

machine learning-based methods in terms of accuracy and

robustness against obfuscation techniques. The paper

highlights the potential of using DL techniques for Android

malware detection and classification.

A comparison of traditional ML and DL models for the

detection and classification of Android malware traffic is

presented by Bovenzi et al. (2022). The paper suggests that

DL-based techniques can improve the effectiveness of

Android malware detection and classification. Yadav et al.

(2022) propose a two-stage DL structure for image-based

Android malware detection and variant classification. The

framework consists of a feature extraction stage using a

CNN and a classification stage using a deep neural

network. The paper highlights the potential of using DL

techniques for image-based Android malware detection

and classification.

A metaheuristic optimization technique combined with a

DL model for cybersecurity and Android malware detection

and classification is proposed by Albakri et al. (2023). This

approach aims to leverage the power of metaheuristics and

DL to enhance the accuracy and robustness of Android

malware detection and classification. A visualization-based

binary classification method for Android malware using

VGG16 is proposed by Marwaha et al. (2023). This

proposed method achieves high accuracy in detecting and

classifying Android malware by utilizing visualization

techniques. The paper highlights the potential of using deep

learning techniques for the visualization-based classification

of Android malware.

Nguyen et al. (2023) propose a static analysis-based
method for classifying android malware into categories

and families. The proposed method extracts static features
from the APK file and uses traditional machine-learning
algorithms for classification. The results of the study
suggest that the proposed strategy performs well in

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

257

classifying android malware into various categories and
families. An optimized ensemble learning method based
on genetic algorithms for Android malware classification
is proposed by Taha and Barukab (2022). In terms of

accuracy and efficiency, research results suggest that the
proposed method surpasses traditional ensemble learning
methods. The paper highlights the potential of using
genetic algorithms for optimizing ensemble learning in
Android malware classification.

Chen et al. (2022) propose a new classification

approach based on feature fusion and NLP for Android

malware. The proposed method combines multiple

feature extraction techniques and natural language

processing to enhance the accuracy and robustness of

Android malware classification. The paper highlights the

potential of using feature fusion and natural language

processing for the classification of mobile malware.

Materials

Given the rapidly growing number of malicious

applications on the market android malware classification is a

difficult task. Deep learning has shown promising results in

detecting and classifying malware, but training the model

requires a large amount of data. Yet, due to privacy concerns,

legal restrictions, and the distributed nature of mobile devices,

obtaining a large dataset is difficult. Federated learning is a

novel approach that allows a machine learningmodel to be

trained on distributed data without sharing the data itself. This

study aims to compare the performance of deep learning and

federated learning in the context of android malware

classification while keeping in mind the privacy and security

concerns associated with collecting and sharing sensitive data.

Federated Learning

FL is a distributed machine learning approach that allows

model training to take place across a network of devices

while data remains on edge devices or in decentralized

databases. Instead of being sent to a centralized server for

processing, data with federated learning remains under the

control of the device owner. This strategy provides several

benefits, including enhanced privacy and security, cheaper

communication costs, and faster model training.

Healthcare, finance, transportation, and other

industries could all benefit from federated learning. It is

especially useful when data privacy is a concern, or when

data is dispersed among several devices or databases.

federated learning provides a powerful new tool for

machine learning practitioners by allowing model training

to take place in a decentralized and distributed manner. It

is shown in Fig. 1 for a clear understanding.

Autoencoders

Autoencoders are a kind of unsupervised learning neural

network that may be used to compress data and extract

features. They are made up of two major components, the

encoder and the decoder. The encoder decreases the input

data's dimensionality by compressing it into a lower-

dimensional representation. The decoder then uses the

compressed representation to recover the original data as

precisely as feasible. The overall architecture of the

autoencoder is depicted in Fig. 2 and its purpose is to reduce

the disparity between the original and recreated data.

Image and video compression, anomaly detection, and

feature learning are just a few of the applications for

autoencoders. One of their advantages is their ability to learn

meaningful representations of input data without supervision,

which can further be utilized for subsequent tasks such as

classification or clustering. They are also relatively easy to

implement and can be trained on large datasets efficiently.

Variational Autoencoders (VAE) are autoencoders

that are utilized in generative modeling. VAEs, like

ordinary autoencoders, learn a probability distribution

across compressed representations and then sample from

it to produce fresh data samples. VAEs have been used to

produce realistic visuals, text, and music, among other

things. Overall, autoencoders have shown to be versatile

and strong DL algorithms.

Feedforward Neural Networks

An FNN model is a kind of artificial neural network in

which information may only travel in one way, from the

input layer to the output layer. It is a simple and widely used

neural network architecture that has shown promising

outcomes in various fields, including natural language

processing, image classification, and speech recognition.

Fig. 1: Federated learning architecture

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

258

Fig. 2: Autoencoder architecture

An input layer with one or more hidden layers and an
output layer comprises the FNN model. Every layer
consists of a group of neurons that conduct a mathematical
operation on their inputs to generate an output. In the input
layer, the input features are fed to the network and the
hidden layers perform a series of non-linear
transformations on the input data. Depending on the
objective, the output layer generates the network's final
output, which might be a binary classification, multiclass
classification, or regression problem.

The training of the FNN model is done by alternating
the weights and biases of the neurons, thus reducing the
difference between the actual and expected output.
Backpropagation is commonly used for this method,
which determines the gradient of the error for the weights
and biases and updates them accordingly.

Overall, the FNN model is a powerful and versatile

tool for solving various machine-learning problems. It is

relatively easy to implement and train and with the proper

choice of hyperparameters, it can achieve high accuracy

on many tasks. The architecture of the feed-forward

neural network is given in Fig. 3.

Gated Recurrent Unit

GRU is a neural network with the same structure as
LSTM but with fewer features. GRU was created in 2014,
as a solution to the vanishing gradient problem in classical
recurrent neural networks. GRUs like LSTMs can detect
long-term dependencies in datasets by selectively
remembering or forgetting information over time.

The difference between GRU and LSTM is that GRU has

a reset port and an update port whereas LSTM has a forget

port, an in port, and an exit port. In the GRU, the update port

controls how much of the entry is added to the current state,

while the reset port means how much of the hidden state is

forgotten. Figure 4 depicts the architecture of GRU.

GRU is frequently employed in NLP applications such

as language modeling, voicerecognition, image processing,

recommendation systems, and anomaly detection have all

made use of them. GRU's design is simpler and contains

fewer parameters than LSTM, making it faster to train and

more computationally efficient.

Methods

In this section, differentiation is done between the

performances of federated learning with the traditional

deep learning methods such as simple neural networks,

autoencoders, GRU, and FNN on four major datasets.

While traditional DL methods train models on centralized

data, FL enables training on decentralized data across

multiple devices or data sources without compromising

data privacy. By comparing the efficacy of these different

methods, an observation can be made to better understand

the advantages and limitations of federated learning in

different scenarios.

Fig. 3: Feedforward neural architecture

Fig. 4: GRU architecture

Dataset Description

The following datasets were used to compare the

performance: Drebin, Malgenome, Tuandromd, and

Kronodroid:

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

259

 Drebin is an Android application dataset that contains

both malicious and benign samples. It has over

120,000 instances and is frequently used to evaluate

Android malware detection systems

 Malgenome is another android application dataset that

contains over 1,200 malware samples and over 6,000

benign applications. It is commonly used for evaluating

malware detection systems and is especially useful for

analyzing malware sample behavior

 Tuandromd is an Android malware dataset with over

17,000 samples from 24 different families. It includes

both traditional malware and adware and it is

commonly used to evaluate the effectiveness of ML

algorithms for recognizing malware on android

 Kronodroid is an Android malware dataset that contains

over 20,000 samples from 33 different families. It is

intended to put machine learning algorithms to the test

in detecting advanced malware, such as those that use

obfuscation techniques to avoid detection

Environmental Setup

The tests were conducted on a Google Collaboratory

(Colab) platform with an NVIDIA T4 Tensor Core GPU

runtime environment. Colab is a cloud-based Jupyter

Notebook environment provided by Google, which allows

users to run their code on Google Cloud servers. The use of

a GPU runtime environment in Colab enabled faster training

and evaluation of the models, as compared to a CPU-only

environment. The experimental analysis was performed

using Python 3.8, with TensorFlow 2.6, TensorFlow-

federated 0.19, and Keras 2.4 libraries for developing and

evaluating the models. The datasets were loaded into the

Colab environment using the panda's library.

Deep Learning Models

Simple neural network: The SNN model was

implemented using the Keras library in Python. The dataset

was loaded into the model using the Pandas library. The

feature set of the dataset was extracted and preprocessed by

standardizing the data using the standard scaler () function

from the scikit-learn library. The labels were binarized using

the label binarize () function and the scikit-lean’sfunction,

train_test_split (), was used to divide the preprocessed set

into testing and training sets.

The model architecture was defined with three dense

layers. The first dense layer had 512 nodes with the input

shape of the feature set and ReLU activation function. The

second and third dense layers had 256 and 1 nodes,

respectively, with the ReLU activation function. The

dropout function was used to prevent overfitting in the

model by randomly dropping out some nodes during

training. The optimizer used was Adam, with accuracy as

the chosen metric to measure the compiled model's

performance. Using Binary Cross-Entropy (BCE) as the loss

function, the model was trained. Table 1 presents the output

of the SNN model:

 2 1 1 2y W W x b b (1)

Feedforward neural network: In the FNN model for

this study, two hidden layers are used with 512 and 256

neurons, respectively, using batch normalization and

output to two hidden layers. The number of features in the

dataset and the number of input operations are called

neurons and the output operation has a single neuron with

the ReLU activation function.

The binary cross entropy loss function is used and the

Adam optimizer to specify the pattern and to avoid

overfitting. The model was trained up to 10 times with 32

batch sizes. The architecture and hyperparameters of the

FNN model remain the same for all datasets.

The interpretation of the FNN model was done using a

variety of measures, including precision, recall, F1-score,

accuracy, and AUC-ROC to verify its effectiveness in

classification tasks and the results proved that the FNN

model obtained a higher accuracy and performed well in

differentiating between the classes in the datasets. The test

loss and the test accuracy results for all the datasets used

are presented in Table 2. The model's robustness was also

tested by using different validation techniques, such as

cross-validation and train-test splits and the results

remained consistent:

 1 1 1 1((()))L L L Ly f w f w f w x b b b (2)

Autoencoders: An autoencoder is trained on the

Drebin dataset. The input features are first scaled using

the standard scaler from the pre-processing module of

scikit-learn. Different layers are utilized in this study's

model-an input layer and three distinct hidden layers with

variable nodes. The enable function for all stealth

operations is ReLU, whereas the line enable function is

employed for output operations. The collection of samples

is conducted through the MSE function and optimization

is handled by ADAM.

Table 1: SNN model results

No. Dataset Test loss Test accuracy (%)

1 Drebin 0.98 90.59

2 Malgenome 0.57 96.00

3 Tuandromd 2.81 81.52

4 Krondroid 0.35 96.99

Table 2: FNN model results

No. Dataset Test loss Test accuracy (%)

1 Drebin 0.62 66.66

2 Malgenome 0.63 65.92

3 Tuandromd 0.86 82.30

4 Krondroid 1.68 53.26

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

260

During training, the model is assessed at irregular

intervals to guarantee ongoing progress. If the data loss in

validation fails to repeat itself for three successive

occurrences, then the training procedure will cease

beforehand.

After undergoing complete training, the model's

performance undergoes assessment by its testing on

various data sets. The experimental loss is computed with

the aid of the MSE function in the same process.

The findings of our study indicate that autoencoders

have an efficient ability to reconstruct input data with less

experimentation. This observation proposes that this

particular model has the potential to recognize

vulnerabilities within malware identification. The results

of the autoencoder model are given in Table 3.

The encoder function can be written as:

 ench f x (3)

The decoder function can be written as:

()) decx f h (4)

Gated recurrent units: The architecture of the GRU model

accepts the input of the shape (X_train. shape as it is a linear

model and the input is passed through the 64-unit GRU

layer, then through the 32-unit dense layer. Batch

normalization and ReLU activation functions are used to

output the dense layer. Another density layer of 16 units

was added, followed by batch normalization and ReLU

activation function.

Finally, the system with a sigmoid function is added. The

model is compiled using Binary Cross Entropy (BCE) loss

and Adam optimizer. An accuracy test is also included to

evaluate the effectiveness of the model. An early recall limit

is defined to monitor for false positives and stop training if

the loss does not improve after three periods.

The training model is evaluated in the test system. The

results are given in Table 4 and it shows that the GRU

model achieves high accuracy scores and demonstrates its

effectiveness in predicting binary values in ordinal data.

The model can be further enhanced by modifying

hyperparameters or adding layers for more complex data

and can be used in many applications such as natural

language processing, sentiment analysis, text generation,

and language translation, thus enabling enhanced human-

computer interaction:

 1(),= t t th GRU x h (5)

Table 3: Autoencoder model results

No. Dataset Test loss Test accuracy (%)

1 Drebin 0.23 83.15

2 Malgenome 0.40 90.52

3 Tuandromd 0.05 88.47

4 Krondroid 0.13 82.69

Federated Learning

The Federated Learning model was implemented

using the PySyft 3.6 library in Python. PySyft is a popular

open-source library for building privacy-preserving

machine learning applications. In our implementation, a

federated dataset that consists of four separate datasets is

employed, each owned by a different client. Then a deep

neural network is trained on the federated dataset using

the FedAvg algorithm. This FedAvg algorithm involves

training the model on each client’s local dataset and then

aggregating the model weights across all clients. This

approach ensures that no individual client has access to the

global model parameters and the model accuracy is not

affected by the data held by any single client. The framework

of the unfolded architecture is illustrated in the Fig. 5.

The weighted FedAvg is performed at the global

server based on the following Equation:

1

1z m

t t i

k

w w
N

 (6)

The 𝑤𝑡

𝑧is the worldwide demonstration made at time

t and 𝑁𝑘is the number of neighborhood models gotten at

the worldwide server? It also shows the overall number

of clients that have taken an interest in the FL and

𝑤𝑡−1
𝑚 are the local models gotten from all the clients at a

time (t-1)? The β is the dynamic weight related to each

local model received.

The dynamic weight β is naturally balanced based on

the execution of each local model on the client's side,

where the worldwide server begins with considering each

local model to demonstrate equal capability and thus

equally essential. The worldwide server then produces a

global priority index containing each local model's

weights. The weights are further balanced based on the

performance of the local models.

The Distributed Weighted FedAvg (DWFedAvg)

technique runs for a specified set of iterations. In each

round, the global model is updated by aggregating the

local models' weights and each client trains a local model

using their data. The entire range of samples in the dataset

for each client affects the scaling factor of the weights in

the local models. The new weights for our global model

are then calculated as the weighted average of the local

models' weights, with the weights for each client

determined by the client's performance on the test set. The

FL model's result for 10 rounds with 10 clients is

presented in Table 5. Also, Fig. 6 depicts the global

accuracy and loss analysis for all 10 rounds.

Table 4:GRU model results

No. Dataset Test loss Test accuracy (%)

1 Drebin 1.33 90.29

2 Malgenome 0.12 98.15

3 Tuandromd 0.45 96.7

4 Krondroid 1.03 90.89

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

261

Table 5: FL model results in 10 clients-10 rounds

 Global Global Global Global

No. Dataset _Acc _loss _F1 _precision

1 Drebin 0.95 0.59 0.93 0.94

2 Malgenome 0.96 0.59 0.94 0.97

3 Tuandromd 0.99 0.39 0.99 0.99

4 Krondroid 0.92 0.55 0.92 0.93

Fig. 5: Unfolded architecture framework

Fig. 6: Global accuracy and loss analysis (10 rounds)

Observations

Our research findings indicate that in classifying

Android malware, deep learning models have been not as

solid as federated learning algorithms. This study locates

that education DL models call for a whole lot of records

and might now and again over-fit training records,

resulting in poor performance on new records. Federated

learning, alternatively, showed more stability and

potential for enhancing malware category accuracy and

security on android devices.

However, some challenges were confronted for the

duration of this research. Obtaining various and

dependable records that accurately represented exclusive

varieties of malware became one of the foremost barriers.

Additionally, making sure that the models had been

educated on balanced records, warding off biases,

changed into another task.

Despite those challenges, our study indicates that FL

can offer a robust and secure technique for the android

malware class. By developing powerful and steady

communique structures between gadgets, managing

heterogeneous statistics resources, and dealing with

model collections to make certain equity and accuracy,

federated learning can help triumph over a number of the

challenges that were faced during this research.

Results and Discussion

The results of our study showed that the accuracy of deep

learning models varied depending on the dataset and model

used. However, federated learning consistently provided an

accuracy of 96% regardless of the dataset and model used.

This suggests that federated learning can significantly

improve the accuracy of deep learning models while

maintaining the privacy and security of the data.

One of the key advantages of federated learning over

traditional deep learning models is its ability to maintain

stability in the face of changes in data distribution.

federated learning utilizes multiple local models trained

on individual devices, which reduces the impact of noisy

or unrepresentative data on the overall model. In contrast,

deep learning models can be prone to over-fitting training

data, leading to reduced generalization performance on

new data. Our findings suggest that integrated learning

algorithms can provide a robust and secure method for

Android malware classification.

Furthermore, our study highlights the advantages of

federated learning over deep learning models in terms of

security. By keeping the data on local devices and

transmitting only model updates between devices, federated

learning is less vulnerable to privacy breaches and cyber-

attacks. This is a crucial advantage when dealing with

sensitive or private data, as it allows for secure and accurate

classification while maintaining data privacy.

There were several challenges during the study, such as

obtaining diverse and reliable data that accurately

represented different types of malware. Ensuring that the

models were trained on balanced data and avoiding biases

was another obstacle. Additionally, the limited processing

power of mobile devices affected the training time and

complexity of images, which was a challenge to overcome.

In conclusion, our study suggests that federated learning

is a promising approach for training machine learning

models on sensitive or private data. It provides high

accuracy, stability, and security levels while maintaining

data privacy, making it a suitable approach for applications

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

262

that require secure and accurate classification of sensitive

data. Future research should address the challenges that

were faced in this study, such as obtaining diverse and

reliable data and ensuring balanced data for training.

Exploring other integrated learning algorithms and datasets

could also further improve the accuracy and robustness of

the classification models.

The evaluation of global accuracy and global loss

across the three models, Federated Learning (FL), GRU,

and SNN, reveals distinct trends and highlights the

stability of the FL model. A bar chart (Figs. 7-8) depicting

the performance of these models demonstrates that FL

consistently maintains a high accuracy level across all the

datasets, exhibiting minimal fluctuations. In contrast, both

the GRU and SNN models exhibit significant fluctuations

in accuracy and loss metrics, indicating less stability in

their performance. This graphical representation

underscores the superiority of the FL model in terms of

stability, emphasizing its robustness in handling diverse

datasets and maintaining consistent accuracy throughout

the training process.

Fig. 7: Global accuracy between FL, GRU, SNN

Fig. 8: Global loss between FL, GRU, SNN

Overall, the findings of our study highlight the potential

of federated learning to improve the accuracy and security of

deep learning models for Android malware classification. As

mobile devices become increasingly ubiquitous, the need for

secure and accurate classification of sensitive data on these

devices will continue to grow. Federated learning is a

promising solution to this problem, offering both accuracy

and security while maintaining data privacy.

Conclusion

Our proposed approach of utilizing Federated Learning

(FL) algorithms yielded outstanding results across four

diverse datasets, including Drebin, Malgenome,

Tuandromd, and Kronodroid. The experiments showcased

a substantial improvement in accuracy, with FL algorithms

achieving an impressive accuracy rate of 96% for all four

datasets defeating all the other deep learning and machine

learning algorithms. The presented research spearheaded

the design and implementation of FL algorithms, conducted

experiments, and analyzed results, while also outlining

future research directions, emphasizing exploration of

neural networks like CNNs and RNNs within FL

algorithms for enhanced performance and this research

played a pivotal role in conceptualizing and developing the

experimental framework, contributing to the FL algorithms'

success. Their specific contributions include an in-depth

analysis of the inherent stability and security advantages of

FL algorithms and outlining potential directions for future

research, emphasizing advanced FL algorithms capable of

handling heterogeneous data sources. Importantly, our

study also revealed that FL algorithms possess inherent

stability and security advantages over traditional models.

By adopting a decentralized approach where data remains

locally stored on individual devices and only model updates

are exchanged, FL algorithms not only preserve the privacy

and security of the data but also ensure the stability and

robustness of the models themselves.

Our study highlights several potential areas for further

research. For example, future research could investigate the

use of other types of neural networks in FL algorithms, such

as Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs). In addition, the research could

focus on developing more advanced FL algorithms that can

handle heterogeneous data sources and optimize models for

performance and energy efficiency.

Overall, our findings suggest that federated learning

has the potential to transform machine learning in a

variety of disciplines. Our research study provides

valuable insights that can guide the development of future

FL applications and inspire researchers to explore the

potential of this new approach hope that this research will

contribute to the ongoing efforts to improve the accuracy,

stability, and security of deep learning models.

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

263

Acknowledgment

Authors express their gratitude to Vellore Institute of

Technology, Chennai, for providing the infrastructural

facilities to carry out this research work. We would like to

express our gratitude towards the unknown potential

reviewers who have agreed to review this study and provided

valuable suggestions to improve the quality of the paper.

Funding Information

The authors received no financial support for the

research, authorship, and/or publication of this article.

Author’s Contributions

Narayan Subramanian and Mithin Jain Shaan:
Designed and implemented the software, performed the

validation, and drafted the manuscript.

Logesh Ravi and Malathi Devarajan: Participated in

the designed and execution of the study, and revised and

edited the manuscript. Logesh Ravi also supervised and

coordinated the project.

Tanupriya Choudhury: Conducted the data analysis,

collected and curated the data, and created the

visualizations.

Ketan Kotecha and Subramaniyaswamy

Vairavasundaram: Oversaw the data analysis, provided

the resources, and supervised and coordinated the project.

They also revised and edited the manuscript. All authors

read and approved the final manuscript.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

that no ethical issues are involved.

Competing Interests

The authors declare that they have no competing

interests.

References

Albakri, A., Alhayan, F., Alturki, N., Ahamed, S., &

Shamsudheen, S. (2023). Metaheuristics with deep

learning model for cybersecurity and android

malware detection and classification. Applied

Sciences, 13(4), 2172.

 https://doi.org/10.3390/app13042172

Almahmoud, M., Alzu’bi, D., & Yaseen, Q. (2021).

ReDroidDet: android malware detection based on

recurrent neural network. Procedia Computer

Science, 184, 841-846.

 https://doi.org/10.1016/j.procs.2021.03.105

Aurangzeb, S., & Aleem, M. (2023). Evaluation and

classification of obfuscated Android malware

through deep learning using ensemble voting

mechanism. Scientific Reports, 13(1), 3093.

https://doi.org/10.1038/s41598-023-30028-w

Bovenzi, G., Cerasuolo, F., Montieri, A., Nascita, A.,

Persico, V., & Pescapé, A. (2022). A comparison of

machine and deep learning models for detection and

classification of android malware traffic. In 2022

IEEE Symposium on Computers and

Communications (ISCC) 1-6. IEEE.

 https://doi.org/10.1109/ISCC55528.2022.9912986

Chen, J., Zhao, Z., Chen, X., Cai, S., Yin, S., & Song, L.

(2022). A novel classification approach for android

malware based on feature fusion and natural language

processing. In Proceedings of the 13th Asia-Pacific

Symposium on Internet ware 28-36.

 https://doi.org/10.1145/3545258.3545278

Cortes, C., & Vapnik, V. (1995). Support-vector

networks. Machine Learning, 20, 273-297.

 https://link.springer.com/article/10.1007/BF00994018

Rey, V., Sánchez, P. M. S., Celdrán, A. H., & Bovet, G.

(2022). Federated learning for malware detection in IoT

devices. Computer Networks, 204, 108693.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020).

Generative adversarial networks. Communications of

the ACM, 63(11), 139-144.

https://doi.org/10.1145/3422622

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural Computation, 9(8), 1735-1780.

https://doi.org/10.1162/neco.1997.9.8.1735

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., ... & Adam, H. (2017).

Mobilenets: Efficient convolutional neural networks

for mobile vision applications. ArXiv Preprint

ArXiv:1704.04861.

https://doi.org/10.48550/arXiv.1704.04861

Jebin Bose, S., & Kalaiselvi, R. (2023). An optimal

detection of android malware using dynamic

attention-based LSTM classifier. Journal of

Intelligent and Fuzzy Systems, 44(1), 1425-1438.

https://doi.org/10.3233/JIFS-220828

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional

neural networks. Advances in Neural Information

Processing Systems, 25.

 https://doi.org/10.1145/3065386

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.

(1998). Gradient-based learning applied to

document recognition. Proceedings of the

IEEE, 86(11), 2278-2324.

https://doi.org/10.1007/BF00994018

https://doi.org/10.3390/app13042172
https://doi.org/10.1016/j.procs.2021.03.105
https://doi.org/10.1038/s41598-023-30028-w
https://link.springer.com/article/10.1007/BF00994018
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.3233/JIFS-220828
https://doi.org/10.1007/BF00994018

Narayan Subramanian et al. / Journal of Computer Sciences 2024, 20 (3): 254.264

DOI: 10.3844/jcsp.2024.254.264

264

Lu, T., Du, Y., Ouyang, L., Chen, Q., & Wang, X. (2020).

Android malware detection based on a hybrid deep

learning model. Security and Communication

Networks, 2020, 1-11.

 https://doi.org/10.1155/2020/8863617

Marwaha, A., Malik, R. Q., Beram, S. M., Rizwan, A.,

Kishore, K. H., Thakur, D., ... & Shabaz, M.

(2023). Visualisation‐based binary classification

of android malware using vgg16. IET Software.

https://doi.org/10.1049/sfw2.12094

Mahindru, A., & Arora, H. (2022, November). Dnndroid:

Android malware detection framework based on

federated learning and edge computing. In

International Conference on Advancements in Smart

Computing and Information Security (pp. 96-107).

Cham: Springer Nature Switzerland.

 https://doi.org/10.1007/978-3-031-23095-0_7

Nguyen, C. D., Khoa, N. H., Doan, K. N. D., & Cam, N. T.

(2023). Android malware category and family

classification using static analysis. In 2023

International Conference on Information Networking

(ICOIN) 162-167. IEEE.

 https://doi.org/10.1109/ICOIN56518.2023.10049039

Pektaş, A., & Acarman, T. (2020). Deep learning for

effective Android malware detection using API call

graph embeddings. Soft Computing, 24, 1027-1043.

Pei, X., Deng, X., Tian, S., Zhang, L., & Xue, K.

(2022). A knowledge transfer-based semi-

supervised federated learning for IoT malware

detection. IEEE Transactions on Dependable and

Secure Computing.

 https://doi.org/10.1109/TDSC.2022.3173664

Radford, A., Metz, L., & Chintala, S. (2015).

Unsupervised representation learning with deep

convolutional generative adversarial networks. ArXiv

Preprint ArXiv:1511.06434.

https://doi.org/10.48550/arXiv.1511.06434

Taha, A., & Barukab, O. (2022). Android malware

classification using optimized ensemble learning based

on genetic algorithms. Sustainability, 14(21), 14406.

https://doi.org/10.3390/su142114406

Ullah, F., Srivastava, G., & Ullah, S. (2022). A malware

detection system using a hybrid approach of multi-heads

attention-based control flow traces and image

visualization. Journal of Cloud Computing, 11(1), 1-21

https://doi.org/10.1186/s13677-022-00349-8

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., &

Recht, B. (2017). The marginal value of adaptive

gradient methods in machine learning. Advances in

Neural Information Processing Systems, 30.

shttps://proceedings.neurips.cc/paper_files/paper/20

17/hash/81b3833e2504647f9d794f7d7b9bf341-

Abstract.html

Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., &

Pham, T. D. (2022). A two‐stage deep learning

framework for image‐based android malware

detection and variant classification. Computational

Intelligence, 38(5), 1748-1771.

 https://doi.org/10.1111/coin.12532

Zhang, X., Zhou, Y., Pei, S., Zhuge, J., & Chen, J. (2020).

Adversarial examples detection for XSS attacks

based on generative adversarial networks. IEEE

Access, 8, 10989-10996.

 https://doi.org/10.1109/ACCESS.2020.2965184

https://doi.org/10.1049/sfw2.12094
https://doi.org/10.1007/978-3-031-23095-0_7
https://doi.org/10.3390/su142114406
https://doi.org/10.1186/s13677-022-00349-8

