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Abstract: A total k-labeling defined the function fe: E(G) → {1, 2, …, ke} and 

fv: V(G) → {0, 2, …, 2kv}, where, k = max {ke, 2kv}. For graph G, the total k-

labeling is called an edge (or a vertex) irregular reflexive k-labeling if the 
condition of every two different edges (or vertices) has different weights. The 

smallest value of k for which such labeling exists is called the reflexive edge 

strength (or reflexive vertex strength) of the graph G, denoted by res (G) (or 

rvs(G)). This research objective is developing edge irregular reflexive k-

labeling and combining edge and vertex irregular reflexive k-labeling and row 

element operation as an innovative approach to constructing a robust 

keystream for biometric image encryption. The results show that the best 

keystream is generated by Cn⊙P2 and the complete graph. Our results can 

also surpass existing encryption algorithms such as AES and DES. 

 

Keywords: Biometrics Image, Image Encryption, Irregular Reflexive k-Labeling, 

Elementary Row Operation 

 

Introduction 

Irregularity labeling is the labeling of a graph 

element using consecutive positive integers, which may 

be repeated. The theory of irregularity labeling was 

introduced by Chartrand et al. (1988) and is known as 

irregularity strength (s(G)). This concept was further 

explored by subsequent researchers. Based on this 

research, (Bača et al., 2007) developed two parameters, 

namely the total edge irregularity strength (tes(G)) and 

the total vertex irregularity strength (tvs(G)) in graphs. 

Furthermore, (Marzuki et al., 2013) introduced the total 

irregularity strength (ts(G)), which combines the 

concepts of total edge irregularity strength (tes(G)) and 

total vertex irregularity strength (tvs(G)). Ahmad et al. 

(2014) defined the edge irregularity strength (es(G)). 

(Bača et al., 2007) initiated research on the total labeling 

of k-irregular edges. Ahmad et al. (2014) researched on 

k-irregular edge labeling on various graphs including 

paths, cycles, stars, double stars, and graphs resulting 

from the cartesian product Pm × Pn. In 2018, they 

extended their research to include and complete ternary 

trees. Additional research on k-irregular edge labeling 

can be found in (Ibrahim et al., 2020; Tarawneh et al.., 

2018; 2020; Susanti et al., 2020; Putra and Susanti, 

2018; Ratnasari and Susanti, 2020). 
Furthermore, the concept of irregular labeling was 

developed on k-labeling by Tanna et al. (2020). A graph 

G is a non-empty object consisting of a set of vertices V 

and edges E (Guirao et al., 2018). If a graph G has a set 

of vertices V(G) and a set of edges E(G), then we write G 

= (V(G), E(G)) (Ahmad et al., 2022; Maryati et al., 2020). 

A total k-labeling is defined as an irregular edge total k-

labeling of graph G if every two distinct edges have 

different weights (Agustin et al., 2021). The edge weight 

is the sum of the labels of its incident vertices and the label 

of that edge. Bača extended the above notion into an edge 
irregular reflexive k-labeling (Agustin et al., 2020). 

The total k-labeling is defined by the function fe: E(G) 

→ 1, 2, ..., ke and fv: V G: The total V(G) → k-labeling is, 

2, 2kv, where, k = max called an edge irregular reflexive 

k-labeling if every two different edges x1x2 and y1y2 of G 

satisfy wt (x1x2) ≠ wt (y1y2), where, wt (x1x2) = fv (x1) + fe 

(x1x2) + fv (x2) (Agustin et al., 2021). The smallest value of 

k for which such labeling exists is called the reflexive 

edge strength of the graph G, denoted by res (G) 

(Alfarisi et al., 2021; Bača et al., 2017). Some lemmas onˇ 

the lower bound for res (G) can be seen in (Agustin et al., 

2021; Bača et al., 2017; 2019). 
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Meanwhile, a total labeling h total: V (k-labeling of the 

graph) ∪ E (G) → 1, 2, 3, ..., k is called a vertex irregular 

total k-labeling of the graph G if for every two vertices u, 

v ∈ V (G), where, u ≠ v, with (u) ≠ with (v), where the vertex 

weight with(u) = h(u) + Σuv∈E(G)h(uv) (Agustin et al., 

2023). The total vertex irregularity strength, denoted by 

tvs(G), is the minimum k for which graph G has a vertex 

irregular total k-labeling (Alfarisi et al., 2021). Some 

research results on vertex irregular reflexive k-labelling and 

edge irregular reflexive k-labelling can be seen in Table (1). 

Some important applications of graph labeling include 

social network analysis, product recommendation, 

network optimization, task scheduling, supply 

management systems, image analysis, text and image 

encryption, etc. Prihandoko et al., 2022; Maryati et al., 2020; 

Su et al., 2020). The development of irregular reflexive k-

labeling theory has been a significant breakthrough in the 

field of cryptography, particularly in biometric data 

encryption applications. By utilizing the complex 

concepts of this theory, researchers can design stronger 

and more secure encryption systems to protect sensitive 

biometric data, such as fingerprints, retinal scans, and 

facial recognition. 
Our focus is on biometric data protection. 

Encrypting biometric data using irregular reflexive k-

labeling theory allows information to be transformed 
into a form that cannot be read or understood without a 

suitable decryption key (Wen et al., 2021). In this 

research, we use some previously published irregular 

reflexive k-labeling theorems to construct keystreams 

as an encryption method. Additionally, as a novelty in 

this research, we develop a new theorem of edge 
irregular reflexive k-labeling and combine edge and 

vertex irregular reflexive k-labeling with row element 

operation as an innovative approach to construct robust 

keystreams for image encryption. The purpose of using 

this labeling is to strengthen the encryption method so 

that the security of biometric data is more guaranteed. 

Thus, the integration of this theory into biometric 

data encryption applications paves the way for more 

advanced and reliable security systems in a variety of 

contexts, including applications involving high-level 

security, such as user-on-identification smart devices 

or sensitive medical data. 

In addition, we introduce the theory of row element 

operations as an innovative approach in the field of 

cryptography. Irregular reflexive k-labeling theory is 

used to design strong and unpredictable encryption 

schemes for biometric data, while row element 

operations are applied to improve the efficiency and 

speed of encryption and decryption processes. By 

combining these two techniques, biometric information 

can be converted into an encrypted format with a high 

level of security while maintaining efficient 

computational performance. 

 

Table 1: The previous results on irregular reflexive k labeling 

Vertex irregular reflexive graph Edge irregular reflexive graph 

Sunlet Sn (Agustin et al., 2020) Prism (Dn) (Tanna et al., 2020) 
Helm (Hn) (Agustin et al., 2020) Wheel (Wn) (Tanna et al., 2020) 
Subdivided Star (SS) (Agustin et al., 2020) Fan (Fn) (Tanna et al., 2020) 
Broom (Brn,m) (Agustin et al., 2020) Basket (Bn) (Tanna et al., 2020) 
Prism (Dn) (Tanna et al., 2020) Generalized Friendship (Bača et al., 2017) 
Wheel (Wn) (Tanna et al., 2020) Disjoint Union Generalized Petersen Gui siklus (Cn) (Bača et al., 2019) 
Fan (Fn) (Tanna et al., 2020) Cycle Cartesian Operation Cn × C3 (Bača et al., 2019) 

Basket (Bn) (Tanna et al., 2020) (Pn +(2K1), Cn +(2K1)) (Bača et al., 2019) 
Cycle (Cn) (Agustin et al., 2020) Peneralized Sub-Divided Star (Agustin et al., 2021) 
Generalized Friendship (Fn,m) (Agustin et al., 2020) Broom (Agustin et al., 2021) 
Complete (Kn) (Agustin et al. (2020) Double Star (DSm,n) (Agustin et al., 2021) 
Gear (Gn) (Alfarisi et al., 2021) Corona of the Path (Indriati et al., 2020) 
Book (Bn) (Alfarisi et al., 2021) Disjoint Wheel-Relate (Zhang et al., 2018) 
Triangular Book (Btn) (Alfarisi et al., 2021) Disjoint Specifically Gear (Zhang et al., 2018) 
Disjoint Union of Gear (Alfarisi et al., 2021) Disjoint Prism (Zhang et al., 2018) 

Ladder (Ln) (Agustin et al., 2021b) Corona Product of Two Paths (Yoong et al., 2021) 
Complete (K2, n) (Agustin et al., 2021b) Corona Product of a Path with Isolated Vertices (Yoong et al., 2021) 
Antiprism (An) (Agustin et al., 2022) Star (Ibrahim et al., 2020) 
Friendship (Frn) (Agustin et al., 2022) Caterpillar (Ibrahim et al., 2020) 
Double wheel (Dwn) (Agustin et al., 2022) Cartesian product of two paths and two cycles (Yongsheng et al., 2021) 
 Ladder (Ln) (Agustin et al., 2021) 
 Triangular Ladder (TLn) (Agustin et al., 2021) 
  Pn×C3 (Agustin et al., 2021) 
 Pn⊙P2 (Agustin et al., 2021) 

 Pn⊙C3 (Agustin et al., 2021)  
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We tested several Irregular Reflexive Labelling 

theorems to assess which algorithm provides the strongest 

encryption security. The parameters used to analyze the 

accuracy of the image encryption process include Peak 

Signal Noise Ratio (PSNR), United Average Changing 

Intensity (UACI), Number of Pixel Change Rate (NPCR), 

and Correlation. Here are some research questions from 

this study: 

 

1. What is the RES value of the graph Cn⊙P2 graph is 

used as one of the bases for Cn⊙P2? The keystream 

formation in the encryption process 

2. How do we construct the algorithm to build the 

keystream Irregular Reflexive k Labeling and 

encryption process algorithm? 

3. How is the image encryption process with 

keystream developed from some theorems of vertex 

irregular reflexive k labeling and edge irregular 

reflexive k labeling? 
4. What is the accuracy level of the image encryption 

process by using irregular reflexive k labeling? The 

accuracy level can be seen from PSNR, UACI, 

NPCR, and correlation in the image encryption 

process 

 

Materials 

We use a computer with Intel i5-11400H hardware, 

Nvidia Geforce RTX 3060 6 GB GPU, and 16 GB RAM. 

While the software we use is Matlab R2023b. We chose 

several biometric images from Kaggle, such as iris image 

(Mohammad, 2024), face images (we use our image), and 

fingerprint image (Kairess, 2022), see Fig. (1). Some of 

the tests we did include calculating the correlation values 

of grayscales level. In addition, we also analyze the 
calculation of the Number of Pixels Change Rate 

(NPCR), Unified Average Changing Intensity (UACI), 

and Peak Signal Noise Ratio (PSNR). We also analyze 

the image before and after encryption from the 

histogram. We also analyze our proposed encryption 

method from a security standpoint. 

 

 

 
Fig. 1: A set of test images (a) Iris Eye, (b) face, (c) fingerprint 

Methods 

The encryption process using irregular reflexive k 

labeling and row elementary operations combines the 

advanced steps of both techniques to provide high security 

and efficiency in protecting data. Here are the steps in the 

encryption process: 

 

1. Conversion of plain image (biometric data): The first 

step in the encryption process is to convert the plain 

image (biometric data) into an image matrix 

representation where the elements are in modulo 255. 

This conversion ensures that the image data is in a 

suitable format for subsequent operations. For 

example, if the original pixel value is 300, it will be 

converted to 45 (300 mod 255) 

2. Labeling with Irregular Reflexive K-labeling: After 

converting the biometric data into a suitable format, 

we apply a labeling technique using irregular 

reflexive k-labeling theory. This step constructs a 

keystream analogous to an adjacency matrix, which 

will be used in the encryption process. The irregular 

reflexive k-labeling assigns labels to the graph 

vertices such that the labels of the vertices are distinct 

and the label of any vertex is reflexive 

3. Elementary row operations: Elementary row 

operations are applied to the image matrix and the 

resulting adjacency matrix. The basic operations 

include row addition, which involves adding one row 

to another row; row swapping, which involves 

swapping two rows; row multiplication, which 

involves multiplying a row by a constant; and row 

combination, which involves adding a multiple of one 

row to another row. These operations enhance the 

security of the encryption by making the encrypted 

data more resistant to attacks 

4. Encryption Process: Summation of image matrix and 

adjacency matrix that has been subjected to 

elementary row operations in modulo 255. This 

process aims to hide the information contained in the 

biometric data and make it difficult to understand 

without the right decryption key 

5. Chipper Image: Once the encryption process is 

complete, the encrypted data is ready to be stored or 

shared with others. The data has been converted into 

a form that cannot be read or understood without 

using the appropriate decryption key 

 

To evaluate the performance of our proposed 

cryptosystem method, we use several parameters, 

including the correlation test (r), NPCR, UACI, and PSNR. 

Correlation Test (r): The correlation between the 

original image and the encrypted image is calculated 

using Eq. (1): 
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where, A are red/green/blue component value of the plain 

image, B is the red/green/blue component value of the 

cipher image, Ā is the mean (A), B is the mean (B), m is 

the m-th pixel value, and n is n-th pixel value. 

Number of Pixel Change Rate (NPCR): The Number 

of Pixel Change Rate (NPCR) is a metric used to evaluate 

the effectiveness of an image encryption algorithm by 

measuring the rate of change in pixel values between the 

original (plain) image and the encrypted (cipher) image. 

The NPCR is calculated using Eq. (2): 
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  (2) 

 
where, H and W are the length and width of the color 

image respectively. 

Unified Average Changing Intensity (UACI): A 

metric used to evaluate the performance of image 

encryption algorithms, specifically to measure their 

sensitivity to small changes in the plaintext image. The 

UACI is calculated using Eq. (3): 
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where, H is the height of the image, W is the width of one 

of the images, v (i, j) is the pixel value of the cipher text 
image at position (i, j), v′ (i, j) is the pixel value of the 

cipher text image generated from a slightly different 

plaintext image at the same position (i, j). 

Peak Signal-to-Noise Ratio (PSNR): A widely used 

metric for assessing the quality of a reconstructed image 

compared to its original version. The PSNR is calculated 

using Eqs. (4-5): 
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  (5) 

 
where, P is the plain image and C is the cipher image. 

Results 

The Irregular Reflexive K Labeling 

We propose an image encryption process based on 

irregular reflexive k labeling. We use simple, nontrivial, 

non-empty, and connected graphs. For more detail on the 

notions, see (Ibrahim et al., 2020; Gallian, 2022). We 

construct keystreams based on the labeling theorems of 

reflexive irregular edge labeling k and reflexive irregular 

vertex labeling k on complete, subdivided star, helmet, 

Cn⊙P2, broom, double star, and ladder graphs. We 

present a new theorem on reflexive irregular edge 

labeling on cycle product and path graphs. Let Cn⊙P2 

be a corona product of the cycle and path graph. For 

positive integers n ≥3: 

 

𝑟𝑒𝑠(𝐶𝑛 ⊙𝑃2) = {
⌈
4𝑛

3
⌉+ 1, 𝑖𝑓4𝑛 ≡ 2(𝑚𝑜𝑑 6)

⌈
4𝑛

3
⌉ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

 
Proof: Let Tln, n ≥3, be a graph with the vertex set V 

(Cn ⊙ P2) = { xi: 1≤ i ≤3 n},  nV Tl  = 3 n and the edge 

set E (Cn ⊙ P2) = {x2i−1 x2i-1, x2i−1 x2n+i, x2i x2n+i: 1≤ i ≤ n} 

∪ {x2n+i x2n+i+1: 1≤ i ≤ n-1} ∪ {x2n+1 x3n}, 
2( )nE C P = 4 n. 

Since 4 n is an even integer, such that 4 n ≠ 3 (mod 6). We 

have the lower bound lemma to determine the lower 

bound of res (Cn⊙P2) as follows: 

 

𝑟𝑒𝑠(𝐶𝑛 ⊙𝑃2) ≥ {
⌈
4𝑛

3
⌉+ 1, 𝑖𝑓4𝑛 ≡ 2(𝑚𝑜𝑑 6)

⌈
4𝑛

3
⌉ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

 

Furthermore, we determine the upper bound of res 

(Cn⊙P2) by constructing the vertex labeling as follows. 

For 1≤ i ≤2 n, we have: 

 





0, 1,2

2, 3,4

4( ) 4 , 0,5(mod6)
6

4
4 2, 1,2,3,4(mod6)
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v i

if i

if i

if x if i

i
if i

 
 
 
 
      
 

       

 

 
For 1≤ j ≤ n, we have: 

 





2

0, 1,2

2, 3,4

2( ) 4 , 0(mod3)
3

2
4 2, 1,2(mod3)

3

v n j

if j

if j

if x if j

i
if j



 
 
 
 
      
 

       

 

 

Next, we construct the function of edge labeling as 

follows: 
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Based on the vertex and edge labeling, we have the 
edge weight sets as follows: 

2 1 2

2
4 2, 1

4
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2
4 1, 1

4

i i

k
i if i

wt x x
k

i if i n
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2 1 3( ) 2n nwt x x k   

 
It is easy to see that the edge weights in the edge 

weights sets above are all distinct. Since we have res 

(Cn⊙P2) ≥ k and res (Cn⊙P2) ≤ k, such that we conclude 

that res (Cn⊙P2) = k. It completes the proof. 

Algorithm of Keystream and Encryption Process 

In this section, we will describe the keystream 

algorithm and encryption process used in maintaining 

data security. The keystream algorithm is at the core of 

the key generation that will be used in the encryption 

process, while the encryption algorithm plays an 

important role in keeping sensitive information 

confidential. By understanding these two processes well, 

a deeper insight into how data security systems can 

operate effectively will be gained. 
 

Algorithm 1: Keystream Algorithm using Irregular 

Reflexive Labeling Cn⊙P2 

 Input: Img (Digital Image) 

 Output: Adj Matrix (Adjacency Matrix) 

1. Input Img 

2. Define Img size as row and column 

3. if row > column then 

4. n = 
3

row 
 
 

 

5. Define k value 

6. Elements of Adj Matrix 
7. else if row < column then 

8. n = 
3

column 
 
 

 

9. Define k value 

10. Elements of Adj Matrix 
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Algorithm 2: Image Encryption Algorithm 

Input: PlainImg (Digital Image), Adj Matrix 

(Adjacency Matrix), k 

Output: CipherImg (Image Encryption Results) 

1 Input PlainImg 

2 Defined PlainImg size as row and column 

3 a = max (row, column) 

4 for i = 1:5: a do 

5  ERO  Elementary Row Operation onImg PlainImg  

6 for i=1:5: a do 

7 Key  Elementary Row Operation on Adj Matrix  

8 CipherImg = (ERO Img + Key) mod 255  

 

Algorithm of Keystream 

In this section, we will show you an important method 

in data encryption, the keystream algorithm. This 

algorithm is responsible for generating the key sequence 

used in the encryption process. By understanding the 
keystream algorithm, we can design a reliable data 

security system with keys that are difficult for 

unauthorized parties to guess. The keystream algorithm 

can be seen in Algorithm 1. 

Algorithm of Encryption Process 

In this section, we will show you another important 

method of data encryption, the encryption algorithm. This 

algorithm plays an important role in keeping sensitive 

information confidential. The algorithm of the encryption 

process can be seen in Algorithm 2. 

Discussion 

Figure (2) shows the framework proposed 

cryptosystem. On that figure, the process begins by 

reading the size of the plain image. This size is used as a 

reference to determine the size of the graph to be 

constructed. The graph is then converted into an 

adjacency matrix representation, which contains pairs of 

adjacent nodes. We also convert the plain image into a 

matrix that contains pixel intensity values. After obtaining 

the matrices, we can perform mathematical operations. 

The mathematical operation we use is Elementary Row 

Operations (ERO). This operation allows us to randomize 

the matrix values, resulting in a blurred encryption (cipher 

image). There are two matrices we operate on using ERO: 

The adjacency matrix and the pixel matrix. After applying 

ERO to each matrix, we then use the Caesar cipher 

technique to sum the two matrices. The sum is then taken 

modulo 255, as 255 is the maximum intensity of a pixel. 

We use seven theorems from different graphs to 

construct the keystream. In the Vertex Irregular Reflexive 

Graph, we take Helmet (Hn), Split Star (SS), and 

Complete (K2, n). While on the Edge Irregular Reflexive 

Graph we take Broom (Brn,m), Double Star (DSm,n), Ladder 

(Ln), and Cn⊙P2. We analyze the cipher image based on 

four parameters: Correlation analysis, Number of Pixels 

Change Rate (NPCR) value analysis, Unified Average 

Changing Intensity (UACI) value analysis, and Peak 

Signal Noise Ratio (PSNR) value analysis. Correlation 

analysis aims to measure the degree of correlation 

between the pixels of the plain image and the cipher 

image. The correlation value ranges from negative, 

indicating no correlation, to positive, indicating a 

correlation. The more random the cipher image is, the 

more negative the correlation value will be. The Number 

of Pixels Change Rate (NPCR) value gives an idea of how 

much change has occurred after we encrypt the image. 

The greater the NPCR value, the more pixels will change 

during the encryption process. Unified Average Changing 

Intensity (UACI) provides an overview to evaluate the 

quality of the cipher image. The greater the Unified 

Average Changing Intensity (UACI) value, the greater the 

change in intensity that occurs in the image pixels during 

the encryption process. Peak Signal Noise Ratio (PSNR) 

can provide an overview to evaluate the similarity 

between the plain image and the cipher image. The 

smaller Peak Signal to Noise Ratio (PSNR) value 

indicates the dissimilarity between the plain image and the 

cipher image. 

Next, we will compare the results of the iris data 

encryption process using edge irregular reflexive labeling 

and vertex irregular reflexive labeling. The comparison 

results can be seen in the relevant table. The iris is a 

unique part of the human body that can be used to identify 

a person with a high degree of accuracy. However, due to 

its uniqueness, information about the iris is very sensitive 

and vulnerable to misuse if not properly protected. 

Therefore, the encryption algorithm must make the iris 

image difficult to recognize. The included table shows the 

encryption results on iris images using various irregular 

reflexive labeling on different graphs. 

 

 

 
Fig. 2: Framework proposed cryptosystem 
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In general, the encryption results using all graphs as 

encryption keys have shown high encryption accuracy. 

This can be seen from the low correlation values, which 

indicate that there is no clear relationship or pattern 
between the original image and the encrypted image. In 

this context, low correlation indicates a high level of 

randomness in the encrypted image, which is a highly 

desirable property in information security. When the 

correlation between the original image and the encrypted 

image is low, unauthorized parties will have difficulty 

obtaining information or finding patterns in the encrypted 

image without knowing the encryption key used. This 

makes the encrypted image more secure and enhances the 

confidentiality of the encrypted data. The Subdivided Star 

graph has the lowest correlation value among the other 
graphs with Vertex Irregular labeling. Another graph, 

Cn⊙P2, shows the lowest correlation value with edge 

irregular labeling. 

The next analysis based on NPCR values shows that 

the Helm graph has the highest NPCR value among the 

graphs with vertex irregular labeling. A high NPCR value 

indicates a high degree of pixel change between the 

original image and the encrypted image, making it 

difficult for unauthorized parties to reconstruct the 

original image from the encrypted image. The Cn⊙P2 
graph shows the highest NPCR value among the graphs 

with edge irregular labeling. 

 The UACI analysis shows that the Subdivided Star 

graph has the highest UACI value among the graphs with 

vertex irregular labeling. A high UACI value indicates 

significant changes in pixel intensity between the original 

image and the encrypted image, making it difficult for 

unauthorized parties to reconstruct the original image 

from the encrypted image. The Cn⊙P2 graph has the highest 

UACI value among the graphs with edge irregular labeling.  

The final analysis based on PSNR values shows that 

the Helm graph has the highest PSNR value among the 

graphs with vertex irregular labeling. A high PSNR value 

indicates a high level of similarity between the original 

image and the encrypted image, thus increasing 

confidence in the success of the encryption process. The 

Cn⊙P2 graph has the lowest PSNR value among the 

graphs with edge irregular labeling. 

Based on these four analyses, the shape of the graph 

affects the encryption results. This can be seen from the 

different values of correlation, NPCR, UACI, and PSNR 

for each graph. The Cn⊙P2 graph shows the best results 

in the edge irregular labeling type compared to other 

graphs. Therefore, it can be concluded that the Cn⊙P2 

graph with edge irregular labeling is the best graph for iris 

data encryption among the other graphs. 
Biometric data, such as facial images, is highly 

sensitive personal information that must be protected to 

prevent unauthorized access. Facial image encryption 

helps enhance the security of sensitive biometric data. By 
using facial image encryption, the speed and efficiency of 

the biometric recognition process can be improved. Even 

when facial data is encrypted, facial recognition 

algorithms can still quickly and accurately identify unique 

facial patterns. Table (2) shows the encryption results on 

facial images using various irregular reflexive labelings 

on different graphs. 

Next, we will analyze the values in the table. The first 

analysis is the correlation value in the facial image 

encryption results. The complete graph has the lowest 

correlation value among the graphs with Vertex Irregular 

labeling. The Cn⊙P2 and ladder graphs also have the 

lowest correlation values among the graphs with edge 

irregular labeling. 

The second analysis is the NPCR value. The complete 

graph shows the highest NPCR value among the graphs 

with vertex irregular labeling. The ladder graph has the 

highest NPCR value among the graphs with edge irregular 

labeling. A high NPCR indicates a significant level of 

pixel change between the original image and the 

encrypted image, making it difficult for unauthorized 

parties to reconstruct the original image from the 
encrypted image. 

The third analysis is the UACI value. The complete 

graph has the highest UACI value among the graphs with 

vertex irregular labeling. The Double Star graph has the 

highest UACI value among the graphs with edge irregular 

labeling. A high UACI indicates significant changes in 

pixel intensity between the original image and the 

encrypted image, making it more difficult for 

unauthorized parties to reconstruct the original image. 

 
Table 2: Iris Image encryption results 

Name Types  Iris Image   
graph labeling Correlation NPCR UACI PSNR 

Complete Vertex 0.0064 99.5146 26.0091 7.7935 
Subdivided star Vertex −7.32×10−4 99.5742 26.0352 7.7922 
Helm Vertex −5.02×10−4 99.5768 26.0350 7.7927 
Cn⊙P2 Edge −8.26×10−5 99.6833 26.5277 7.7208 

Broom Edge −0.0014 99.5755 26.0431 7.7902 
Double star Edge −6.95×10−4 99.5794 26.0329 7.7917 
Ladder Edge −5.42×10−4 99.5729 26.0317 7.7930 
AES  −0.00206 99.6132 26.2250 7.8998 

DES  −0.00516 99.6276 25.6431 7.8830 
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The final analysis is based on the PSNR value. The 

complete graph has the lowest PSNR value among the 

graphs with vertex irregular labeling. The Cn⊙P2 and 
Double Star graphs have the lowest PSNR values among 

the graphs with edge irregular labeling. A low PSNR 

value indicates that the encrypted image has significant 

differences from the original image, thereby increasing 

confidence in the success of the encryption process. 

Based on the analysis results, the best values for 

correlation, Number of Pixels Change Rate (NPCR), 

Unified Average Changing Intensity (UACI), and Peak 

Signal to Noise Ratio (PSNR) for the iris image were 

obtained using the complete graph. The elements in the 

adjacency matrix of the complete graph are more fully 
populated compared to the adjacency matrices of other 

graphs. Consequently, many matrix elements can be 

manipulated during the encryption process. This leads to 

better encryption results because the encryption method 

we use operates simultaneously between the keystream 

and the original image using elementary row operations. 

In this operation, if many populated elements are swapped 

and manipulated, it can result in non-zero values, thus 

making the encryption results more random. 

The next analysis is the encryption results of 

fingerprint images. Encrypting fingerprint images is 

crucial for protecting the security and privacy of sensitive 
data. Fingerprint images are frequently used in various 

identification applications, including device security, 

financial transaction authorization, and access control. By 

applying encryption to fingerprint images, sensitive 

biometric information can be secured against 

unauthorized access or identity theft. This ensures that 

only authorized users can access and utilize the fingerprint 

data while protecting individual privacy and security. 

Table (3) shows the encryption results of fingerprint 

images using various irregular reflexive labelings on 

different graphs. 
Next, we will analyze the values in the table. The first 

analysis is the correlation value. The complete graph has 

the lowest correlation value among the graphs with vertex 

correlation value among the graphs with edge irregular 

labeling. The Cn⊙P2 graph also has the lowest labeling. 

A low correlation value indicates that there is no clear 

relationship between the original image and the encrypted 

image, which is a desirable property in information security. 

The second analysis is the NPCR value. The complete 

graph shows the highest NPCR value among the graphs 

with vertex irregular labeling. The ladder graph has the 

highest NPCR value among the graphs with edge irregular 

labeling. A high NPCR value indicates a high degree of 

pixel change between the original image and the 

encrypted image, making it difficult for unauthorized 

parties to reconstruct the original image from the 

encrypted image. 

The third analysis is the UACI value. The complete 

graph has the highest UACI value among the graphs with 

vertex irregular labeling. The Cn⊙P2 graph has the 

highest UACI value among the graphs with edge irregular 

labeling. A high UACI value indicates significant changes 

in pixel intensity between the original image and the 

encrypted image, increasing the difficulty for 

unauthorized parties to reconstruct the original image. 

The final analysis is based on the PSNR value. The 

complete graph has the lowest PSNR value among the 

graphs with vertex irregular labeling. The Cn⊙P2 graph 

has the lowest PSNR value among the graphs with edge 

irregular labeling. A low PSNR value indicates that the 

encrypted image has significant differences from the 

original image, thus increasing confidence in the success 

of the encryption process. 
Based on the results of these four analyses, the 

complete graph shows the best results for correlation, 
Number of Pixels Change Rate (NPCR), Unified 

Average Changing Intensity (UACI), and Peak Signal 

to Noise Ratio (PSNR) for fingerprint images. The 

elements in the adjacency matrix are more fully 

populated compared to other graphs, allowing more 

matrix elements to be manipulated during the 

encryption process. This results in better encryption 

outcomes because the encryption method used operates 

simultaneously between the keystream and the original 

image using elementary row operations. When many 

filled elements are swapped and manipulated in this 
operation, it generates non-zero values, making the 

encryption results more random and secure. 

 
Table 3: Face image encryption results 

Name Types  Face image   

graph labeling Correlation NPCR UACI PSNR 

Complete Vertex −8.33×10−4 99.6070 7.4650 7.6632 
Subdivided star Vertex −0.003 99.6045 7.2589 7.9662 
Helm Vertex −0.0029 99.6037 7.2588 7.9673 
Cn⊙P2 Edge −0.0029 99.6040 7.2579 7.9658 

Broom Edge −0.0030 99.6041 7.2587 7.7969 

Double star Edge −0.0031 99.6040 7.2592 7.9658 
Ladder Edge −0.0029 99.605 7.2577 7.9660 
AES  −0.0244 99.6059 7.4650 7.6996 
DES  −0.0305 99.7466 7.2946 8.857 
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Next, we will perform a comparative analysis of the 

seven theorems with the results of other studies, 

specifically those using AES and DES. The comparison 

results can be seen in Fig. (3). The comparison shows that 

encryption using vertex irregular reflexive labeling from 

the complete graph produces the best cipher image. This 

is due to several key factors. 

First, the vertex irregular reflexive labeling method on 

the complete graph shows a very low correlation value 

between the original image and the encrypted image. 

This indicates that the patterns in the original image 

cannot be easily recognized in the encrypted image, 

enhancing data security. 

Second, the high values of the Number of Pixels 

Change Rate (NPCR) and Unified Average Changing 

Intensity (UACI) indicate that this method results in 

significant changes in the pixel level and image intensity, 

making it very difficult to reconstruct the original image 

from the encrypted image. This provides an advantage 

over AES and DES, which may not achieve the same level 

of pixel and intensity changes. 

Third, the lower Peak Signal to Noise Ratio (PSNR) 

value indicates that the encrypted image is significantly 

different from the original image, which is a sign of 

success in hiding the original information from 

unauthorized parties. 

Overall, the combination of low correlation values, 

high NPCR and UACI values, and low PSNR values 

makes the vertex irregular reflexive labeling method on 

the complete graph superior to AES and DES in terms of 

security and effectiveness in encrypting biometric images. 

Thus, this method should be considered a more effective 

solution for protecting sensitive data. 

Additionally, we analyzed the results of the image 

encryption process using histogram analysis. Histogram 

analysis of the encrypted image is a method to visualize 

the distribution of pixel intensity in the encrypted image. 

This analysis helps evaluate the level of randomness and 

uniformity in the encrypted image, which is crucial for 

assessing the effectiveness of the encryption process in 

altering the original structure of the image. A more 

uniform distribution of pixel intensities in the histogram 

indicates a higher level of security, as it makes it more 

difficult for unauthorized parties to extract information 

from the encrypted image. Therefore, histogram analysis 

becomes an essential step in validating the security of the 

encryption algorithm used. 

Next, we discuss the histogram analysis of the 

encrypted image compared to the original image. In the 

original image, pixel intensity values range from 1 to 255, 

with a concentration around 50, indicating a tendency 

towards brighter colors. Conversely, the histogram of the 

encrypted image shows a uniform and dense distribution 

of pixel intensities across the entire range. This uniformity 

and randomness in the histogram indicate that the 

encryption process effectively disguises the original 

image, making it visually unrecognizable. The results of 

this histogram comparison are shown in Fig. (4), which 

demonstrates an even and random spread of pixel intensities. 

A good histogram in the encrypted image indicates 

that the encryption process has successfully concealed the 

original information, making it difficult for unauthorized 

parties to reconstruct or access the data. The absence of 

visible patterns or identifiable information in the 

histogram enhances the security and integrity of the 

encrypted data. Thus, a well-distributed histogram is a key 

indicator of the encryption algorithm’s effectiveness in 

maintaining data confidentiality. 

 

 

 
Fig. 3: The comparison of our methods 

 

 
 
Fig. 4: The histogram comparison between plain image and 

cipher image 
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Table 4: Fingerprint image encryption results 

Name Types  Fingerprint Image   

graph Labeling Correlation NPCR UACI PSNR 

Complete Vertex −0.0035 99.5447 32.9100 5.7000 
Subdivided star Vertex −0.0013 98.7162 32.4450 5.7154 
Helm Vertex −0.0012 98.7207 32.4310 5.7167 
Cn⊙P2 Edge −0.0035 98.7177 32.4870 5.7052 

Broom Edge −0.0027 98.7230 32.4431 5.7115 

Double star Edge −0.0019 98.7220 32.4525 5.7120 
Ladder Edge −0.0027 98.7260 32.4487 5.7127 
AES  −0.00161 99.2237 32.6190 5.6914 
DES  0.02805 98.9326 31.5016 7.8769 

 

Our proposed encryption method has been shown to 

outperform the Advanced Encryption Standard (AES) 

and Data Encryption Standard (DES) (More et al., 

2021). Tables (3-4) show that our proposed method has 

outperformed AES and DES in terms of correlation, UACI, 

NPCR, and PSNR. This indicates that our proposed method 

provides a higher level of security and is resistant to 

cryptographic attacks. It can be a superior option to protect 
data from increasingly sophisticated security threats. 

Conclusion 

In this study, we propose a cryptosystem method that 

uses irregular reflexive labeling and encryption based on 

elementary row operations to improve the security of 

biometric images. Our approach introduces a novel 

combination of edge and vertex irregular reflexive k-
labeling with row elementary operations, which to our 

knowledge, has not been explored in existing encryption 

techniques. This novel combination enhances the security 

of the encryption process by making the resulting 

keystreams more robust against attacks. 

Through our tests, we found that providing irregular 

reflexive labeling as a keystream has a significant effect 

on improving security. This can be seen from the 

correlation test, NPCR test, UACI test, and PSNR test, 

which we document in Tables (3-4). Our proposed 

encryption scheme shows superior performance 
compared to AES and DES in terms of correlation, PSNR, 

NPCR, and UACI. 

In addition, we discovered that complete graphs, 

especially in the context of the irregular reflexive labeling 

theorem, provide optimal results in generating high-

quality keystreams for face and fingerprint image 

encryption. In contrast, the Cn⊙P2 graph, within the 

framework of the irregular edge labeling theorem, yields 

optimal results for iris image encryption. 

However, the effectiveness of this cryptosystem 

method varies depending on the type of graph used. This 

variation indicates that there are still open questions 

regarding the efficacy of other graph types in producing 

high-quality encryption. These findings highlight the 

potential for future research to explore other graph 

structures and their impact on encryption performance. 

Thus, our contribution not only offers a novel and 

effective method for biometric image encryption but also 

provides valuable insights for the future development of 

biometric security technology, suggesting new directions 

for further enhancing the robustness and security of 

encryption techniques. 
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