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Abstract: Researchers have proposed automated testing tools to minimise 

the effort and resources spent on testing GUIs. A relatively simple strategy 

employed by the proposed tools thus far is the observe-select-execute 

approach, where all of a GUI’s actions on its current state are observed, one 

action is selected and the selected action is executed on the software. The 

strategy’s key function is to select an action that may achieve new and 

desirable GUI states. Due to difficulties in comparing actions, most existing 

test generators ignore this step and randomly select an action. However, a 

randomly selected action has limitations. It does not test most parts of a GUI 

within a reasonable amount of time and there is a high probability that the 

same actions are re-selected. This reduces code coverage, thereby resulting 

in undetected failures. To overcome this limitation, the Q-Learning algorithm 

was proposed by several researchers to minimise randomness. The idea was 

to change the probability distribution over the sequence space. Instead of 

making purely random selections, the least frequently executed action is 

selected so that the GUI can be further explored. Q-Learning showed better 

results than the random exploration strategy but it also presented a 

weakness. Q-Learning’s reward function assigns the highest value to the 

least frequently executed action without taking into consideration its 

potential ability in detecting failures. Furthermore, the proposed 

techniques based on the Q-Learning algorithm do not consider context-

based actions. Thus, these techniques are unable to detect failures that 

occur due to the improper use of context data, which is becoming an 

increasingly common issue in mobile applications nowadays. We propose 

a tool, namely the Crash Droid, that allows the automation of testing 

context-aware Android applications. We utilise the Q-Learning algorithm 

to compare actions, including context-based actions, to effectively detect 

crashes and achieve a higher code coverage.  
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Introduction 

Smartphones have become a crucial part of our 

lifestyles. Mobile applications have transformed the way 

we perform daily activities, whether it’s ordering food, 

booking a flight, paying bills or and chatting with friends. 

Considering the fact that 3.2 billion smartphones were 

sold, 8.3 billion mobile subscriptions were registered, 

more than 3.14 million applications were developed and 

204 billion applications were downloaded worldwide in 

2019 (Statista.com, 2021d; 2021b; 2021c; 2021a), the 

significance of testing should not be neglected for quality 

assurance purposes. The quality of mobile applications is 

a key factor in determining user satisfaction. Poor 

usability would frustrate users and prompt them to 

uninstall an application. Frozen screens, crashes, 

unresponsiveness and high battery consumption can 

contribute to this frustration (Inukollu et al., 2014). 

Testing mobile applications is an expensive, time 

consuming and challenging task. One of the reasons is that 

mobile applications require frequent updates to improve 

user experience, fix bugs and compete for users’ attention. 

Frequently releasing updates shortens its development 

time, thereby making it harder to ensure the quality of 

mobile applications due to insufficient testing. Thus, 

researchers have suggested automation as a solution to 
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accelerate its development, in particular its testing 

process. Another reason is that context-aware applications 

are becoming increasingly common in mobile 

applications. Context-aware applications are difficult to test 

because changes in context data can affect software 

behaviour at any point during execution. Furthermore, 

context data is generally inaccurate, inconsistent and 

continuous, making the applications even more challenging 

to test than those without context data (Yue et al., 2016). 

Mobile applications are highly dependent on their 

Graphical User Interfaces (GUIs) due to their event-

driven nature and gesture-based interaction. For this 

reason, GUI testing often replaces system testing. Testing 

GUIs involves creating sequences of GUI events that 

exercise GUI widgets (i.e., test cases), executing those 

events (i.e., test execution) and monitoring resulting 

changes to the software state (i.e., test oracle) (Memon et al., 

2003; Nguyen et al., 2014) Even though the creation of 

test cases is associated with GUI widgets, research has 

shown that GUI testing is effective at finding both GUI 

and non-GUI faults (Robinson and Brooks, 2009). This is 

because the test cases do not only execute GUI codes but 

may also execute non-GUI codes. GUI testing can be used 

to identify security flaws, crashes and exceptions that 

occur while using mobile applications. All these require 

the simulation of user actions on the software and 

therefore automatic GUI testing needs to mimic human 

interaction with the GUI widgets. 

A relatively simple strategy used in automated GUI 

testing tools is the observe-select-execute approach. The 

strategy starts by launching the Application Under Test 

(AUT) and then proceeds by observing the GUI actions 

on the AUT’s current state, selecting an action from those 

observed actions and executing the selected action. The 

strategy’s key function is to select an action that may 

achieve new and desirable GUI states. Due to difficulties 

in comparing actions, most existing tools ignore this step 

and randomly select an action. However, for large GUIs 

with numerous and deeply nested actions, a random 

algorithm is unable to sufficiently test most of its parts 

within a reasonable amount of time. Furthermore, it does 

not explore the AUT systematically. Since the actions are 

chosen at random, there is a high chance that previously 

selected actions are selected again, resulting in lower code 

coverage and unrevealed failures. 

To overcome the limitations of the random algorithm, 

several researchers (Bauersfeld and Vos, 2012; 

Buzdalov and Buzdalova, 2013; Carino and Andrews, 

2016; Koroglu and Sen, 2018; Mariani et al., 2012) have 

proposed Q-Learning to improve the probability 

distribution over the sequence space by exploiting a 

learning engine. Instead of randomly selecting an action, 

the least frequently executed action is selected so that the 

GUI can be more thoroughly explored to maximise 

coverage and locate crashes. The prospect of discovery in 

such an approach is considered more “interesting” to a 

tester. However, these techniques select an action based 

solely on its frequency of execution without taking into 

consideration its potential ability in detecting and 

revealing failures. For example, let’s compare the actions 

of tapping a button to submit data to a database and 

tapping a button to reset data within the interface. If both 

these tapping actions have never been executed, the 

probability of each action to be selected would be equal if 

the selection is based solely on the frequency of 

execution. However, the former button executes a 

complex code where it might involve data transmission 

over the network and multiple servers. Hence, from a 

tester’s point of view, the action has a greater potential for 

bringing more interesting results than the latter. 

Unfortunately, the action’s ability to detect crashes is not 

considered. Furthermore, these techniques do not consider 

context-aware applications, therefore they may not detect 

defects that occur due to the improper use of context data.  

This is an ongoing research that aim to propose a testing 

tool that is able to automatically test Android applications. 

The Android platform is selected as it is the most popular 

mobile operating system in the world. As of July 2017, the 

number of available applications available on Google Play 

Store is 2.95 billion (Statista.com, 2019). Its popularity 

among developers is owing to the accessible development 

environment that is based on the familiar Java programming 

language as well as the availability of open-source libraries 

implementing diverse functionalities that accelerate the 

development process.  

We name our proposed tool Crash Droid. It is based 

on the observe-select-execute strategy and utilises that Q-

Learning algorithm to compare actions. However, we 

enhanced Q-Learning’s function by adding the ability to 

compare context-based actions as well, so as to improve 

its competency at exploring a GUI in order to effectively 

detect crashes and achieve a higher code coverage. In this 

study, the conceptual design of our proposed tool, Crash 

Droid that addresses the issue of improving the 

exploration strategy of the Q-Learning algorithm by 

selecting actions, including context-based actions, based 

on their potential abilities in uncovering failures.  

The Conceptual Design of the Tool 

We propose a tool named Crash Droid that interacts with 

and explores an AUT using the observe-select-execute 

strategy, where all the possible GUI actions on the AUT’s 

current state are observed, one action is selected based on its 

crash detection potential and the selected action is executed 

on the AUT. The tool employs the Q-Learning algorithm 

with the purpose of further exploring the GUI to maximise 

coverage and locate crashes. Figure 1 shows an overview of 

Crash Droid that consists of two phases, which are (1) the 

pre-testing phase and (2) the testing phase. The details of 

these phases are discussed below. 
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The Pre-Testing Phase 

Pre-testing addresses the issue that every action was 

previously treated to have the same potential. In this 

study, actions are differentiated by its weight, calculated 

before testing takes place. The weights are used as the 

basis in determining the initial action value, which could 

potentially speed up the crash of an AUT. The weight is 

calculated based on two categories of metrics: (1) Non-

context-aware and (2) context-aware. These metrics are 

extracted from the action’s underlying code. The non-

context-aware metric is related to the complexity of the 

code and the number of called functions, also known as 

the Response For Call (RFC). The complexity of the code 

is calculated using the cyclomatic complexity formula 

proposed by McCabe. The context-aware metric is related 

to the network and GPS used by the code. They can be 

calculated using their related functions, such as: 

for GPS: 

 

• getMaxSatellites () 

• getSatellites ()  

• requestLocationUpdates () 

 

for network: 

 

• httpClient.execute (httpPost) 

• httpResponse.getEntity () 

 

The process of calculating the weight is discussed below. 

Weight Calculation Process 

Consider the actions and their corresponding values 

for the metrics Response for Call (RFC), Complexity of 

Code (CC), number of network-related functions (Net) 

and number of GPS-related functions (GPS). Table 1 

shows the metric values of actions in a sample application. 

The Response for Call (RFC) Weight of an Action 

The RFC weight of an action Ai is expressed as the 

number of functions called by its code relative to the 

highest number of functions called by an action in the 

AUT. The RFC weight, WrfcAi, is computed by dividing 

the number of functions called by the code in Ai by the 

highest number of functions called by an action in the 

AUT. So, if action Ai calls Nrfc functions and the highest 

number of functions called by an action in the AUT is 

Mrfc, then WrfcAi is calculated as:  

 

𝑊𝑟𝑓𝑐𝐴𝑖 = 𝑁𝑟𝑓𝑐 ÷𝑀𝑟𝑓𝑐 (1) 

 

where: 

 

Nrfc - number of functions called by the action Ai 

Mrfc - highest number of functions called by an action 

in the AUT  

 

The weight Wrfc a0 of action a0 in Table 1 is 0.8750 as 

shown in Table 2. 

The Cyclomatic Complexity (CC) Weight of an 

Action 

The cyclomatic complexity metric determines the 

complexity of a code, The cyclomatic complexity 

weight of an action Ai is expressed as the complexity of 

its code relative to the highest complexity among all 

actions in the application. The weight, WccAi, is 

computed by dividing the complexity of action A i by 

the highest complexity of an action in the AUT. 

  

𝑊𝑟𝑓𝑐𝐴𝑖 = 𝑁𝑐𝑐 ÷𝑀𝑐𝑐 (2) 

  

where: 

  

Ncc is the complexity of action Ai  

Mcc is the highest complexity of an action in the AUT 

 

The weight Wcca0 of action a0 in Table 1 is 0.3750 as 

shown in Table 2.  

The Network-Related Function Weight of an Action 

The network-related function metric, which is a 

context metric, determines the network used in a code. 

The network-related function weight of an action Ai is 

expressed as the number of network-related functions in 

its code relative to the highest number of network-related 

functions in the code of an action in the AUT. The weight 

WnetAi is computed by dividing the number of network-

related functions in action Ai by the highest number of 

network-related functions in an action in the AUT.  

  

𝑊𝑛𝑒𝑡𝐴𝑖 = 𝑁𝑛𝑒𝑡 ÷𝑀𝑛𝑒𝑡 (3) 

 

where:  

 

Nnet = The number of network-related functions in 

action Ai 

 Mnet = The highest number of network-related functions 

in an action in the AUT 

 

The weight Wnet a0 of action a0 in Table 1 is 0 as shown 

in Table 2.  

 

The GPS-Related Function Weight of an Action 

The GPS-related function metric determines the use of 

GPS in a code. The GPS-related function weight of an 

action Ai is expressed as the number of GPS-related 
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functions in its code relative to the highest number of 

GPS-related functions in the code of an action in the AUT. 

The weight WgpsAi is computed by dividing the number of 

GPS-related functions in action Ai by the highest number 

of GPS-related functions in an action in the AUT. 

 

gps gps gpsW Ai N M=   (4) 

 

where:  

 

Ngps = The number of GPS-related functions in action Ai 

Mgps = The highest number of GPS-related functions in 

an action in the AUT 

 

The weight Wgps a0 of action a0 in Table 1 is 0 as shown 

in Table 2.  

The weights of each action in the sample application 

given in Table 1 for the metrics RFC, Cyclomatic 

Complexity, number of related Network-related 

functions and number of GPS-related functions are 

presented in Table 2. 

For m metrics, the total weight AWij of an action Ai is 

computed as follows:  

 

1

m

j ij

ij

Wx A
AW

m

=
=


 (5) 

 

where: 

xj = The action metric 

m = The total number of metrics 

 

The maximum total weight of an action is 1, 

meaning it is the action with the highest metric value 

in the AUT. A weight of 0 means that the metric is not 

applicable in this action. 

The calculated weight values of actions in the sample 

application for each of their corresponding metrics and the 

total weight of each action are given in Table 2. 

The Testing Phase 

The automated testing of an AUT takes into 

consideration both non-context-aware and context-aware 

applications. Crash Droid employs the Q-Learning 

algorithm to select the action with the highest crash-

detection potential. If the selected action is context-aware, 

the environment requires some adjustment prior to its 

execution in order to test the context-aware attribute. The 

Q-Learning algorithm is a model-free reinforcement 

learning technique. In Q-Learning, an agent goes through 

numerous trials of interactions with a complex and 

uncertain environment. The agent learns the optimal 

action-selection procedure through those interactions to 

find the best action that would produce the desired state. 

The ultimate goal of the learning process in the long run 

is to maximise the total reward from every successive 

interaction with an AUT. In the context of our work, 

Crash Droid plays the role of the agent that goes through 

the trial-and-error interactions with an AUT (i.e., the 

environment) with the intention of causing the AUT to 

crash. The agent starts with limited knowledge about an 

AUT. Then, through the exploration and exploitation of 

the AUT, the agent learns and gains more knowledge. 

A selected action is assigned a value that is determined 

by the Q-value function, Q. The process of selecting 

the best action is defined by the value of Q. Upon 

executing the action, the agent is awarded with a 

reward that is determined using the reward function R. 

The definitions of the Q-value function Q and the 

reward function R are described below. 

Reward Function 

The reward function calculates the reward value of an 

action that transforms an AUT’s current state into a new 

state. The reward function is defined to enable the agent 

to compare the crash detection potentials of actions. A 

higher reward value is awarded to actions with more 

potential than those with less potential. We define the 

reward function R for taking action  in state s of an AUT 

that leads to state s’ as follows: 

 

',

' 0

( , , ') 1
s

init if xa

R s a s
a otherwise

xa

 =


= 




  (6) 

 

where: 

init = The initial default reward 

 x = The number of times action  has been executed in 

state s  

 s = The number of actions in state s that were not in 

state s 

 

In this study, the initial default reward uses a value that 

is different from those used in other existing studies. 

Instead of a constant value, as used by many 

researchers, we use the total weight value plus one. The 

objective is to guide the selection of actions from as 

early as the first interaction with the AUT to speed up 

crash detection. The reward for subsequent activities is 

awarded based on actions that were less-frequently 

selected during the testing process. 

The more frequently an action is executed, resulting in 

a new state with fewer actions, the less appealing it would 

be to the agent. The reward function in this study will 

explore actions with greater potential and were less-

frequently explored in the past as they hold high reward 

values. The frequency criterion ensures that an action is 

not selected repeatedly when exploring an AUT. 
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Fig. 1: Overview of Crash Droid 

 
Table 1: Actions and their corresponding metric values 

Action RFC CC Net GPS 

a0 7 3 0 0 

a1 6 1 0 0 

b0 7 4 0 0 

b1 4 8 0 0 

b2 8 1 0 0 

c0 6 1 0 0 

c1 4 2 0 0 

 
Table 2: Actions and their corresponding metric weights 

Actions RFC weight CC weight Net weight GPS weight Total weight 

a0 0.8750 0.3750 0 0 0.3125 

a1 0.7500 0.1250 0 0 0.2188 

b0 0.8750 0.5000 0 0 0.3438 

b1 0.5000 1.0000 0 0 0.3750 

b2 1.0000 0.1250 0 0 0.2813 

c0 0.7500 0.1250 0 0 0.2188 

c1 0.5000 0.2500 0 0 0.1875 

 
Table 3: Total weights and initial q-values of actions 

Action RFC weight CC weight Net weight GPS weight Total weight Initial Q-value 

a0 1 1 0.5 1 0.8750 1.8750 

b0 0.6 0.5 1 0 0.5250 1.5250 

b1 0.6 0.5 1 0 0.5250 1.5250 

b2 0.2 0.5 0 0 0.1750 1.1750 

 

Q-Value Function 

The Q-value function, Q calculates the value of an 

action , which is present in a particular state s of an AUT. 

It uses the value of the immediate reward for executing 

action  and the optimal future reward associated with 

action . This function is crucial because it allows the agent 

to plan ahead when deciding what action to select in a 

particular state. The Q-value function is defined as follows: 

 
.( , ) ( , , ') .max ' ( ', *)Q s a R s a s a As Q s a= +   (7)  
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where: 

Q(s, a) = The value of action  that is 

present in state s 

R(s, a, s) = The reward value for executing 

action  in state s 

max*As Q(s, a*) = The maximum action value in the 

state that results from executing 

action ; and 

 

 is the discount factor parameter The discount factor 

determines the effect of future rewards in calculating the Q-

value function for an action  and its value lies within the 

range of [0-1]. A value of 0 instructs the agent to consider 

only the current reward when selecting an action, whereas a 

value approaching 1 indicates high importance being given 

to an action that leads to high rewards in future states. 

The Jaccard Distance  

In general, when observing actions in the testing phase, 

the action that carries the highest weight will be selected. 

However, there is a possibility that several actions might 

have the same weight value. In this study, the Jaccard 

distance is employed to prevent the tool from randomly 

selecting an action among those of the same weight. The 

Jaccard Distance is used to compare similarities and 

diversities between sample sets. We use the Jaccard Distance 

to measure similarities between actions using the four 

metrics. It is calculated using the following Eq. 8: 

 

Jaccard Distance (Pa, Pb) =1
a b

a b

P P

P P
−  (8) 

 

where, Pa and Pb represent actions that consist of 

different sets of metrics. The value of the Jaccard 

Distance may vary between 0 and 1. A distance value 

of zero means that both actions are the same. A distance 

value of 1 indicates that there is no similarity between 

the two actions. 

Jaccard Distance Calculation Process 

Consider testing an AUT that has five states as in 

Fig. 6. The states are represented as circles. The transition 

from one state to another upon the execution of an action 

is shown by the arrows. Based on the figure, executing 

action a0 transitions the state from a to b. The possible 

actions in state b are b0, b1 and b2 and there are no 

available actions in states d, e and f.  

The total weight is calculated as described earlier in 

the Weight Calculation Process subsection. The initial Q-

value is calculated by adding 1 to the total weight. The 

possible actions to select in state b are b0, b1 and b2. From 

the table, the highest Q-value among them is 1.5250. 

However, the agent is unable to select an action because 

there are two actions with that value, which are b0 and b1. 

To avoid randomly selecting b0 or b1, the Jaccard 

Distance is used to determine which of the two actions 

has a better potential. In order to decide whether to 

choose b0 or b1, we calculate the similarity score 

between a0 and b0 as well as the similarity between a0 

and b1 using the Jaccard Distance. Then we compare 

the two similarity scores and select the action with the 

highest score. 

First, we calculate the similarity score between a0 and 

b0. Figure 7 shows the codes and the corresponding 

metrics for a0 and b0. Based on the given information, we 

calculate the similarity score for each metric and obtain 

the average score.  

Similarity Score for RFC 

A total of five and three functions are recorded for a0 

and b0 respectively. Two of the functions are used in both 

a0 and b0. Thus, the Jaccard Distance (a0, b0) for RFC = 

1 - (2/6) = 0.67. 

Similarity Score for CC 

A total of three and one conditions are recorded for a0 

and b0 respectively. They share no common conditions. 

Thus, the Jaccard Distance (a0, b0) for CC = 1 - (0/4) = 1. 

Similarity Score for Net 

A total of one and two network-related functions are 

recorded for a0 and b0 respectively. One of the functions 

is used in both a0 and b0. Thus, the Jaccard Distance (a0, 

b0) for Net = 1 - (1/2) = 0.5. 

Similarity Score for GPS 

A total of two GPS-related functions is recorded for a0 

and no function is recorded for b0. Thus, the Jaccard 

Distance (a0, b0) for GPS = 1 - (0 /2) = 1. 

Average Similarity Score 

Average Jaccard Distance (a0, b0) = (0.67 + 1 + 0.5 + 

1) / 4 = 0.7925. 

Next, we calculate the similarity score between a0 and 

b1. Figure 8 shows the codes and the corresponding 

metrics for a0 and b1.  

The similarity scores are 0.67, 0.67, 0.5 and 1 for RFC, 

CC, Net and GPS respectively. The average similarity 

score between a0 and b1 is 0.71. The two average 

similarity scores (i.e., 0.7925 and 0.71) indicate that a0 is 

not similar to either b0 or b1. However, b0 has a higher 

similarity score to a0 than b1, thereby indicating that b0 has 

a higher potential for crash detection. Therefore, in this 

case b0 is selected by the agent. 

Example 

Consider an Android application that has states A, B, 

C, D, E, F, G and H as shown in Fig. 9. State A has two 
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possible actions (a0 and a1), state B has three (b0, b1 and 

b2) and state C has two (c0 and c1). States D, E, F, G and 

H are leaf nodes that represent the results of executing 

the termination actions. The transitions from one state 

to another upon execution of the actions are shown by 

the arrows. Based on the figure, executing action a0 

transitions the state from A to B. The possible actions 

in state B are b0, b1 and b2, the possible actions in state 

C are c0 and c1 and there are no possible actions in 

states D, E, F, G and H. 

Instead of using a constant value, our approach 

calculates the initial Q-value by adding 1 to the total 

weight. The calculation of the total weight is described in 

the Weight Calculation Process subsection. The initial Q-

values for the actions in Fig. 9 are shown in Table 4. 

We illustrate the testing phase of Crash Droid based 

on the information given in Fig. 9 and Table 4. At the 

start of episode 0, which is the beginning of the testing 

phase, the agent is in state A. State A has two possible 

actions, which are a0 and a1. Since a0 holds the higher 

Q-value, the agent selects and executes a0. This causes 

a transition from state A to state B. Since B is not a 

terminal state, the reward for executing a0 is calculated 

as defined in Eq. 6 and a new Q-value for a0 is 

calculated as defined in Eq. 7. The agent then continues 

in State B that has three actions, which are b0, b1 and 

b2. Since b1 holds the highest Q-value, the tool selects 

and executes b1. This causes a transition from state B 

to state E. The reward and Q-value for b1 are set to 0 

since state E is a terminal state. The agent repeats this 

process for each episode until it executes a termination 

action that closes the application. Table 5 shows the 

reward and Q-value for each action after each episode. 

Empirical Evaluation  

We conducted an experiment to investigate the 

significance of the difference in the potential abilities 

of actions when testing Android applications by 

comparing the percentages of code coverage achieved 

by the approaches under comparison. The goal of the 

experiment is to answer the question, “Is the Crash 

Droid more effective than the approach under 

comparison?”. We compared our approach with 

another approach proposed by Adamo et al. (2018), 

namely the Auto Droid. The approach under 

comparison implements the Q-Learning algorithm for 

automatically generating test cases in Android 

applications. However, the approach ignores the 

potential ability of each action, which is the essence of 

our approach. Four subject applications were selected 

in the experiment. The percentages of code coverage of 

the subject applications for each approach were 

collected and used to evaluate the effectiveness of the 

approaches under comparison.  

Subject Applications 

The selection of subject applications is based on two 

considerations, which are, “Are the selected subject 

applications representative of the type of applications 

for each tool?” and “Are they developed by an 

independent source?” The first consideration is to 

ensure that the subject applications are taken from a 

domain that represents the intention of each tool. The 

second consideration is to avoid bias by an interested 

party. An independent source of applications is the 

open-source community. Hence, in this experiment, 

four subject applications from different categories were 

selected from the literature based on the above 

considerations. 

The selected subject applications are Tomdroid, 

Loaned, SimpleDo and Moneybalance. Tomdroid is a 

note-taking application. Loaned is an inventory app to keep 

track of personal items. SimpleDo is a to-do list application. 

Moneybalance tracks expenses shared by groups of people. 

Table 6 shows the characteristics of the subject applications 

comprising the number of lines, methods, classes and 

bytecode blocks in each application. 

Experimental Setup 

We implemented both approaches in the same tool, 

Crash Droid, to minimise the effect of different tool 

implementations on the results of the experiment. 

Crash Droid takes instrumented APK files as input to 

test subject applications and generates code coverage 

reports. The code coverage reports are generated using 

the JaCoCo plugin. The experiment runs Android 7.0 x 

86 emulators on Windows 10 20H2 with 8 GB RAM. 

Table 7 shows the configuration parameters used to 

execute Crash Droid. 

We used a similar experimental setup as described in 

Adamo et al. (2018), where we ran each approach on each 

subject application for two hours (i.e., 120 min). The 

algorithms were run ten times on each subject application 

to minimise the impact of randomness. 

 

Table 4: Initial Q-values of actions 

Action Initial Q-value 

a0 1.3125 

a1 1.2188 

b0 1.3438 

b1 1.375 

b2 1.2813 

c0 1.2188 

c1 1.1875 
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Table 5: Examples of rewards and Q-values for six episodes 

 Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 Episode 6 

 ----------------------- ---------------------- ---------------------- ---------------------- ----------------------- ---------------------- 

Action Reward Q-value Reward Q-value Reward Q-value Reward Q-value Reward Q-value Reward Q-value 

a0 3 3.687 1.5 2.1719 1 1.6407 0.75 0.75 0.75 0.75 0.75 0.75 

a1 - 1.2188 - 1.2188  1.2188  1.2188 2 2.6094 1 1.5938 

b0 - 1.3438 0 0 0 0 0 0 0 0 0 0 

b1 0 0 0 0 0 0 0 0 0 0 0 0 

b2 - 1.2813 - 1.2813 0 0 0 0 0 0 0 0 

c0 - 1.2188 - 1.2188  1.2188  1.2188  0 0 0 

c1 - 1.1875 - 1.1875  1.1875  1.1875  1.1875 0 0 

 
Table 6: Characteristics of Subject Application 

Application name # Lines # Methods # Classes # Blocks 

Loaned v1.0.2 2837 258 70 9781 

Moneybalance v1.0 1460 163 37 4959 

Tomdroid v0.7.2 5736 496 131 22169 

SimpleDo v1.2.0 1259 88 31 5355 

 
Table 7: Test generation parameters 

Parameter Crash Droid Auto Droid 

Running time 120 min 120 min 

Initial Q-value 1 + total weight 500 

 

 

 
Fig. 6: An AUT represented in terms of states and actions 

 

 
 

Fig. 7: Source codes for a0 and b0 
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Fig. 8: Source code for a0 and b1 

 

 
 

Fig. 9: Example application in terms of states and actions 

 

Result and Discussion 

Figure 10 shows a box plot of the code coverage 

achieved by each approach for all the subject applications 

on all runs. Crash Droid has a higher median code 

coverage compared to Auto Droid for every subject 

application. Crash Droid also consistently achieved a 

higher code coverage than Auto Droid for every subject 

application. The Mann-Whitney U test was performed to 

statistically demonstrate the significant difference 

between the distribution of the code coverage percentages 

achieved by Crash Droid and Auto Droid. The Mann-

Whitney U test was chosen as it is a non-parametric 

statistical hypothesis test that can be used for any 

population distribution with two samples that are not related 

or that are independent. Furthermore, it is well-known that 

non-parametric tests are most appropriate when sample sizes 

are small (i.e., <100). To apply the Mann-Whitney U test, the 

null hypothesis is formulated as follows: 

 

H0: There is no significant difference between Crash 

Droid and Auto Droid in terms of code coverage 

HA: The code coverage of Crash Droid is greater than 

the code coverage of Auto Droid 

 

The level of significance for the hypothesis tests was 

set to  = 0.05 for a 2-tailed test. The Mann = Whitney U 

test result indicates that the differences in code coverage 

A

B

C

D

E

F

G

H

a0

a1

b0

b1

b2

c0

c1
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of both techniques were statistically significant (U = 

1223.5, p = 0.0000000273) at the p<0.05 significance 

level. Also, Crash Droid has a higher median code 

coverage compared to Auto Droid as shown in Fig. 11. 

Thus, the result suggests rejecting H0 in favour of HA. 

Based on the statistical test done, it can be concluded that 

at the 0.05 significance level, Crash Droid is more 

effective than the approach under comparison. 

Threats to Validity 

This section discusses the threats that can compromise 

the validity of an experimental study. They are the threats 

to the internal, external and conclusion validities.  

Threats to internal validity are implementation effects 

that can bias the results. Faults in Crash Droid might cause 

such effects. To reduce these threats, Crash Droid was 

tested and manually inspected using the application that 

we developed for our case study.  

Threats to external validity primarily involve the 

degree to which the subject applications are representative 

of true practice. Mitigation of these threats has been 

previously discussed in the Subject Applications section.  

Finally, the threats to conclusion validity relate to the 

validity of the statistical tests. To reduce these threats, the 

measurements must be correct and statistical tests must be 

used correctly. In order to ensure that the measurements were 

correct due to the impact of randomness in both approaches, 

the experiment for each subject program was performed ten 

times. In the case of statistical tests, we have satisfied the 

statistical test assumptions of the Mann-Whitney U test. 

 

 
 

Fig. 10: Code coverage across all applications and all runs 

 

 
 

Fig. 11: Medians of the two approaches
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Related Work 

Research has shown that most GUI testing studies by 

the research community rely on the presence of a model 

such as the event flow graph and the finite state machine 

to automatically generate test cases (Banerjee et al., 

2013). A model is crucial when aiming for test 

automation. However, practitioners prefer Script-based 

Language and the Capture and Replay Paradigm. The 

techniques preferred by practitioners offer limited test 

automation because they require manual intervention to 

create the test script. This difference in preference 

between practitioners and researchers creates a gap. The 

research community aims for automation, where a model 

is essential. However, creating a model for GUI software 

is time consuming and resource intensive, thereby 

discouraging practitioners (Memon et al., 2003). 

Various degrees of automation are proposed by GUI 

testing researchers. There are techniques that are able to 

automate the test execution process but require human 

intervention to generate the test (Amalfitano et al., 2017). 

Two popular techniques in this category of automation are 

the Script-based and the Capture and Replay techniques. 

Alternatively, techniques with a higher degree of 

automation automates both the test generation and test 

execution. For the latter, test generation can be conducted 

offline or online. Using offline test generation, test cases 

must be generated before they are run. Meanwhile, with 

the online test generation, test cases are generated on-the-

fly during the test execution. In other words, test cases are 

executed as they are generated. This online technique 

follows the strategy of observe-select-execute, where the 

possible GUI actions on an AUT’s current state are 

observed. Using the selection strategy under 

consideration, one action is selected and the selected 

action is executed on the AUT. The advantages of this 

strategy are that no extraction of the GUI model is 

required and GUI changes in the software have no effect 

on the testing. Random testing has been employed in GUI 

testing research for many years. Fuzz testing is used to test 

the robustness of Windows NT applications (Forrester 

and Miller, 2000). Robustness is achieved if during the 

test, the software does not crash or hang. Fuzz testing is 

also applied in the UI/Application Exerciser Monkey tool. 

It is a command-line tool that includes the Software 

Development Kit (SDK) for Android (“UI/Application 

Exerciser Monkey,” 2022). It generates pseudorandom 

streams of user events such as clicks, touches, gestures 

and a number of system-level events. (Wetzlmaier et al., 

2016) developed a framework for random or monkey GUI 

testing that offers reusable components and a pre-defined, 

generic workflow with extension points for developing 

custom-built test monkeys. It supports customising SUT-

specific test monkeys that randomly explore GUIs. 

The random approach, however, does not explore an 

AUT systematically. As the actions are chosen at random, 

there is a high chance that actions are selected repeatedly, 

resulting in a lower code coverage. Also, for large GUI 

applications with numerous and deeply nested actions, a 

random algorithm is unable to test most parts of the GUI 

within a reasonable amount of time. To gain access to 

deeply nested actions and to select less-frequently 

executed or unexecuted actions, the probability 

distribution of actions over the sequence space needs to 

be changed. This can be achieved by using a 

reinforcement learning approach, in particular the Q-

Learning algorithm. Q-Learning is applicable to dynamic 

GUI testing, as the model of the GUI is unknown until it 

is explored. Furthermore, the actions are generally 

deterministic and can be represented as a Markovian 

decision process. 

Bauersfeld and Vos (2012; Esparcia-Alcázar et al., 

2016) investigated the use of the Q-Learning algorithm in 

TESTAR (TEST Automation at the user inteRface level). 

TESTAR is an open-source tool that performs automated 

testing via the GUI itself, using the operating system’s 

Accessibility API to recognise GUI controls and their 

properties and enable programmatic interaction with 

them. The main idea of the study was to change the 

probability distribution over the sequence space. Instead 

of a purely random selection, Q-learning selects the least 

frequently executed action with the purpose of exploring 

the GUI. The result from the investigation showed that 

employing the Q-learning algorithm did not significantly 

crash the AUT quicker but the exploration on average 

executes about 2.5 times as many different actions than 

the technique under comparison. 

 Mariani et al. (2012) proposed an automatic black-

box testing tool named the Auto Black Test that 

automatically generates GUI test sequences. It runs on the 

IBM Rational Functional Tester. The tool works by 

exploring a GUI and assigning values to edges based on a 

reward function and a Q function. The reward function 

measures the amount of change that takes place in a GUI’s 

state. The more the changes, the higher the reward. 

Adamo et al. (2018) described an approach that 

implements the Q-Learning algorithm for automatically 

generating test cases in Android applications. The 

approach generates test cases by selecting an event with 

the highest Q-value among a set of available events in 

that particular state. Using this approach, the reward 

function assigns its highest reward when an event is 

executed for the first time. 

The DroidBotx (Yasin et al., 2021) is another tool that 

was developed for generating GUI test cases based on the 

Q-Learning algorithm. When generating test cases, the 

tool selects actions from the new states with the aim of 

maximising the instruction, method and activity coverage 

by minimising any redundant execution of events. Again, 

the Q-function calculates the expected future rewards for 

actions based on the set of states it visited. 
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We extend and adapt the work of Bauersfeld and Vos 

(2012; Esparcia-Alcázar et al., 2016) to automate Android 

mobile GUI testing that includes the generation and the 

execution of test cases. Based on the literature, the Q-

Learning algorithm was used in GUI testing and it showed 

better results at improving the random exploration strategy. 

The core purpose of using Q-Learning is to intelligently 

guide the action selection with the purpose of guiding the 

exploration of the GUI to minimise the selection of 

previously-selected actions and increase code coverage. 

However, a common limitation of previous techniques is that 

the highest value is assigned to the action that is executed for 

the first time. Besides, the selection of actions during test 

execution is only based on the least frequently executed 

action without taking into consideration its potential with 

respect to testing. Without this consideration, previous 

techniques assign a constant value to the initial action. 

Hence, in the initial state of the test execution, the selection 

of the first action is done randomly. In our study, we are 

proposing an approach that takes into consideration the 

potential of every action. 

Conclusion and Future Work 

We have presented the conceptual design and the result 

of initial experimental study of Crash Droid. Crash Droid is 

an automated Android GUI testing tool based on the Q-

Learning algorithm. This study describes the ongoing 

research that aims to improve the exploration strategy of the 

Q-Learning algorithm by providing a mechanism to compare 

the ability of every action in detecting crashes. Our initial 

investigation shows that the ability to differentiate the 

potential of every action helps to achieve higher code 

coverage than the one that ignore it. In future, we will 

investigate the capability of our approach in detecting 

crashes. Also, we will investigate the use of other metrics for 

calculating the weight of every action, in particular the 

metrics under the context-aware metric. 
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