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Abstract: To ensure data's reliability and credibility in Wireless Sensor 

Networks (WSNs), we provide an effective Credence-aware in-network 

aggregation design in persistent wireless sensor networks. This approach was 

motivated by a well-studied reputation and Credence relationships within 

social sciences. The proposed method uses an efficient CSDA algorithm to 

get more accurate results in terms of response time, penalty weights, the 

number of nodes, detection accuracy, etc. During the aggregating process, 

the Credence evaluation technique obtains benefits by identifying sensor 

node reliability, distinguishing illegal nodes, and filtering out erroneous data. 

The main objective of the work is to offer the most accurate answer possible 

to the user also while ensuring network health by identifying possibly 

compromised nodes. Experimental results show strategy is effective. 
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Introduction 

Since increasing usage of Wireless Sensor Networks 

(WSNs) throughout everyday tasks grows in all of the 

commercial and defense sectors, developing a highly 

effective approach for secure query processing is 

becoming extremely relevant. Among the main query 

types for obtaining and analyzing sensor data, aggregation 

queries are resource-constrained enough to integrate 

within wireless sensor nodes and typical tree-based 

structures, for example, depending on the local sensor 

readings, an aggregation node evaluates a partial 

aggregate result. in addition to the readings provided by 

their children nodes, eventually sends the outcome to a 

higher-level parent node. Throughout this procedure of in-

network aggregation, every node simply needs to send a 

single message of a fixed size to its parent, saving 

valuable bandwidth resources from restricted WSNs. 

The safety component of the majority of existing 

sensor query methods is assumed that sensor nodes agree 

and are not deceptive. Wireless sensors are utilized in a 

variety of hostile conditions, including the battlefield and 

they are subject to a variety of threats. When a node is 

hijacked or hacked, the premise that all nodes are always 

cooperative is incorrect. Furthermore, because of the 

complicated structure with unexpected undesirable 

behaviors faced on WSNs, Conventional encryption and 

verification processes may give a limited degree of 

assurance but cannot provide a practical solution. For 

instance, when a node with appropriate encryption keys is 

easily compromised, this may easily implant fake sensor 

values or alter the aggregation value. The receiving nodes 

may utilize message encryption and verification to 

determine whether the messages from a specific node and 

were not been modified throughout propagation, 

However, they are unable to establish whether the sensor 

reading received is accurate. When using such a network 

aggregation approach, the problem becomes even worse 

since each node must conduct local aggregate depending 

on sensor readings received since each node must 

perform local aggregation derived from remotely 

sensed readings Whereas if the aggregation node 

purposefully updates the aggregate result and then 

subsequently transmits any modified data through the 

network, the receiving node is unaware. In most 

circumstances, a compromised aggregator has a bigger 

security impact than fake sensor readings 

Outlier identification (Wu et al., 2007) is a technique 

that compares collected data to a set of values basis on 

previous domain expertise about the physical process 

being observed to determine if it corresponds. The data 

generator, on the other hand, is unable to detect a falsified 

sensor reading due to a lack of domain expertise. Incorrect 

sensor readings could be generated and then recognized 
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automatically if domain knowledge is specified. For 

instance, spatially adjacent sensor data may be employed 

to determine anomalous (false) results on spatially 

continuous processes like temperature. Temporal 

measurements can be used to describe temporally 

continuous phenomena such as humidity. 

In rare situations, an outlier detector that relies entirely 

on geographically or temporally close observations may 

mistakenly label a valid reading as an exception. Consider 

how such a WSN may be used to detect a fast-moving 

vehicle. In an instance that sensor node A recognizes a 

vehicle, depending on present nor prior sensor node A 

data can produce equivalent vehicle detection accuracy in 

this instance, spatially and temporally near observations are 

typically favorable. When node A identifies a vehicle, which 

is certainly possible it has already been noticed by another 

neighboring node nearby. This type of historical data can be 

used to identify fake sensor readings. Fortunately, the 

majority of physical events detected by such a WSN are 

temporally, geographically, or spatiotemporally consistent, 

an outlier detection approach may be applied. 

As partial aggregation results of different sub-

networks include significantly greater uncertainty about 

sensor data from nearby sub-networks, an outlier detector 

can identify incorrect sensor data, However, it is unable 

to determine whether a partial aggregate result is 

incorrect. Gathering raw readings and evaluating them in 

a centralized area is a straightforward approach. The naïve 

technique, on the other hand, can considerably increase 

wireless transmission latency while sacrificing the 

benefits of in-network aggregation processing.  

Credence-Aware In-Data Aggregate technique for 

resilient WSNs under this study by which Credence 

assessment technique can be applied to determine the 

integrity of sensor nodes, differentiate unauthorized nodes 

from normal nodes, as well as filter out fake data 

throughout the fusion process. This technique has 

differentiated itself in the social sciences by its high 

reputation and Credence model. The primary purpose of 

this study by provide the most specific response to the user 

while also monitoring network health and identifying 

possibly compromised nodes. In the social sciences, the 

method is distinguished by a high reputation and a Credence 

model. The objective of this study is to offer the user the most 

accurate answer possible while monitoring network health 

by identifying potentially affected nodes. 

Review of Literature 

Paper (Hu and Li, 2011) authored by B. Sun, X. Jin, K. 

Wu, Y. Xiao Suggested the mechanism based on the EKF 

(Extended Kalman Filter) for detecting the FID (False 

Injected Data). This method monitors the given sensor 

node which helps in predicting the aggregated value in the 

future. Here, a range is determined to detect the FDI. The 

method of EKF is also used for creating the LDM 

(Location Detection Mechanism). LDM helps in finding 

the difference between the emergency event and the 

malicious events. However, the FDI (False Data 

Injection) is considered only during the data forwarding. 

Paper (Cao and Yu, 2011) H. Cam, S. introduces the 

Data Aggregation and Authentication (DAA) protocol, 

which integrates FDI with DA as well as confidentiality. 

To back the DA with the FDI, a monitoring algorithm is 

also introduced. The data aggregator's monitoring nodes 

do the DA as well as compute its message Authentication 

Code (AC) to verify the data at their respective pair-mates. 

Between the two data aggregators, the SN (Sensor Node) 

checks the DA upon this Encrypted Data (ED). The Data 

Packet (DP) is coupled to two messages-AC, each of which 

contains a T+1 authentication code. Up to T comprised 

nodes, the DAA detects the FD (False Data) injected, and 

these data are not taken further hence these are omitted. 

Paper (Bidai et al., 2011) Yue-Hsun Lin, Shih-Ying 

Chang, and Hung-Min Sun proposed a method for 

multiple applications namely Concealed Data 

Aggregation (CDA) - work in a multiple application also 

known as CDAMA. This approach is intended for use in 

multiple application environments. In this case, The BS 

(Base Station) in this scenario eliminates the Application 

Specific (AS) information through the collected 

ciphertexts, limiting the risks of compromising attacks in 

a sole application environment. Eventually, it diminishes 

any destruction caused by illegal (unauthorized) 

gatherings. This method, however, is only relevant when 

the number of applications is less. 

To get rid of the above issue, (Ozdemir, 2007) Chien-

Ming Chen, Yue-Hsun L have been presented, the method 

known as Recoverable Concealed-DA (Data Aggregation) 

and firmly known as RDCA. This method is applicable for a 

large number of WSNs (unlike the previous method). The 

special feature of the scheme is that the BS recovers all the 

sensing data instead of summarized results. However, the 

Transmission Overhead (TO) remains acceptable. The ASS 

(Aggregation Signature Scheme) is used to guarantee the 

data's validity and integrity; such a system is less costly than 

the other model (compared above). 

To provide security by mapping the reputation and the 

Credence of the node, paper (Sun et al., 2007) Mohsen 

Rezvani, Student Member, IEEE, Aleksandar Ignjatovic, 

Elisa Bertino, Fellow, IEEE, Sanjay Jha, proposes 

improvised Iterative Filtering, the approach is known as 

SDAT, which stands for SDA technique for WSN in the 

presence of Collision Attack. The data that arrives from the 

Comprised-Nodes is filtered here. Filtration is implemented 

based on the data's Credence worthiness, which is 

determined by computing the difference between the two 

rounds, i.e., data sensed in the present round and data 

sensed in the prior round. The accuracy of the IF 

algorithm is mostly determined by the initial Credence 

provided to each node. In the first round, all nodes are 
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Credenceed and fairly weighted. This phenomenon gives 

the attacker the ability to insert corrupt data. The main 

problem with this technique is that the CA is handled 

alongside the assumption of AN (Aggregator Nodes). As 

a result, threats are only addressed at the source nodes.  
Cam and Ozdemir (2007) Choudhari et al. (2017) 

Mundada proposed an advanced collision attack against 
the several existing iterative-filtering algorithm, these 
algorithms are mainly based on the False Data (FD) 
injection. The method implied is the advanced version of 
iterative filtering, the algorithm is presented along with 
the novel scheme for revocation as well as the CD 
(Collision Detection), these are based on the initial 
approximation of the aggregated value and the difference 
between each reading. 

Raha et al. (2011), introduced a novel optimization 
policy to balance the trade-off between energy and 
security aspects. 

Choudhari et al. (2017), the conventional methods 
adopted for securing the WSN vulnerability-based attacks 
introduces delay, which brings congestion in the routing 
flow as well as influence the quality of service. 

Unfortunately, the previous study did not account for 

more complex attack circumstances. False data insertion 

may be used to conduct highly complex attacks against 

WSNs using several compromised nodes. When the 

attackers may have a better understanding of the 

aggregation process and its configuration. 

Credence-Aware in-Data Aggregation 

Approach 

System Modeling 

A network system is analyzed in this case, with the 
specified nodes arranged using the clustering algorithm 
(Cam and Ozdemir, 2007). In our system model, we 
utilized a single linked cluster with a huge amount of 
nodes.; the main goal in developing this model would be 
to gather data from various sensing nodes and built an 
overlay network to make it much more flexible, 
wherein two nodes can interact (i.e., exchange 
information) with one another. An undirected graph is 
used to depict an overlay network. Consider the 
undirected network U = (X, Y), where X denotes the 
node X, Y denotes the edges (links) and Bm is the 
collection of neighbors of the given node m. 

Suppose Am(0) becomes a node within the network's 

initial state; these phases represent the private information of 

each node, which means that the security of the node in its 

initial phases is a major focus of our work. In first section, 

the general agreement on secure data aggregation is provided 

which aids in the development of our algorithm.; the second 

part, Monitoring the nodes discusses monitoring deceitful or 

corrupt nodes; The remaining sections of this study, cover 

our suggested security technique, Efficient- Consensus-

based Data Aggregation.  

Figure 1 illustrates the process of our suggested 

technique, which consists of six stages. In the first stage, 

data is collected through sensor nodes, and in the second 

stage, the General Secure Data Aggregation Consensus is 

employed to provide security while also adding noise. The 

third stage is crucial because it allows our system to 

monitor the nodes. This can be accomplished using 

regulations or through monitoring nearby nodes, however 

monitoring over nodes allows more stability, therefore we 

selected the same. Our algorithm is then performed, so 

data aggregation is completed safely before being 

transferred to the Base Station. 

General Secure Data 

Aggregation Consensus (GSDAC) 

Every time a node communicates, it adds noise to the 

current state to ensure security. The noise added is shown 

in the equation below, i.e., Eq. 1: 

 

( ) ( ) ( ) ,m m ma l a l l lЄX+ = +  (1) 

 

Now, am (l) indicates the node's current state. During 

iteration I, Ɵm denotes noise which is used as Random 

Variable (RV): 
 

( ) ( ) ( )1 , ,m mm m mn ma l V a l V a l mЄX mЄX+ ++ = +  (2) 

 
Equation 2 is a revised version of Eq. 1 and Eq. 3 

would be the end result: 
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Equation 3 may be resolved in a distributed fashion as 

well. Equation 2 is represented in a matrix form as Eq. 4. 

Equation 3 may be resolved in a distributed fashion as 

well. Equation 2 is represented in a matrix form as Eq. 4: 
 

( ) ( ) ( )( )1 ma l V a l l+ = +   (4) 

 
In the above equation, ЄPd, VЄPdXd which satisfies a 

and V in Eq. 4: 
 

 

 

1 2

1 2

   , ,... ,

[ , ,  , ]

z

n

z

n

mn dxd

A a a a

V V

= 

 =     

=

 (5) 

 

The discarding of corrupt nodes is required to establish 

the perfect average and secure consensus and this may be 

accomplished using two general methods. 
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Fig. 1: Architecture for credence aware data aggregation approach 

 

Monitoring the Dishonest Nodes 

 The security of network nodes should be 

supervised using one of two models. The first model is 

dimension expansion. The current states are divided into 

two different portions and these two parts, together with 

the extra noise, are delivered to the Neighbor Set. A set of 

criteria is in place to monitor the nodes and determine 

whether any misconduct is detected. 

3.3.1 Monitoring the nodes following the established 

standards: 

To keep track of the corrupt nodes, dimension 

expansion is utilized. The nodes are first divided into two 

distinct parts (Eq. 4 and 5) and then delivered to the 

neighboring nodes with the distortions: 

 

( ) ( )1 0  ½ 0  m m ma a e= +  (6) 

 

( ) ( )1 0  ½ 0  m m ma a e= −  (7)  

 

em is selected at a random variable from the range of 0 

<Y<1 

Monitoring using a Neighbor Node 

The aggregator asks a specific node to monitor a 

neighbor node at any moment, which would be a unique 

method of monitoring corrupt nodes. However, a few 

conditions must be satisfied to monitor. 

Condition 1: │Өe
m (l)│≤1/2αρl, where Өe

m(l) is 

computed by: 

 

( ) ( ) ( ) ( )
 

1 1e
rЄ B n

e e e e e e

m n nn m nr rl a l V a l V a l+ + +  = − − + −
   (8) 

 

AndVr
n is determined using the equation 3 for l . l Є B+ 
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If a preceding condition exists, then node j is the 
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Efficient-CSDA Algorithm 
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Results and Discussion 

The performance of our suggested model is shown in 

this section of the research. Our algorithm is examined to 

determine the results produced and the results are then 

compared to the current to illustrate that our suggested 

algorithm is appropriate. 

Consider the sensor nodes are extensively placed to 

detect a specific target. Unlike compromised nodes, when 

a normal node starts transmitting an alert, its neighbors 

will start sending an alert after a brief delay. Moreover, 

after a specific number of cycles, typical alarming nodes 

will stop delivering alerts. The node that has been 

identified or misidentified as a malicious node gets 

deactivated from the entire process. The detection is 

turned off for 200 cycles, or when just about 25% of all 

nodes are recognized as fraudulent. Every outcome is 

based on 1000 individual simulations on average. 

A sensor node deployment in a simulated environment 

is shown in Fig. 3. In a square plane, sensor nodes are 

evenly distributed. A sensor node might be malicious, 

normal, or alert-generating. 

The detection algorithm's performance is measured 

using three measures. The response time, computed as 

overall detection phases of properly discovered malicious 

nodes, indicates as quickly malicious nodes can be 

identified. The detection rate, which is the proportion of 

malicious nodes that have been discovered to the overall 

number of malicious nodes, is used to determine the 

effectiveness of our scheme. The misdetection ratio is the 

proportion of properly recognized and misdirected nodes 

among all discovered nodes, Essentially, there are two 

aspects to these misdirected nodes: The number of normal 

nodes that have been taken for malicious nodes and the 

number of malicious nodes that have been mistaken for 

normal nodes. Short response times, high detection rates, and 

a low misdetection ratio are all sought in a malicious node 

detection strategy. We investigated the three metrics using 

simulations with various settings. 

Weights on the System's Performance 

During the first simulation, a detection algorithm is 

used to establish the optimal weight penalty. Both the 

attack and alarm probability remain 0.04. For a total of 10 

cycles, normal nodes transmit alarms and wait for alerts 

to terminate. As previously stated, a detection threshold 

(0.4) is often specified. 

The findings shown in Fig. 2 depict the results, that 

show weight penalties ranging between 0.02 to 1.0 and 

sensor node counts varying from 100 to 400. The 

increased weight penalty results in a shorter response time 

and a higher detection ratio. Intuitively, the penalty value 

represents the susceptibility to detecting variance in data 

collected. However, when the weight penalty grows, the 

misdetection ratio rises as well, especially once the 

penalty ratio reaches 0.08 or higher. Taking all of the 

tradeoffs between reaction time, detection accuracy, and 

misdetection rate into account, it is appropriate to fix these 

weight penalties within a range between (0.04-0.1). 

Although the number of sensor nodes evolved between 

9 to 900, the reaction time, detection, and misdetection 

ratios remained generally consistent; especially when 

there were more than 64 nodes. As a result of this 

discovery, the efficiency of the defined WTE-based 

detection algorithm is excellent, while this study well in a 

wide range of network sizes while compromising little 

performance. Performance is almost unaffected by 

network size, especially when it is large enough, for 

example, greater than 64. 

Figure 3 depicts the effect of penalty weight selection. 

Choosing a larger value (θ = 0.1) helps the method to 

detect malicious nodes quicker and more efficiently than 

using a smaller value (θ = 0.05), as seen in Fig. 3(a) and 

the upper two curves in Fig. 3(b). 

However, as indicated by the lower two curves in 

Fig. 3(b), this quicker response is accomplished at the 

cost of a larger misdetection rate Fig 3(b). This illustrates 

that the penalty weight parameter's sensitivity may be 

modified by the system operator to match the needs of 

different applications, proving the balance between 

detection performance and misdetection ratio. 

Furthermore, for the 100 node and 400 node scenarios, 

the performance is assessed with a weight penalty of 0.05 

for various attack probabilities. The probability of an 

attack is determined by dividing malicious nodes by the 

overall number of sensor nodes in the network that might 

be compromised. This indicates the amount of fake data 

injected into the network by the attacker. 

According to the findings of the Byzantine General 

Problem investigation (Ozdemir, 2007), when the malicious 

node numbers exceed genuine ones, loyalty generals are 

unable to determine who is the rebel. Moreover, if no 

authentication system is used, the number of rebel generals 

has to be fewer than 1/3 of the overall number of generals for 

the loyal generals to agree on the right action. 

Similarly, in this situation, when the number of 

malicious nodes exceeds 25% of total nodes, Experts will 

be unable to detect the "bad guys" with certainty. The 

upper bound for the number of compromised nodes in our 

simulation was 30% of the total number of nodes. As a 

result, an attack probability of one means that 25% of the 

sensor nodes are compromised. 

The response time increases significantly as the attack 

probability increases, as seen in Fig. 4(a). As more malicious 

nodes arrive, it appears that the collected data can be more 

influenced by incorrect facts. Though detection ratios exhibit 

relatively minor changes, when attack probability increases, 

the misdetection ratio decreases dramatically, as seen 

in Fig. 4(b). This would lead to a little increase among 

malicious nodes, lowering the false positive rate. 
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In the presence of various nodes with high compromise 
probability, the reaction time, detection and misdetection 
ratios remain constant, as per the results reported above. It 
shows that the proposed detection approach is successful 

across both big networks and situations with a high attack 
potential. These experimental results reveal that the 
previously mentioned factors have a substantial influence on 
the detection algorithm's performance. 

 

 
(a) 

 

 
(b) 

 

Fig. 2: The effect of different penalty (a) response time Vs. penalty weights; (b) detection accuracy Vs. penalty weights 
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(a) 

 

 
(b) 

 
Fig. 3: Illustration of the system scalability (a) response time Vs. the number of nodes; (b) detection accuracy Vs. number of nodes 

 

 
(a) 
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(b) 

 
Fig. 4: Illustration of the attack probability (a) response time Vs. compromise probability (b) detection accuracy Vs. comprom is 

probability 

 

Conclusion  

We introduced a new weighted-Credence evaluation-

based approach to identify corrupted or misbehaving 

nodes across wireless sensor networks. The fundamental 

notion is that FNs provide Credence worthiness to every 

cluster node, only if the node provides completely 

irrelevant information, implying that the node is being 

compromised or is still no longer functioning; the FN 

decreases that node's Credence level. This will be easier 

and less difficult to keep track of nodes, so compromising 

the majority of the nodes should be much more difficult 

whenever the base stations are compromised. Our 

technique has excellent scalability and can be used in both 

small and big-sized WSNs. Only one change when 

applying it to larger WSNs is that the number of FNs is 

increased. Essentially, it's a node-clustering problem. Our 

technique is reliant on the notion of base stations can be 

depended on properly. However, when an intruder gains 

control over base stations, he or she is free to attack the 

WSN in either way they find appropriate; however, it is 

outside the scope of the study. An important assumption 

is the vast majority of sensor nodes are operational. Legal 

nodes will be recognized as malicious and separated if 

there are more compromised nodes than regular nodes. In 

this study, we just provided preliminary data that 

confirmed the validity and efficiency of our method. An 

additional extensive analysis of the system's performance 

could be investigated as the research progresses and 

additional questions will be answered.  
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