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Abstract: Data clustering is considered an important component of data 

mining which aims to split a given dataset into disjoint groups having the 

same similarities. The developed techniques for clustering have some 

challenges to cluster entities in complex search space and most of them aim 

to maximize the sum of inter-cluster distances and minimize the sum of intra-

cluster distances. This objective function is nonlinear and hard to optimize 

especially for complex search space. Metaheuristics are becoming a trend for 

solving this task thanks to their promising results. In this study, the eagle 

strategy is used to take advantage of the exploration provided by Levy Flight 

(LF) and the exploitation strength of the Slime Mould Algorithm (SMA) to 

solve the clustering problem. The SMA algorithm is an efficient technique 

for solving complex optimization problems which has a high exploitation 

competence. On the other hand, LF tends to have good exploratory behavior. 

Our strategy exploits these advantages in a balanced way and through well-

designed rounds to ensure the optimality of the clustering solutions. The 

proposed method is computationally efficient and inexpensive. It also 

achieves high accuracy in terms of average, worst, best, and the sum of intra-

cluster distance. The method is also evaluated according to the speed of 

convergence and using statistical tests, namely Wilcoxon. The obtained 

results are compared with seven benchmarked metaheuristics, namely Grey 

Wolf Optimizer (GWO), Slime Mould Algorithm (SMA), Whale 

Optimization Algorithm (WOA), Harris Hawks Optimization (HHO), Sine 

Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO) and Genetic 

Algorithm (GA) using eighteen datasets of shapes and UCI repositories. 

 

Keywords: Data Clustering, Clustering Evaluation, Metaheuristic, Eagle 

Strategy, Slime Mould Algorithm, Levy Flight 

 

Introduction  

The volume and speed with which data is generated are 
dramatically increasing making manual processing beyond 
the scope of human capacities. The need to deal with this data 
explosion and extract useful information resulted in many 
advances in data mining and machine learning. In this 
context, data clustering emerged as an important approach 
that provides useful insights into the data and learns its 
latent features, hence the growing interest shown in this 
technique by the researchers. 

Cluster analysis is a descriptive unsupervised learning 
technique used to group objects with similar intrinsic 
properties in disjoint clusters and discover the categories 
forming a given dataset (a set of observations). This process 
uses the similarity of measured characteristics as a 

discriminating metric to build disjoint clusters such that data 
points belonging to the same cluster are similar to each other 
and dissimilar to samples existing in other clusters. Thus, it 
is the process of discovering the inherent object features and 
organizing similar ones together. 

Formally, if we are tackling the dataset D = {d1, d2, 
..., dN}, consisting of N objects with F features, then 
clustering can be defined as a task of grouping objects of 
the same nature in one group called cluster C1 ∈C = {C1, 
C2,..., CK}. The common approach is that each object has 
a unique membership, thus the task is to find an 
assignment f: D →− C. The issues over there narrow down 
to two main problems, identifying the optimal number of 
clusters and correctly determining the cluster of every 
data point. The total number of combinations in greedy 
assigning N data points to K groups is: 
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This shows the complexity of clustering for huge datasets 

and particularly those having complex shapes and structures. 

Various clustering algorithms are developed and 

regardless of their type or the technique used, they aim to 

maximize coherence within each cluster and dissimilarity 

among different clusters based on certain similarity 

metrics. Although current algorithms have several 

advantages, they still suffer from some problems such as 

sensitivity to initialization values, computation 

complexity, and big risk of falling into local optimal 

solution in addition to the high runtime and 

incompatibility with complex problems and high-

dimensional spaces Mostafaie et al. (2020). Recently, 

nature-inspired metaheuristics have shown great potential 

to overcome these issues and find global solutions. 

Metaheuristic algorithms are optimization tools that are 

increasingly used to solve complex problems in data mining 

thanks to some advantages Nayyar and Nguyen (2018); 

Srinivasu et al. (2021); Nayyar et al. (2018). They are easy 

to implement, they do not require information on the 

objective function gradient and they are generally not 

vulnerable to local minima. Metaheuristics are used 

particularly for solving nonconvex clustering problems. The 

idea is to represent this problem in the optimization domain 

and formulate the clustering as an optimization approach. 

The approach aims to find a value xn within the appropriate 

n-dimensional search space S that minimizes or maximizes 

the cost function, i.e., solves an optimization problem. 

In this study, a new clustering approach using the eagle 

strategy over Levy Flight (LF) and Slime Mould´ Algorithm 

(SMA) is proposed. This technique tries to find the global 

optimum and avoid local optima by seeking the best cluster 

centroids and minimizing some defined clustering metrics. 

The main contribution of this study is the design of a novel 

clustering technique using the Eagle Strategy over LF and 

SMA. To evaluate the performance of the introduced 

method, we have used eighteen standard benchmark datasets 

and the results obtained using the approach are compared 

with seven of the most well-known recently developed 

algorithms. Moreover, to prove the efficiency of the 

proposed technique, we have used statistical tests. 

Background 

Clustering 

In this section, we provide the theoretical 

background and a brief review of previous work done 

on clustering using metaheuristics. First, some 

notations and terminology used throughout this study 

are listed in the following: 

• The object is a single data item represented by a 

vector of measurements x = {x1, x2,..., xD}, where xi ∈ 

R is a feature and D is the object dimension 

• A dataset is a set of objects, denoted as 

• X = {x1, x2,..., xN} ∈ RD, where N is its cardinal 

representing the total number of objects in the 

dataset. Thus, a dataset can be represented in the form 

of a matrix of size N × D: X = Xn
d, where 1 ≤ n ≤ N 

and 0 ≤ d ≤ D 

• The goal of clustering is to split a dataset X into K of 

mutually disjoint clusters which is denoted C = {ck|k = 

1,..., K}. Each cluster ck contains nk = |ck| objects 

• The centroid of the cluster (or prototype) ck is 

expressed as c¯k = n1k ∑xi∈ck xi. Similarly, the centroid 

of data set X is X¯ = 
1 xi

xi
X

N
  

 

Categories of Clustering Algorithms 

Clustering techniques can be categorized into two 

different big categories: Hard clustering which supposes a 

binary relation between objects and clusters, i.e., each pattern 

belongs to exactly one cluster, and fuzzy clustering which 

assumes that an object can belong to one or more clusters and 

therefore assigns multiple degrees of membership to each 

object. The first category is more applied, is more interesting 

in practice, and is the subject of our paper. 

More precisely, depending on the used technique, the 

clustering approaches can be categorized into diverse 

categories: Partitional, hierarchical, model-based, density-

based, and grid-based Shi and Pun-Cheng (2019). 

Partitional clustering: aims to decompose the dataset into 

pre-specified number k disjoint groups starting with initial 

random k partitions and then refining them using 

optimization metrics associated with the properties of the 

search space. The methods belonging to this category 

optimize the chosen validity indices by iteratively 

reallocating cluster members. The most well-known 

techniques of this type are k-means, k-medoid, and CLARA. 

Regarding the partitional clustering algorithms 

inspired by nature, Saemi et al. (2016), the authors review 

some of them and compare their performance on some 

criteria such as time complexity, stability, and clustering 

accuracy on real and synthetic data sets. 

Hierarchical clustering: Seeks to construct a hierarchy 

of clusters named a dendrogram tree. The procedure is 

iterative and produces successive clustering levels 

according to a similarity metric and follows one of two 

strategies: Agglomarative or divisive. Agglomerative 

hierarchical clustering is a "bottom-up" approach that 

begins by considering each data point as a separate cluster 

and iteratively identifies and merges the two most similar 

clusters until all the clusters are merged. Whereas divisive 

clustering is a "top-down" approach that starts by 
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considering all the observations as one cluster and then 

successively splits the obtained clusters. The most well-

known algorithms under this category are BIRCH, CURE, 

ROCK single-link, and complete-link algorithms. 

Model-based methods: Try to find the probabilistic 

models which fit the data. Starting with the random 

probabilistic model, the task is to fit this distribution to 

the given data and optimize the distance between both 

distributions. The model can be a combination of 

probability distributions. or its nonparametric 

formulation Zhang and Di (2020). 

Density-based algorithms: Built on the idea that 

clusters in the dataset’s feature space are contiguous areas 

of high density separated by regions with low densities, 

called noise or outliers. This clustering approach is 

particularly suited to cases where clusters have nonlinear 

shapes and cannot be well described. An example of an 

algorithm belonging to this category is Dbscan         

Wang et al. (2019). 

Grid-based clustering: It partitions the entire data 

space into separate cells with grids and through data 

quantization, it merges the cells to construct clusters. A 

typical example of this method is the Wave Cluster 

approach Sheikholeslami et al. (2000). 

Clustering using Metaheuristics 

Recently, several researchers develop new 

metaheuristic optimization algorithms to solve the task of 

clustering. Metaheuristics are capable to converge to a 

global optimum while classical clustering algorithms can 

only ensure finding a local solution. Maulik and 

Bandyopadhyay (2000) used Genetic Algorithms (GAs) 

to search for the cluster centers that minimize the sum of 

the inter-distances between the points inside the cluster 

and their corresponding centers. Maulik and Saha (2010) 

proposed a clustering approach based on an evolutionary 

algorithm, namely differential evolution, and applied it to 

image classification. Borah and Ghose (2009) proposed a 

new method based on the Automatic Initialization of 

Means (AIM) which improves the quality of the clustering 

results by automating the initial means selection. Swarm 

optimization is one of the most used methods for 

performing the clustering approach. Tan et al. (2011) 

evaluated ant colonies for clustering real-world data while 

the Bees Algorithm is used by the authors (Yan et al., 

2012; Karaboga and Ozturk, 2011) to escape the local 

optima during the process of finding the best cluster 

centers concerning a defined metric. 

An enhanced grey wolf optimizer imitating the 

behavior of grey wolves adapted with binomial crossover 

is proposed for clustering (Tripathi et al., 2018). Various 

variants of this technique are designed to increase its 

performance and convergence speed such as Bees 

Algorithm with a memory scheme in which a memory 

component is used to avoid visiting sites that have the 

same fitness or worse and which are close to previously 

visited sites (Nemmich et al., 2018). Janani and 

Vijayarani (2019) used particle swarm optimization for 

text document clustering. Harris hawk’s optimization 

algorithm which is inspired by the cooperative 

behavior and chasing style of Harris' hawks in nature is 

recently used for data clustering (Singh, 2020). The 

slime mold technique is used recently for clustering, 

but only for the improvement of prediction accuracy 

achieved by k-means (Chen and Liu, 2020). The 

objective of slime mold was to renew the population 

and optimum parameters which are used by the support 

vector machine and k-means. 

Some papers provide a general review of the clustering 

based on different metaheuristics (Bagirov et al., 2020). 

Nanda and Panda (2014) reviewed the clustering 

approaches based on nature-inspired metaheuristic 

algorithms. Abualigah et al. (2020) presented a detailed 

survey of nature-inspired metaheuristics for text document 

clustering. Particularly, Esmin et al. (2015) provided a 

thorough survey of high-dimensional clustering techniques 

which are based on particle swarm optimization and its 

variants. Metaheuristics techniques are easy to implement 

and can be applied directly to the clustering problem or be 

applied to the output of another clustering method to 

improve the quality of the obtained solutions. They are 

designed to optimize an objective function, called fitness 

function, that guides progressively the search. However, 

they are less accurate and may require significant 

computational power, particularly for large datasets. 

In our paper, we are concerned with partitional 

clustering which is considered a global optimization 

problem. It is worth mentioning that traditional clustering 

algorithms such as k-means can only guarantee 

convergence to a local solution. The obtained local 

solution may not yield a meaningful and real structure of 

the studied data. In addition, clustering algorithms 

based on branch and bound methods and dynamic 

programming are applicable only in datasets with small 

sizes. Therefore, the use of smart metaheuristics is 

necessary to overcome these limitations. 

Using eighteen benchmarked datasets, extensive 

experimental results are performed in Ezugwu (2020) on 

main nature-inspired metaheuristics that have been 

developed for automatic clustering. The comparisons and 

statistical significance showed that all the considered 

clustering algorithms can effectively provide accurate 

clustering partitions and determine the optimal number of 

clusters. But the firefly algorithm and its hybrid clustering 

techniques provide high-quality solutions and outperform 

all of them in both high and low-dimensional data spaces. 

Despite the merits and strengths of the mentioned 

techniques, they still face some challenges. The most 

apparent of which is the problem of the local optima trap. 
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Moreover, a well-known theorem in the domain of 

heuristics named No Free Lunch Adam et al. (2019) 

states that there is no single optimization algorithm 

capable of solving all accurately and with high 

precision all problems. As an implication, it is always 

possible that any algorithm which performs well on a 

data set may do worse on another. For all these reasons, 

it is interesting to develop new techniques and 

investigate their efficiencies for data clustering. It  is in 

this context that our contribution takes place. 

Materials and Methods 

Validity Indices 

To compare and measure the performance of the 

algorithms on a dataset, several metrics can be used to 

measure the similarity between the obtained clusters. The 

notion of distance is very important for clustering tasks and 

helps to measure the similarity among data objects and 

clusters. To measure the distance, a metric (or quasi-metric) 

is used to quantify the proximity between objects. These 

indices, referred to as Cluster Validity Indices (CVI), 

evaluate particularly the quality of a specific clustering 

structure obtained by a clustering algorithm. They 

should be easy to compute and meaningful in the way of 

defining the relationships between clusters (inter-groups) 

and data points (intra-group). There are two classes of 

clustering metrics: Internal and external. Evaluation with 

internal metrics is based only on the data used for 

clustering, whereas evaluation with external metrics is 

made against unseen data that was not used for clustering, 

generally with known cluster labels. 

The clustering problem can be formulated as an 

optimization problem that could be solved by single-

objective and multiobjective metaheuristics. Most 

metaheuristic approaches use internal validity indices as 

function objectives to optimize. The core idea of these 

metrics is to assign the best score to an algorithm that 

returns a partition with high similarity within a cluster and 

low similarity between clusters without any ground-truth 

data (external information). A detailed study with 

experiments on the properties of clustering was carried out 

by Arbelaitz et al. (2013). But recently, Hämäläinen et al. 

(2017) compared the behavior of different CVIs and 

empirically evaluate some of the internal clustering 

validation indices with many datasets. As a result of the 

comparison, the author state that the selection of CVI 

depends on the shape of the dataset and that there is no 

perfect CVI. The clutering function objective can be 

expressed in terms of one or more of the internal validity 

indices such as centroid distance, intra, and inter-

clustering distance, Silhouette, variance ratio criterion, 

distortion distance, Dunn's index, medoid distance, CS 

measure, Davies-Bouldin index. 

External indexes require ground-truth data. Some of 

them, such as the rand index, Jaccard coefficient, and 

Fowlkes and Mallows index assess and count the co-

location of pairs of data points into the same (or different) 

cluster in the solution against the ground truth. Other 

external metrics are cluster-level and estimate the 

similarity of two cluster solutions. 

In this study, the clustering task is formulated as an 

optimization problem where the goal is to minimize the 

fitness function expressed as the Within-Cluster Sum of 

Squares (WCSS): 

 

2

1

( , )
C

C xi C

F X C xi ci
= 

= −  (2) 

 
where ∥.∥2 denotes the L2-norm between the two vectors 

xi indicating the datapoint and c¯i representing the 

centroid of the cluster i. 

Eagle Strategy 

Eagle Strategy (ES) is an optimization strategy inspired 

by the hunting behavior of golden eagles or Aquila 

Chrysaetos. An eagle starts foraging by flying freely and in a 

random way and searching globally the prey. Once the prey 

is seen, the eagle changes its search manner and adopts 

intensive hunting to efficiently seize the prey. This behavior 

can be summarized in two successive important processes: 

hunting strategy and chase tactics. 

Inspired by this behavior, Yang and Deb (2010) 

proposed the Eagle Strategy (ES) that combines in 

balanced way different algorithms to efficiently carry out 

both processes. Accordingly, ES has two stages. The first 

stage performs a crude global search reflecting the fact 

that the eagle starts searching globally for prey. The 

second phase performs an intensive local search around 

the promising solution or the set of promising solutions 

and reflects the chase of the target made by the eagle. 

The use of suitable algorithms for each phase speeds 

app the convergence to the solution and enhances the 

quality of the obtained solution. ES is similar to other 

algorithms (such as Random-restart hill climbing) 

which use the random restart mechanism so that to 

escape from local minima of the fitness function and 

consequently improve their performance. They try first 

to generate a good starting point from which the search 

starts until achieving a solution. Then, the solution is 

evaluated and if it looks not accurate, another point 

should be selected and considered as a starting point for 

a new iteration of the search. However, there are some 

essential characteristics of ES. First, it is not a method, 

but rather a strategy. Second, various algorithms can be 

used within their different stages. Third, its two stages 

can be toggled on and off depending on the quality of 

the found solutions. 
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Fig. 1: Slime mold foraging 

 

Levy Flight´ 

Levy´ Flight (LF) is a heavy-tailed probability 

distribution proposed by Paul Levy. It is a non-Gaussian´ 

random process inspired by random walk Chechkin et al. 

(2008) but with greater steps. The lengths of individual 

jumps are distributed with the Probability Density Function 

(PDF) λ(x) decaying at large x as λ(x) = |x|−1−α. 

The occurrence of extremely long jumps is due to the 

divergence of LF variance  and the trajectories 

include shorter jumps interspersed by long excursions: 

 

( ) 1,2,...,newxj xj a levy j NG= +  =  (3) 

 

where: α is the random step size parameter, β is the Levy 

flight distribution parameter, and ⊕ is entry-wise 

multiplication where α is the step size; with 0 < α < 2, L is a 

value from the Levy distribution, j = 1,2,..., n is the number 

of nests considered. In our approach, the levy flight 

technique helps to increase the exploration and quickly 

converge toward the solution. 

Slime Mould Algorithm 

Slime mold is a new metaheuristic inspired by the 

Physarum polycephalum. Slime mold consists of several 

types of unrelated eukaryotic organisms that live in cold and 

humid places. These organisms are single cells, but they can 

unite and join so to constitute multicellular reproductive 

beings. There are several techniques inspired by the pattern 

and behaviors of slime mold. Li et al. (2011) proposed 

routing protocols that can be used in wireless sensor 

networks, and which are inspired by slime mold foraging. 

The proposed routing protocols enhance the tradeoff 

between efficiency and robustness. Yang et al. (2019) 

proposed a new transportation network design inspired by 

slime mold foraging. the proposed model aims to connect 31 

nodes which represent 31 cities in China with higher 

performance in cost and stability.  Zhang et al. (2016) adopt 

the mathematical pattern of slime mold foraging to design a 

supply chain network of oligopolistic firms. Compared to 

Nagurney (2010), the solution shows an efficient practical 

result. Thus, slime mold is mostly used to model the 

networks and to resolve the problems that can be formulated 

as graphical objects. However, in this study, we will use the 

search behavior of slime mold and its intelligent food-seek 

mechanism for optimization goals. To seek food, slime mold 

first forms a network venous through its organic matter and 

takes advantage of the humid condition. This organic matter 

spread steadily to contact food. Due to the nature of the 

network, as seen in Fig. 1, the slime mold can find different 

foods in different places at the same time. When slime mold 

comes in contact with a food source, the bio-oscillator sends 

a propagating wave from the outer legs inward. The 

variation of this wave depends on the quality of the found 

food. When the slime mold receives a strong wave, it 

reinforces the cytoplasmic flow through the vein 

Nakagaki et al. (2000). Therefore, the diameter of the path 

in contact with a high-quality food will be larger, the slime 

mold tends to breed in this area and extensively forage for 

food in nearby regions Kareiva and Odell (1987). 

Otherwise, if the slime mold contacts a food of lower 

quality, the slime mold must rapidly decide to contract the 

path and change the current position. 

This foraging behavior can be formally described in 

an algorithm with three phases: 

Food Searching 

Slime mold approaches the food by following the odor 

in the air and this can be represented as a mechanism of 

exploration in the algorithm which can be expressed by 

Eq. 4, where: 

 

vb = A parameter factor lying in the 

interval [−a, a], such that a is 

calculated using Eq. 5 

t = The current iteration 

→− VC = A decreasing function from 1 to 0 

X(t) = The actual position of the slime mold 

X(t +1) = The next position of the slime mold 

XA(t) and XB(t) = A random future position of slime 

mold 

P = A probability value expressed by Eq. 6 

W⃗ = The weight affected by the slime 

mold for each path 
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Fig. 2: Possible new positions in 2 and 3-dimension Li et al. (2020) 

 

 
 

Fig. 3: Assessment of fitness 

 

 
 

Fig. 4: Flowchart of the proposed approach 
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   (a) 
 

 
   (b) 
 

Fig. 5: Convergence graph of the metaheuristics for a CMC 

dataset, b Art dataset 
 

 
   (a) 
 
Fig. 6a: Convergence graph of the metaheuristics for a Glass 

dataset, b Seeds dataset 

 
   (b) 
 
Fig. 6b: Convergence graph of the metaheuristics for a Glass 

dataset, b Seeds dataset 
 

 
   (a) 
 

 
     (b) 
 
Fig. 7: Convergence graph of the metaheuristics for a Heart 

dataset, b Iris dataset 
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   (a) 

 

 
   (b) 
 
Fig. 8: Convergence graph of the metaheuristics for a Yeast 

dataset, b Wine dataset 

 

 
 

Fig. 9: Convergence graph of the metaheuristics for the 

Cancer dataset 

 
     (a) 
 

 

                  (b) 
 
Fig. 10: Convergence of the considered algorithms for a Flame 

dataset, b Jain dataset 
 

 
                  (a) 
 
 
Fig. 11a: Convergence of the considered algorithms for a Spiral 

dataset, b Compound dataset 
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   (b) 
 
Fig. 11b: Convergence of the considered algorithms for a Spiral 

dataset, b Compound dataset 
 

 
      (a) 
 

 
   (b) 

 

Fig. 12: Convergence of the considered algorithms for a Path-

based dataset, b Birch 1 dataset 

 
     (a) 

 

 
      (b) 

 

Fig. 13: Convergence of the considered algorithms for a DIM64 

dataset, b DIM128 dataset 

 

 

 

Fig. 14: Convergence of the considered algorithms for the Sales 

Transactions dataset 



Rachid Oucheikh et al./ Journal of Computer Science 2022, 18 (11): 1062.1084 

DOI: 10.3844/jcssp.2022.1062.1084 

 

1071 

( 1) { ( ) .( . ( ) ( )),

. ( ),

b A BX t X t vb W X t X t r P

vc X t r p

+ = + − 


 (4) 

 

Equation 4 describes the processing search inspired by 

foraging food of slime mold. To explore a new region, the 

slime mold looks for new promising positions in all 

directions such as visualized in Fig. 2. The slime mold 

searches the new positions under conditions of r < p and r >= 

p. If r < p, Eq. 5 favor more the exploitation process; the new 

position is updated according to the best position of XB(t). 

Otherwise, the Eq. 6 promotes the exploitation process; the 

new position is updated according to the tuning value of vc. 

arctan 1 (1,..., )
max

t

t
a h t Max

t

  
= − +    

  
 (5) 

 

tanh ( ) 1,2,...,p S i DF i n= −   (6) 

 

where, S(i) is the fitness of ⃗X, DF is the best fitness of ⃗X: 
 

( )
1 .log 1 ,

( ( ))
( )

1 .log 1 ,

bF S i
r condition

bF wF
W SmellIndex i

bF S i
r otherwise

bF wF

 − 
+ + 

−  
= 

−  − +  − 

 (7) 

 
( )Smellindex sort S=  (8) 

 

 
 

Fig. 15: Clustering results for the Iris dataset 
 

 
 

Fig. 16: Clustering results for Seeds dataset 
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Fig. 17: Clustering results for Glass dataset 

 

 
 

Fig. 18: Clustering results for Cancer dataset 

 

 
 

Fig. 19: Clustering results for Wine dataset 
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Fig. 20: Clustering results for the CMC dataset 

 

 
 

Fig. 21: Clustering results for Heart dataset 

 

 
 

Fig. 22: Clustering results for Yeast dataset 
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Fig. 23: Clustering results for Art dataset 

 

 
 

Fig. 24: Clustering results for Path-based dataset 
 

 
 

Fig. 25: Clustering results for Flame dataset 
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Fig. 26: Clustering results for Compound dataset 

 

 
 

Fig. 27: Clustering results for Spiral dataset 

 

 
 

Fig. 28: Clustering results for the Jain dataset 
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Fig. 29: Clustering results for the Sales Transactions dataset 

 

 
 

Fig. 30: Clustering results for the DIM64 dataset

 

 
 

Fig. 31: Clustering results for the DIM128 dataset 
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where condition indicates that S(i) ranks first half of the 

population, bF and wF represent respectively the best and 

the worst fitness, respectively, and r is a random variable 

in the interval [0,1]. 

Food Wrapping 

The slime mold evaluates the quality of food to decide 

how much time and energy (i.e., cytoplasmic flow) is needed 

to explore environments. If it estimates that the quality of the 

found food is poor, it retracts the path and changes position 

to explore other environments. Otherwise, slime mold 

increases the flow in a vein to exploit effectively the found 

food. Equation 7 expresses the flow of positive or negative 

information between the vein and slime mold. The condition 

simulates the adjustment of the search pattern by slime mold 

according to the quality of food. Based on this principle, the 

new location of slime mold is described by Eq. 9. Figure 3 

illustrates the process of food quality evaluation: 

 

( )
.( ) ,

( ) . . ( ) ( ) ,

. ( ),

A B

rand UB LB LB rand z

X Xb t vb W X t X t r p

vc X t r p



 − + 



= = − 

 

 (9) 

 

where UB and LB represent the Upper boundaries and 

lower boundaries in region search, respectively. z is a 

parameter that will be defined in the experimental 

implementation. 

Oscillation 

This phase concerns the wave sent from the outer legs 

of the slime mold inwards to change the flow of 

cytoplasm. 

The variations of flow depend on the following variables; 

W vb vc in addition to the width of the slime mold venous. 

W represents the frequency of oscillations in the slime mold 

algorithm that reflects the quality and concentration of 

food. The role of these oscillations is to help slime 

mold to speed up its approach to food. Moreover, the 

interaction of oscillation of vb vc and decides on the 

search mode; slime mold exploits intensively the 

region that has a good quality of food or explores more 

regions in the case of contacting food with poor quality. 

The main nutritional stage is Plasmodiume of slime 

mold which linearly decays from one to zero. 

Proposed Approach 

The proposed approach described in Fig. 4 makes use 
of the eagle strategy to perform data clustering tasks. In 
the first step of ES, Levy flight random walks are used to 
explore efficiently and globally the search space and thus 
initialize the population of search agents with the resulting 

solutions. These solutions belong to various regions of the 
search space and reflect the power of exploration of 
Levy´s flight. Then, the solutions which obtain the best 
fitness values according to the clustering evaluation 
metric are recorded as promising solutions.  

Afterward, the second phase starts and uses the 

slime mold algorithm as an efficient local optimizer to 

perform an intensive local search around the promising 

solutions. These two steps represent one round. The 

whole process is iterative and each round includes 

global exploration generating new populations in one 

or various regions, followed by another local search on 

those promising regions. 

 

Algorithm 1: Pseudo algorithm for Eagle Strategy using 

Levy Flight and Slime Mould 

 Input: Dataset including N data objects with d 

dimensions and K number of clusters, number of 

rounds, the maximum number of iterations in 

each round 

 Output: Optimal positions of clusters representatives 

(i.e., centroids) 

1 Initialize population size = 100, Round = 5, 

 MaxIter = 50. 

2 while r ≤ Round do 

3 Global exploration using Levy flight and ´ 

generation of initial solutions Evaluation of the 

fitness function and selection of a promising 

solution 

4 for iter = 1 to MaxIter do 

5 Generation of random solutions around this 

promising solution Intensive local search via 

Slime Mould Algorithm 

6 if a better solution is found then 

7 Update the current best solution 

8 else 

 

The proposed approach is population-based and 

considers P individuals which represent the set of 

solutions P = [S1, S2,..., Sp]T. The size of each solution 

is K × f, such that K is the number of clusters and f is 

the number of features in a given dataset. The first step 

in the approach is to initialize randomly the candidate 

solutions in the boundary range: 

 

( )Si lb r ub lb= =  −  (10) 

 

where, Si is the pth (0 ≤ i ≤ P) solution in the population, 

r ∈ [0,1] is a random number, and lb and ub are the lower 

and upper bounds of the dataset taken under 

consideration. 

The basic idea of ES is the initialization and running 

of an optimizer such as SMA. First, initialize the search 

space using Levy flight with fixed population size. Then, 
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SMA is used to carry out a search and find the best 

solutions after running for maximum iterations (MaxIter) 

and evaluation using 2. The best target value and its 

corresponding position vector are recorded for later use in 

a predefined number of rounds. In the next round, we 

generate a fraction of new solutions around the best 

solution, and then the rest (population size − fraction) 

solutions are generated in the whole search region. Then, 

SMA is run again for a maximum of iterations (MaxIter). 

Again, the new best solutions are saved and appended to 

the list of the best solution in the previous round. Then, 

we run exploration (LF) and exploitation (SAM) again. 

This mechanism is repeated until a maximum number of 

rounds is achieved. Algorithm 1 describes the different 

computation steps applied in the proposed approach. 

Experimental Setup 

To evaluate the performance of the proposed 

approach, we compared it to seven recently developed 

algorithms: Grey wolf Optimizer (GWO) Mirjalili et al. 

(2014), Sine Cosine Algorithm (SCA) Mirjalili (2016), 

whale optimization algorithm (WOA) Mirjalili and Lewis 

(2016), Harris Hawks Optimization (HHO) Heidari et al. 

(2019), slime mold algorithm (SMA) Li et al. (2020), 

Multi-Verse Optimizer (MVO) Mirjalili (2015) and 

Genetic Algorithm (GA) Katoch et al. (2021). The 

important parameters used are as follows: 

 

• maximum number of rounds of ES-SMA = 5 

• population size = 100 

• number of iterations for all methods = 500 

• several independent runs = 40. 

 

Parameters of GA are set as follows: crossover type. 

2-points, crossover probability: 0.8, mutation 

probability: 0.02. The other parameters of GWO, SCA, 

WOA, HHO, SMA, and MVO are set according to their 

corresponding references (Mirjalili et al., 2014; Mirjalili, 

2016; Mirjalili and Lewis, 2016; Heidari et al., 2019;       

Li et al., 2020; Mirjalili, 2015), respectively. These 

algorithms are run in the same machine for the same 

number of runs. 

In the experiments, nine UCI datasets, and six shape 

datasets are considered for the evaluation of the method's 

performance in addition to three other high-dimensional 

datasets. The description of these datasets is given in 

Tables 1 and 2, respectively. We will not detail all the 

used datasets, but to get an idea of the data two dataset are 

explained. The Iris dataset is intended to be used for 

pattern recognition and it contains 3 classes referring to 

three types of iris plants where each class contains 50 

instances. It also includes 4 features: Length and width of 

the sepal, and length and width of the petal. The second 

dataset is Breast Cancer data, which deals with the most 

widespread cancers among women around the world, 

accounting for the majority of new cancer cases as well as 

cancer-related deaths. Features are computed from a 

digitized image of a fine needle aspirate of a breast mass. The 

set of features describes characteristics of the cell nuclei 

present in the image and includes diagnosis (malignant or 

benign), radius, texture, area, perimeter, smoothness, etc. All 

the considered algorithms were implemented using 

MATLAB R2017a and run on a machine with a 64-bit 

Windows 10 operating system, Core-i7 processor, and 8GB 

of RAM. 

To further confirm the capability of the approach in 

working with high-dimensional problems, some of the 

considered datasets include more than 10 dimensions, 

namely CMC, Wine, Heart, and Path-based, and even 

better Dim-64 and Dim-128 include 64 and 128 

dimensions, respectively. In addition, the birch dataset is 

too heavy datasets as they include a large number of 

objects (N = 100000) and has many clusters (k = 100). 

Results and Discussion 

This section reports and analyzes the experimental 

results obtained for the proposed approach and its 

comparison with the mentioned algorithms. We evaluated 

the performance of each algorithm using as metrics the 

average, standard deviation, best, and worst of the used 

objective, i.e., the sum of intra-cluster distances on every 

dataset and their convergence behavior. The values of the 

metrics are reported in Tables 3 and 4 for UCI and Shapes 

datasets. It is clear from these tables that our proposed 

approach ensures the minimum of the best results of the 

sum of intra-cluster distances obtained in the majority of 

the datasets. This shows that ESSMA can find high-

quality clusters which have minimum dispersion and 

capture the cohesion feature in the representation space 

compared to the rest of the algorithms. Thus, it is an 

efficient alternative for the task of clustering. 

Regarding the worst values of the sum of intra-cluster 

distances, results depicted in the same tables show that the 

results achieved by ESSMA are better than in other 

techniques on all the datasets, except for Compound, 

Spiral, and Yeast. 

The average values of the sum of intra-cluster 

distances in all the experiments are reported in Table 3 

and 4. Again, our approach outperforms all the considered 

algorithms. The obtained values for Standard Deviation 

(SD) are small and show the stability of ESSMA. In 

addition to these results, Fig. 15 - 31 visualize in two 

dimensions the obtained clustering for all datasets. Each 

cluster is distinguished by its unique color. In addition, the 

centroids of the clusters are illustrated by circles. 

Interestingly, the graphical analysis showed a 

distinguished group in all datasets. 

To make the comparison clearer, we used two more 

measures based on the best-obtained values.  
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Table 1: UCI Datasets 

Name #Instances #Features #Classes 

Iris 150 4 3 

Seeds 210 7 3 

Glass 214 9 6 

Cancer 638 9 2 

Wine 178 13 3 

CMC 1473 10 3 

Heart 270 13 2 

Yeast 1484 8 10 

Art 10218 8 10 

 

Table 2: Shapes datasets 

Name #Instances #Features #Clusters 

Flame 240 2 2 

Jain 373 2 2 

Path-based 178 13 3 

Compound 399 2 6 

Spiral 312 2 3 

Birch1 100000 2 100 

Sales transactions 811 53 4 

DIM64 1024 64 16 

DIM128 1024 128 16 

 
Table 3: Best, worst, average, and standard deviation of WCSS obtained by the considered technique on the UCI datasets 

  Algorithms 

Dataset name ------------------------------------------------------------------------------------------------------------------------------------------------------------ 

Criteria1  GWO SCA WOA HHO SMA MVO GA ESSMA 

Iris Best 96.66 129.75 97.22 96.81 96.66 96.66 96.66 96.66 

 Worst 125.21 161.69 129.42 127.70 127.67 124.91 97.27 120.72 

 Average 103.05 145.81 110.72 106.76 98.62 100.66 96.93 99.06 

 Std 10.49 7.18 12.56 12.13 7.10 7.76 0.27 7.34 

Seeds Best 312.20 405.55 339.57 319.91 311.98 311.86 311.80 311.80 

 Worst 318.09 497.59 444.15 430.09 313.27 359.32 311.82 311.81 

 Average 312.92 457.66 379.17 364.97 312.48 322.66 311.80 311.80 

 Std 1.06 23.90 28.95 27.33 0.29 12.88 0.00 0.00 

Glass Best 291.34 367.78 321.51 314.22 299.89 241.76 227.06 219.39 

 Worst 367.29 492.36 443.30 478.19 395.29 324.13 264.25 259.36 

 Average 326.06 426.85 382.97 391.32 349.05 283.96 253.99 245.57 

 Std 19.06 31.70 31.29 41.15 31.84 22.45 8.75 10.96 

Cancer Best 2964.40 3211.63 2966.07 3107.95 2964.52 2965.74 2964.46 2964.39 

 Worst 2964.53 3628.65 3003.09 4160.46 2965.41 3212.54 3076.66 2964.40 

 Average 2964.43 3451.55 2978.31 3500.07 2964.75 3008.82 2983.39 2964.39 

 Std 0.02 108.74 7.76 227.25 0.20 60.17 30.36 0.00 

Wine Best 16310.85 16644.85 16331.72 16332.61 16332.08 16293.54 16307.22 16292.41 

 Worst 17030.88 17200.36 16527.40 16531.24 16436.58 16834.92 16828.95 16294.73 

 Average 16359.72 16895.92 16392.47 16441.47 16385.01 16371.14 16441.91 16292.99 
 Std 127.74 173.65 45.08 47.85 26.27 130.38 148.13 0.54 

Cmc Best 5729.82 6495.42 5957.67 5841.28 5739.37 5694.81 5693.74 5693.74 

 Worst 6093.09 7816.15 7339.00 7301.02 5924.24 6253.58 5705.93 5693.94 

 Average 5840.72 7000.55 6209.27 6246.07 5805.35 5876.36 5694.58 5693.83 

 Std7 9.76 286.13 239.59 388.28 46.78 146.47 2.69 0.06 

Heart Best 10634.37 11203.01 10665.09 10782.00 10640.07 10627.54 10622.98 10623.05 

 Worst 10707.40 12761.99 10997.36 13012.27 10723.47 10713.55 10853.36 10623.50 
 Average 10659.85 12048.99 10774.42 11444.23 10677.05 10650.76 10671.69 10623.16 

 Std 18.33 386.57 85.39 651.81 20.88 25.91 62.84 0.10 

Yeast Best 292.14 386.59 346.24 294.71 296.62 298.48 258.58 263.95 

 Worst 378.48 566.71 385.00 377.11 380.13 377.18 280.90 330.79 

 Average 341.39 451.40 368.54 325.14 357.103 45.42 270.58 299.47 

 Std 24.85 51.93 11.42 18.34 24.42 22.07 6.44 17.46 

Art Best 513.91 554.28 514.24 513.97 513.90 513.90 513.90 513.90 

 Worst 517.90 744.84 908.95 909.04 892.48 789.06 513.90 513.90 
 Average 515.56 612.68 577.90 610.14 526.52 538.88 513.905 13.90 

 Std 1.10 48.44 136.69 147.25 69.12 77.08 1.67E-4 7.28E-5 
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Table 4: Best, worst, average, and standard deviation of WCSS obtained by the considered algorithms on Shapes and high-dimensional datasets 

  Algorithms   

Dataset name  ---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Criteria  GWO  SCA  WOA  HHO  SMA   MVO ESSMA 

Flame Best  769.97  771.67  770.27 769.977 69.97 769.97  769.97  769.97 

 Worst  769.97  784.63  774.96  792.270 769.97  769.97  769.97 769.97 

 Average  769.97  775.84  771.85  775.070 769.97  769.97  769.97  769.97 

 Std  1.72E-3  3.40  1.25  5.370  7.99E-4  2.18E-13  1.33E-5

   2.08E-8 

Jain Best  2574.24  2577.16  2574.24  2574.240  2574.24  2574.00 24 2574.24  2574.24 

 Worst  2574.26  2629.98  2580.67  2702.500 2574.24  2574.24  2574.24  2574.24 

 Average  2574.25  2600.01 2574.80  2585.290  2574.24 2574.24  2574.24  2574.24 

 Std  0.00  14.20  1.25  31.190 6.63E-4  9.44E-13  4.87E-5  7.80E-7 

Compound Best  1060.02  1205.45  1071.00  1107.960 1060.00  1059.97  1059.97 1059.97 

 Worst  1111.11 1385.46  1370.75  1414.750 1196.09  1263.07  1195.95  1195.93 

 Average  1074.93  1314.27  1177.72  1244.960 1096.27  1087.85  1113.05  1096.05 

 Std  18.86  45.86  86.05  65.700  49.05 52.30  55.66  

 51.91 

Path-based Best  1424.72  1450.04  1425.02  1428.400 1424.71  1424.71  1424.71 1424.71 

 Worst  1425.16  1638.32  1576.00  1596.210  1425.14  1433.12  1503.86 1424.71 

 Average  1424.75  1506.89  1455.64  1497.790 1424.73  1424.99  1433.77 1424.71 

 Std  0.08  39.43 41.66  47.160  0.08  1.53  24.22  

 4.23E-6 

Spiral Best  1807.51  1819.03 1807.61  1807.550 1807.51  1807.51  1807.00 61 1807.51 

 Worst  1808.43  1868.88 1827.38  1881.260 1808.17  1810.14  1821.48 1808.94 

 Average  1807.66 1840.56 1813.46  1827.400 1807.60  1808.16  1809.68  1808.20 

 Std  0.27  12.98 6.59 18.440 0.18 0.61  3.02  0.49 

Birch1 Best  3.56E+09  4.55E+09  3.94E+09  4.15E+09  3.52E+09  3.47E+09  4.09E+09  3.24E+09 

 Worst  4.70E+09  4.71E+09 4.15E+09  4.57E+09  3.68E+09  3.66E+09  4.55E+09  3.49E+09 

 Average  4.24E+09  4.65E+09  4.06E+09 4.32E+09  3.58E+09 3.56E+09  4.26E+09  3.37E+09 

 Std  5.26E+08  5.36E+07  7.37E+07 1.10E+08  4.20E+07  5.51E+07  1.43E+08  8.35E+07 

Sales TransactionsBest  29783.32  51258.32  41469.95 47852.290  30979.91 27543.07  94607,63.00  20633.85 

 Worst  33423.49  52310.79  47337.14  48792.790 32485.72  20144.25  99079.05  21027.92 

 Average  31856.24 52013.77  44089.91 48358.700  31525.04  30195.03  95969.82  20855.29 

 Std  1329.11  427.98  2565.88 387.860 565.87 1698.8 1803.04  159.51 

DIM64 Best  397832.75  511475.49  417731.35  419839.380 376037.88  398900.17 369356.92  362892.86 

 Worst  407937.01  519955.28 419426.31  427408.820 424662.65  414515.26  386077.25  376270.73 

 Average  403887.80  515796.34  418825.01  423270.910 405079.88  409303.04  378218.82  368540.68 

 Std  5342.43  4242.21 948.69  3833.840  25655.40  9009.15  8405.21 6927.73 

DIM128 Best  613177.84  747073.69  607685.26 607223.280 612483.78 610427.27  598844.85  570999.99 

 Worst  631671.37  767435.81  609736.28  609704.890 615322.70  612918.21  606886.22  580285.69 

 Average  620612.92  758252.76  608680.80  608515.260 613790.66  611871.76 601676.70  574478.37 

 Std  9764.69  10326.76  1026.82  1243.970 1432.79  1292.29 4517.28  5062.01 

 
Table 5: Resulting values of the Wilcoxon test for a statistically significant level of α = 0.05 

ESSMA vs GWO SCA WOA HHO SMA MVO GA 

Flame 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.58E-11 1.79E-4 

Jain 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.83E-11 6.79e-08 

Compound 0.05 3.02E-11 7.74E-06 5.57E-10 1.84E-02 1.91E-02 43.8E-3 

Path-based 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.39E-10 1.8E-05 

Spiral 1.68E-03 3.02E-11 1.39E-06 4.20E-10 6.91E-04 0.46 33.71E-3 

Birch 1 1.83E-04 1.83E-04 1.83E-04 1.83E-04 1.83E-04 3.30E-04 1.83E-04 

Sales Transactions 1.51E-01 7.94E-03 7.94E-03 7.94E-03 4.21E-01 7.94E-03 7.94E-03 

DIM64 1.00E-01 1.00E-01 1.00E-01 1.00E-01 3.00E-01 1.00E-01 2.00E-01 

DIM128 1.00E-01 1.10E-01 1.50E-01 2.00E-01 1.00E-01 1.00E-01 1.00E-01 
 
Table 6: Resulting values of the Wilcoxon test for the statistically significant level at α = 0.05 

ESSMA vs GWO SCA WOA HHO SMA MVO GA 

Iris 3.35E-08 3.02E-11 1.10E-08 1.85E-08 1.07E-07 0.07 5.29E-04 
Seeds 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.25E-04 

Glass 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.17E-09 2.22E-04 

Cancer 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.79E-08 

Wine 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.79E-08 

CMC 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.69 

Heart 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.59E-05 

Yeast 2.83E-08 3.02E-11 3.02E-11 4.74E-06 3.82E-10 7.77E-09 9.17E-08 

Art 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.34E-11 1.04E-07 1.79E-04 
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Table 7: Average of rankings over all datasets for the considered algorithms 

Algorithm Convergence 

GWO 3.36 
SCA 8.00 

WOA 5.63 

HHO 5.93 
SMA 3.14 

MVO 2.32 

GA 3.13 
ESSMA 1.16 

 

Table 8: Average of the best-obtained values over all datasets for the considered algorithms 

Algorithm Convergence 

GWO 50.03E+15 

SCA 81.72E+15 

WOA 57.90E+15 

HHO 75.34E+15 

SMA 51.88E+15 

MVO 50.09E+15 

GA 58.26E+15 

ESSMA 49.956E+15 

 

We first calculate the average of the best values over 

all the datasets as reported in Table 8. The average of the 

best values obtained using our method is the smallest, 

followed by GWO and MVO. Next, we ranked the 

algorithms based on their best-obtained values and 

averaged those rankings. The average of the ranks across 

all datasets is reported in Table 7 and again our approach 

ranks first, followed by MVO and GA. 

Statistical Analysis 

To perform an accurate evaluation process, a non-
parametric statistical test is used on the experimental results. 
The Wilcoxon test is conducted at a 5% level of significance. 
The null hypothesis is rejected if the p−value < 0.05. Table 5 
contains the obtained p-value of ESSMA compared to the 
chosen meta-heuristic with the best performance illustrated 

in bold text. It can be seen from Table 5 and 6 that ESSMA 
outperforms SCA, WOA, and HHO in all used datasets. 
Also, ESSMA outperforms generally the GWO (resp. SMA) 
except in the datasets Compound; besides, it does not 
outperform GA only in CMC. Using this statistical test, it 
turns out that MVO is the competitor of our approach since 

the p-value obtained in one dataset, namely the Spiral 
datasets is higher than the significance level. 

Convergence Analysis 

Figures 5 to 14 show the convergence behavior of the 

algorithms graphically for all the considered datasets. The 

vertical axis represents the fitness values obtained in each 

iteration lying in the horizontal axis while the horizontal 

axis refers to the number of iterations. ESSMA has shown 

the best behavior in all datasets except the convergence 

curve applied to the Yeast dataset. In addition, the curves 

demonstrate a rapid switch from exploration to 

exploitation. Thus, the ESSMA proves an efficient 

performance compared to the well-known algorithm. 

Statistically speaking, the ESSMA algorithm is more 

successful in avoiding the local optima and efficiently 

evades the local traps in all datasets. According to the 

mathematical formulation of the ESSMA algorithm, at 

each iteration, a fraction of the solutions is replaced by 

other ones by using the so-called Levy flight which is a 

kind of random walk that forces the search individuals or 

particles to perform random steps towards or outwards the 

best agent. This promotes exploration of the search space 

which leads to finding diverse structures during 

optimization. Besides, the position update of the rest of 

the portion of the population is ensured by using the 

standard SMA to intensify the exploitation phase. Per this 

study, it is recommended to use the ESSMA metaheuristic 

as an efficient optimization algorithm, particularly for 

hybrid applications such as data clustering. Most 

importantly, due to its high exploratory capabilities that 

prevent getting stuck in a local optimum when optimizing 

the distance objectives. Additionally, its high exploitative 

property explains why the ESSMA-based clustering can 

converge efficiently towards the global optimum in 

complex search space. The results of this study show that 

although evolutionary algorithms have high exploration 

and can achieve high accuracy in determining the centroid 

positions, as shown by the use of ground truth data, the 

problem of data clustering requires intelligently avoiding 

local optima throughout the optimization process. The 

achieved results show that the ESSMA is very efficient in 

this regard. 
It is worth mentioning that ESSMA is strongly 

recommended when the considered problem and dataset 
are complex and multi-dimentional with a large number 
of features. Otherwise, it is more convenient to use 
gradient-based training algorithms where the dataset is 
small and includes very few features as it will be faster 
and less computationally expensive. 
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Conclusion 

This study has investigated the application of the 

Eagle Strategy on Levy Flight and SMA to solve the 

clustering problems. Results show that the proposed 

approach is capable of searching for the best cluster 

centroids and ensuring the avoidance of the local 

minima traps, which is the main disadvantage of many 

approaches such as the K-means Algorithm. The 

clustering problem is formulated as an optimization 

problem that aims to minimize the sum of intra-cluster 

distances. ESSMA exploits the exploration power of 

Levy Flight and the exploitation afforded by SMA. The 

performance of the method has been evaluated based 

on eighteen datasets from UCI and Shapes repositories 

and compared with seven well-known algorithms 

GWO, SCA, WOA, HHO, SMA, MVO, and GA. The 

empirical results showed that the introduced ESSMA 

Clustering method achieves higher performance than 

other algorithms on almost all the datasets. 

Researchers in biology are still trying to understand 

comprehensively the foraging behaviors of different 

bacteria. Their results can inspire researchers to update 

the Slim Mould algorithm. In addition, future work 

must develop how to use the Slim Mould Algorithm in 

hybrid mode to enhance the exploration phase. In 

addition, the enhancement of a Fuzzy algorithm based 

on ESSMA to cluster data taking into account the 

uncertain data, the noisy data, and the unbalanced 

clusters can be an interesting research track. 
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