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Abstract: In recent years, Deep Neural Networks (DNNs) have garnered 

much interest due to advances in computational power and data availability. 

Indeed, DNNs presents a considerable advantage in several challenges, such as 

classification problems and video analysis. Although, such accomplishment 

leads to significantly increasing energy demands, computational expenses, and 

memory capacity. In addition, current efficient DNNs may have more 

complex and extensive structures. As a result, implementing these huge 

models on embedded systems with limited sources is challenging. However, 

several works have attempted to solve the implementation issues while 

maintaining optimum accuracy. Among these ideas is compressing the model 

size using the quantization method and deploying it on Field Programmable 

Gate Arrays (FPGA) to enhance the latency and minimize the energy cost. 

This article presents a model optimizer using quantization methods to ensure the 

model hardware implementation. This optimizer compresses the model size and 

is integrated with a design flow that implements the model on the hardware. 

Furthermore, this article presents "DNN2FPGA," a design flow that can 

automatically implement the Deep Learning models on FPGA by producing 

pipelined HDL codes. This article indicates an excellent performance by 

decreasing the model's size and latency by 4x while maintaining the model's 

accuracy. It also presents a full review of the state of the art. 
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Introduction 

Deep Neural Networks (DNNs) have garnered much 

interest due to advances in computational power and data 

availability. Indeed, DNNs presents a considerable 

advantage in several challenges, such as classification 

problems and video analysis. Although, such 

accomplishment leads to significantly increasing energy 

demands, computational expenses, and memory capacity. 

In addition, current efficient DNNs may have more 

complex and extensive structures (nodes and layers). 

Figure 1 demonstrates that as the precision of the 

numbers utilized rises, so does the relative energy cost. 

For example, 8-bit addition costs 0.03 pJ, but 32-bit 

floatingpoint addition costs 0.9 pJ, or 30 times higher 

(Ducasse et al., 2021). 
These days, DNNs may have more complex and 

extensive structures. For example, in DNNs, the number of 

layers may scale into tens of thousands and there can be 

billions of parameters (Ghimire et al., 2022. Consequently, 

deploying such huge models on real-time integrated 

circuits is defiance. In addition, these devices come with 

limited resources (energy, memory, and bandwidth), so 

there is an urgent need to find solutions for effectively 

deploying DNNs in low-powered devices (such as 

smartphones, embedded gadgets, and FPGA) without 

compromising model accuracy. 

 

 

 
Fig. 1: Energy cost of operations in certain representations 

(Ducasse et al., 2021) 
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However, several works have attempted to minimize the 

memory and processing needs of DNNs while maintaining 

optimum accuracy to overcome limited device DNN 

implementation issues. Among these ideas is compressing 

the model size using the quantization method and deploying 

it on Field Programmable Gate Arrays (FPGA) to enhance 

the accuracy and minimize the energy cost.  

Furthermore, FPGAs are suitable for DNN 

implementation (Tourad and Eleuldj, 2020). Because of 

their energy consumption efficiency, reconfigurability 

and computing capacity.  

This article presents a model optimizer using 

quantization methods to ensure the model hardware 

implementation. This optimizer is integrated with the 

"DNN2FPGA" (Tourad and Eleuldj, 2021) design flow to 

compress the model size. Furthermore, this version of the 

design flow can automatically implement the Deep Learning 

models on FPGA by producing pipelined HDL codes.  

This study structure contains six sections: The second 

section describes the background of DNN quantization. 

Next, the third section highlights the leading works in the 

DNN quantization method and reviews many related 

works to the DNNs hardware implementation. Then, the 

fourth section explains the proposed design flow and 

describes the quantization approach used in study work. 

After that, the fifth section shows the relevant results. 

Finally, the last section contains the conclusion. 

This study includes the following contributions: 

 

 The new model optimization approach includes three 

quantization methods 

 New generic design flow integers a model optimizer 

and can automatically implement the Deep Learning 

models on FPGA by producing pipelined HDL codes 

 Implement a CNN (Convolutional Neural network) 

for MNIST dataset classification to test and validate 

the design flow and the quantization method 

 We discuss the obtained relevant results 

 

DNN Quantization 

Quantization is among the important and generally 

used model compression methods. For example, standard 

development frameworks frequently represent a neural 

network's parameters (bias, activations, and weights) as 

floating-point data. Recent studies have attempted to 

substitute this format with low-bit floating-point values or 

a small set of trained values. (Shawahna et al., 2018).  

Quantization decreases computations by decreasing 

the accuracy of the data type, which reduces the bit width 

of the deep neural network's data storage and flow. 

Conversely, the computation and storing of data at a 

minor bit width permits fast inference while conserving 

energy. There are two types of quantization: Uniform and 

non-uniform quantization.  

Uniform quantization presents the mapping 

function from real values to integer values, where the 

quantization levels are uniformly spaced                      

(Gholami et al., 2021). Other research in state of the art 

investigates non-uniform quantization (Cai et al., 2017; 

Jeon et al., 2020; Faraone et al., 2018; Jung et al., 2019; 

Liao et al., 2020), where the widespread distribution is 

logarithmic and the quantization steps and levels are 

not equally distributed. However, this study focuses 

only on uniform quantization: 

 

   /Q r Int r S Z   (1) 

 

Equation 1 (Gholami et al., 2021) defines the popular 

function to quantize the DNN, while Q is the quantization 

function, r denotes a real-valued parameter (bias, 

activation, or weight) and S denotes a real-valued scaling 

factor. Z denotes zero-point (quantization bias or offset) 

and Int is the float-to-integer rounding function. The 

scaling factor S converts the floating-point values to the 

corresponding low-precision values. For example, 

Zeropoint Z is a number with a low precision that reflects 

a quantized value that will represent the float value 0. The 

utility of zero-point is that we may have a broader range 

of integer values even for divergent tensors.  

Calibration 

Let [α, β] indicate the quantization range of real values 

and b presents the bit-width of the signed integer format 

(Gholami et al., 2021). Then, uniform quantization 

converts the input value x 𝜖 [α, β] to fit within the range 

[−2b −1; 2b−1 − 1], where all the values beyond this range 

are truncated to the closest limit. As a result, to specify the 

scaling factor, the clipping range [α, β] must first be 

specified. Calibration refers to the procedure of 

determining the clipping range. The most critical element 

in the quantization is the selection of the S. Equation 2 

computes the scaling factor S: 

  

2 1b
S

 



 (2)  

 

A primary option is to determine the clipping range based 

on the minimum and maximum values of the signal; in this 

case, α = rmin and β = rmax. Given that the clipping range is not 

always symmetric concerning the origin, i.e., −α ≠ β, this 

method constitutes an asymmetric quantization technique. 

However, employing a symmetric quantization approach is 

also feasible by selecting a symmetric clipping range of α = 

−β and the zero-point z = 0, resulting in the same output as 

the previous example. Therefore, one common strategy for 

determining these parameters is to choose them based on 

the minimum and maximum values of the signal, as 

follows: −α = β = max (|rmax|, |rmin|). 
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Furthermore, there are two activations quantization 

methods, dynamically and statically. Dynamic quantization 

calculates each activation map's range at runtime. This 

method involves real-time data statistics computation (max, 

min, and percentile.), which can be difficult. However, 

dynamic quantization is more accurate than static 

quantization since each input's signal range is computed. 

Static quantization pre-calculates and statically infers the 

clipping range. This method adds no computing complexity, 

although it is less accurate than dynamic quantization.  

Yao et al. (2021) One of the most common approaches 

to pre-calculation is to compute the usual range of 

activations by running a series of calibration inputs.  

Multiple metrics have been suggested to find the ideal 

range to reduce the Mean Squared Error (MSE) between 

the original parameters format and the quantized values 

corresponding to it. (Choukroun et al., 2019; Zhao et al., 

2019). Although MSE is the most frequent way, one might 

consider utilizing other measures, such as entropy 

(Park et al., 2017). Another method is learning or 

applying this clipping range while the neural network is 

being trained. Works such as LQNets (Zhang et al., 2018) 

and LSQ+ (Bhalgat et al., 2020) are particularly 

noteworthy since they jointly optimize both the clipping 

range and the weights in DNN as it is being trained. 

Fine-Tuning Methods  

After the quantization process, it is frequently required 

to make adjustments to the parameters in the DNN. This 

update may be accomplished by retraining the model, a 

process referred to as Quantization-Aware Training 

(QAT), or it can be achieved without retraining, a process 

that is sometimes referred to as Post-Training Quantization 

(PTQ). As the name indicates, PTQ applies quantization to 

the model after it has been entirely trained using the Floating-

Point 32 (FP32) weights and activations.  

During training the model with QAT, the quantization 

loss is viewed as a part of the training loss. In most cases, 

QAT results in a more accurate model than PTQ, although 

PTQ is simple to implement.  

Extreme Quantization 

Quantization with very low bit accuracy is considered 

an extremely promising research subject. On the other 

hand, current approaches often result in a significant loss 

of accuracy compared to the baseline unless an extensive 

tuning and hyperparameter search is conducted. However, 

this accuracy loss can be tolerable for applications that are 

not as important. The most intensive form of quantization 

is binarization and it involves restricting the quantized 

values to a representation that uses just one bit.  

As a result, the needed memory is cut down by a factor 

of 32. Furthermore, bitwise arithmetic may frequently 

execute binary (1-bit) and ternary (2-bit) computations, 

significantly improving over higher precisions such as 

FP32 and INT8. Besides the memory advantages that bitwise 

arithmetic offers. Some of the most often used binary neural 

networks are BinaryConnect (Courbariaux et al., 2014; 

2015), Binarized Neural Network (BNN)              

(Courbariaux et al., 2016), and XNOR-Net (Rastegari et al., 

2016; Bulat and Tzimiropoulos, 2019). We will go more into 

them in the next section. 

Related Works  

Various prior work – hardware accelerators – including 

hls4ml (Duarte et al., 2018), DL2HDL (Wielgosz et al., 

2019), FP-DNN (Guan et al., 2017), and SysArrayAccel 

(Wei et al., 2017) support both fixedpoint and floating-

point and also apply uniform quantization to all layers. Most 

operations in Finn (Ducasse et al., 2021.) are binary and 

focus on binary neural networks. Other frameworks, such 

as ALAMO (Ma et al., 2018), Auto Code Gen (Liu et al., 

2016), and Angle-Eye (Wei et al., 2017), enable 

automated dynamic quantization for all layers at the time of 

compilation. Tourad and Eleuldj, 2020 studied several 

quantization-based frameworks for accelerating DNN 

models on FPGAs.  

The results of (Wu et al., 2020) study demonstrate that 

the precision parameters of FP32 may be lowered to INT8 

without causing a substantial reduction in the network 

accuracy. Another technique (Banner et al., 2019) created 

a 4-bit post-training quantization strategy that does not 

need the model to be fine-tuned after the quantization 

process. In (Jacob et al., 2018), only INT8 was employed 

for the training and inference of the ResNet-50 model, 

resulting in an accuracy loss of 1.5 percent. The research 

presented in reference (Hubara et al., 2017) generalizes the 

idea of bit precision, which allows storing weights and 

activations using any number of bits rather than only INT8.  

Moreover, several studies focus on the binarization 

strategy. Significant work in this subject is Binary Connect 

(Courbariaux et al., 2015), which restricts weights to +1 or -

1. This method maintains the weights as real values and is 

binarized solely during the forward and reverse runs to 

approximate the binarization effect. During the forward pass, 

the weights with real values are changed to +1 or -1 

depending on the sign function. BNN (Courbariaux et al., 

2016) expands on this notion by binarizing both the 

activations and the weights. The added advantage of 

binarizing weights and activations together is reduced 

latency since the expensive floating-point matrix 

multiplications may be substituted with lightweight XNOR 

operations followed by bit counting.  

Another intriguing study (Rastegari et al., 2016; Bulat 

and Tzimiropoulos, 2019) is XNOR-Net, which achieves 

more precision by integrating a scaling factor into the 

weights. During training, XNOR-Net (Rastegari et al., 2016) 

and DoReFa (Zhou et al., 2016) sought to decrease 

quantization errors to expedite the training process. 

DoReFa-Net is a technique for training convolutional 
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neural networks with low-bit-width weights and activations 

using low-bitwidth parameter gradients (Zhou et al., 2016). 

Before being transmitted to convolutional layers, 

parameter gradients are stochastically quantized to low 

bit-width integers during the backward pass. Furthermore, 

forward/backward convolutions may now work with low 

bit-width weights. Training and inference may be 

accelerated using bit convolution kernels with 

DoReFaNet. AdaBits (Qin et al., 2020), another recent 

work based on the same DoReFa-Net concept using the 

adaptive quantization method. This approach proposes 

training a single model with multiple width multipliers for 

instant application adaptation (Qin et al., 2020).  

AdaBits adjusts width, depth, and kernel sizes to 

improve predicted accuracy within the same 

computational restrictions.  

Recently, IRNet, a binarization technique described by 

Qin et al. (2020) that uses a self-adaptive error-decay 

estimation to reduce gradient error in the learning phase, 

is the first method to handle data holding for both forward 

and backward propagation (Qin et al., 2020). To overcome 

these challenges, they propose an Information Retention 

Network (IR-Net) preserve information consisting of 

forwarding activations and backward gradients.  

However, the frameworks in the research (Tourad and 

Eleuldj, 2020), among them the previously mentioned 

tools, are either non-generic (particular tool or equipment 

or limited templates) or comprise a substantial number of 

steps and tool flows, or use an extreme quantization which 

affects the model' accuracy.  

Design Flow and Quantization Approach 

(Tourad and Eleuldj, 2021) have recently suggested 

the "DNN2FPGA." A design flow employs a technique of 

direct hardware mapping.  
This study presents a model optimizer using 

quantization methods to compress the model before the 
hardware implementation. Furthermore, this optimizer is 
integrated with a new version of the "DNN2FPGA" design 
flow with pipelined hardware implementation approach.  

As illustrated in the design flow scheme (Fig. 2), the 

"DNN2FPGA" starts from the component Deep Learning 

Engine (DLE), in which the developer may create the 

DNN using a high-level framework such as Tensorflow or 

Keras. After that, the DLE sends the model to the 

optimizer component to apply a quantization method to 

reduce the parameter's bit-width. This method gives a 

gain in terms of memory and computation time. Then 

return the optimized model to the DLE. The DLE then 

generates a hierarchic representation of the model 

description using the Keras library.  
The type of layer (pooling, convolutional, or fully 

connected), activation functions (ReLU, Tanh, and 
Sigmoid), and the layer calculations are then retrieved by 
the parser component. The model parser then retrieves the 
parameter (weights and biases).  

Finally, these features are stored as configuration files 

and sent to the HDL generator.  

The component HDL generator is responsible for 
many essential tasks: The timing stage is in charge of 

synchronizing the operation and establishing the clock 
cycle for the master-slave D-flip-flops. Moreover, this 
phase also handles the pipeline across layers. Finally, it 
separates calculations and memory access into clock 
cycles and distributes them to hardware units.  

The layers are interconnected. Consequently, operating 
all network layers in the parallel mod is impossible.  

Every layer should finish treating its current input 
(generate an output value) while accepting a new set of inputs 
to avoid overwriting internal registers during processes.  

As illustrated in Fig. 3, these master-slave D-flipflops 

maintain the information till the clock pulse or signal, 

transferring it to the following layer and obtaining new 

data flow. This method increases the network throughput 

and enables the pipelined procedure.  

The synthesis component then evaluates and 

compiles the generated HDL code. This stage first 

validates the HDL syntax and process statements. Next, 

the synthesis tool transforms the high-level 

representation into low-level representations by 

creating the bitstream file. Last, the synthesis confirms 

that the HDL code matches the hardware device.  

While implementing the HDL on the device and 

ensuring that the results are equivalent to the software 

implementation, a simulation phase is necessary to 

ensure the HDL results are accurate. If the acquired 

results are below the software implementation, the 

complete process illustrated in Fig. 2 will be repeated, 

beginning with the generation of the model description. 

Otherwise, the procedure will proceed to load the 

bitstream files on the FPGA device. The validation 

parameters are the model precision and the latency 

(delay time); latency is the time necessary to estimate the 

test results for each deployment (HDL and software). 

The bitstream file created by the synthesis component 

is then loaded on the designated device, especially in 

nonvolatile memory. This file contains the functionality, 

routing, and register default values. It also provides all the 

hardware components and instructions for controlling the 

device's assets. After downloading this file, the device is 

now prepared to use and test the Deep Learning model.  

Comparing both hardware and software results is 

essential to validate the preciseness of the generated 

model. Therefore, after the model deployment on the 

device is completed, the model precision evaluation is 

built on the testing data (exploitation mode) to determine 

whether the generated results resemble the software 

results; if they do not, the entire process is restarted from 

the obtention of the model description file.  

When it comes to deploying DNNs on FPGAs, two 

approaches may be used. First, starting from scratch, 

where the implementation handles training and inference, 
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or using a pre-trained model, where the hardware is just 

utilized for inference.  

The DNN2FPGA can implement both, but we tested 

the design flow with a pre-trained model in our case. 

Quantization Approach 

The optimizer takes the model as input and then applies 

a symmetric quantization using a variety of calibrations. The 

optimizer strategy combines three different quantization 

methods applied one after the other until the necessary level 

of accuracy is achieved. The optimizer will begin by 

performing a post-training quantization on all layers. Next, it 

will test the model's accuracy and if it does not attain the 

desired accuracy, it will perform a uniform quantization on a 

portion of the neural network. This partial quantization 

leaves the more contributed layers, such as convolutional 

layers, in floating format. After that, do a new evaluation of 

the model's accuracy; if it does not yield the desired accuracy, 

go on to the process's Quantization-Aware Training (QAT) 

to fine-tune the model's accuracy. Finally, the training is 

deployed on the quantized model in the precedent phase with 

the same calibration method. This quantization approach 

uses a broad range of calibrations (min, max, percentile.).  

Algorithm 1 explains all the required steps, from 

choosing the calibration and the accuracy verification. 

The algorithm is generic, which means it is independent 

of the bit-width (16-bit, 8bi. etc.) and the calibration 

method. First, the algorithm takes the DNN model as input 

and the user gives the quantization parameters (bitwidth 

and the calibration range). Then we browse all the layers 

and for each layer, we quantify every parameter using 

equation 1 in the second section. Next, we evaluate the 

model accuracy and, if not the desired one, continue to a 

partial quantization by skipping the sensitive layers, 

which in our case is the convolutional layer (the condition 

in the if clause). Finally, we apply a QAT method to 

finetune the model if the required accuracy does not yield.  

Figure 4 presents the algorithm flowchart and explains 

the quantization steps.  
 

Algorithm 1: Quantization Algorithm  

Require: DNN model  

Ensure: a quantized model  
Chose the quantization bit-width  
Chose the Calibration method  
Calculate the scaling factor  
# First, the post-training quantization for all layers  
For L in Layers do  
 For P in Parameter do  
 # Apply the quantization equation to P 
 P = Q(P)  
 End For  
 End For  
 Evaluate the model accuracy  
 IF the accuracy < desired accuracy then  

 # Quantization for the non-sensitive layers 

 For L in Layers do  
 # Skip the sensitive layers  
 IF L ! = convolutional layer  
 For P in Parameter do  
 # Apply the quantization equation to P 
 P = Q(P)  
 End For  
 END IF  
 End For  
 Evaluate the model accuracy  
 IF the new accuracy < desired accuracy then  
 Apply the QAT method to fine-tune the model  
 End IF  
End IF 

 

Case Study 

This part represents the case study demonstrating how the 

design flow implements the quantization and tests the 

optimizer functionality. The design flow and the optimizer 

are implemented using Tensorflow/Keras framework. In this 

case study, we implement only the Int8 quantization to test 

the model optimizer inspired by the precedents works.  

The CNN tested for the inference and prediction of a 

classification problem consists of an input layer, then two 

2D convolutional layers with twelve filters using the 

ReLU (Rectified Linear Unit) as a non-linear function 

followed by a Max-pooling layer and a fully connected 

output layer with ten nodes.  

Table 1 regroups All the network hyperparameters. 

Hyperparameters are parameters that are established 

before the model training process begins. Therefore, the 

values provided for these hyperparameters can affect the 

model learning rate and other parameters during training 

and final model performance. 
The model error function is cross-entropy, commonly 

utilized to solve binary classification problems and the 
Adam method is an optimizer. Adam is an efficient form 
of the famous gradient descent algorithm used to solve 
various problems. The number of epochs in Table 1 
presents the number of times the network is shown the 
entire training data while training. The batch size in Table 1 
is the number of sub-samples sent to the network, after 
which the parameters are updated.  
 
Table 1: Model hyperparameters 

Parameters  Configuration  

Loss function  Cross entropy  

Optimizer  Adam  

No of epoch    10  

Batch size  500  
 
Table 2: Quantization results 

  Baseline model  Quantized model 

Precision  FP32  Int 8  
Memory  0.08 Mb  0.023 Mb  
Accuracy  0.9655  0.9650  
Latency  5.0030 s  1.230 s 
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This study uses the MNIST dataset of handwritten 

digits widely used to test image processing methods. It has 

a 60,000-example training set and a 10,000-example test 

set with 28  28-pixel samples. 

Table 2 results demonstrate that the quantization reduces 

4x the model size without losing the model's accuracy. 

Moreover, demonstrate that this quantization reduces the 

model latency by 4x. These results are obtained after 

implementing post-training and quantization-aware training 

to fine-tune the model's accuracy.  
 

 
 
Fig. 2: The new design flow 
 

 
 
Fig. 3: Master-slave d-flip-flop 

 
 
Fig. 4: Algorithm flowchart 
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Fig. 5: QAT Training and validation accuracy 

 

Figure 5 shows the accuracy and validation accuracy 

during all the training epochs.  

Moreover, this figure shows the functionality of the 

model optimizer and tests the feasibility of this 

approach and the optimizer integration in the design 

flow. The results demonstrate promoted performance to 

improve in further works. 

Conclusion and Future Works  

This article presents a model optimizer using 

quantization methods to ensure the model hardware 

implementation. This optimizer is integrated with the 

"DNN2FPGA" design flow to compress the model size. 

Furthermore, this version of the design flow can 

automatically implement the Deep Learning models on 

FPGA by producing pipelined HDL codes.  

This study content describes the background of DNN 

quantization. Next, it highlights the leading works in the 

DNN quantization method and reviews many related 

works to the DNNs hardware implementation. Then, it 

explains the proposed design flow and describes the 

quantization approach used in this study. After that, it 

shows the relevant results.  

This article indicates an excellent performance by 

decreasing the model's size and latency by 4x while 

maintaining the model's accuracy. It also presents a full 

review of the state of the art.  

This study concentrates on inference, meaning the 

implementation concentrates on exploiting the model. 

Further work is implementing the model from scratch 

(training and inference). Furthermore, we will improve 

the implementation, implement more optimization 

methods and deep learning models, evaluate metrics 

such as energy consumption and handle more 

significant network concerns. 
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