
 Journal of Computer Science

© 2021 Heitor Scalco Neto, Wilian Soares Lacerda and Rafael Verão Françozo. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Original Research Paper

Random Forests for Online Intrusion Detection in

Computer Networks

1Heitor Scalco Neto, 2Wilian Soares Lacerda, 1Rafael Verão Françozo

1Instituto Federal de Mato Grosso do Sul, Corumbá-MS, Brazil
2Universidade Federal de Lavras, Lavras-MG, Brazil

Article history

Received: 20-04-2021

Revised: 23-06-2021

Accepted: 08-09-2021

Corresponding Author:

Heitor Scalco Neto, Instituto

Federal de Mato Grosso do Sul,

Corumbá-MS, Brazil
Email: heitorscalco@hotmail.com

Abstract: This study proposes a methodology to build an Online Network

Intrusion Detection System by using the Computational Intelligence technique

called Random Forests and an API to preprocess the network packets. The

experiments were carried out from two network traffic databases: The ISCX (i);

and a test database (ii) created with the proposed API in our own network

environment. The results obtained with the Random Forests technique show

accuracy rates around 98%, bringing significant advances in the area of Intrusion

Detection and affirming the high efficiency of the use of the technique to solve

problems of intrusion detection in real network environments.

Keywords: Intrusion Detection Systems, Computer Networks,

Computational Intelligence, Random Forests

Introduction
The volume of internet traffic in Brazil increased from

0.5 Tb in 2014 to 10.5 Tb in 2021. This growth is due the

new services available through the internet, such as banking

applications, multimedia and real-time finance systems (Hai,

2021). To accommodate this volume of data reliability and

availability, the implementation of tools such as Intrusion

Detection Systems (IDS) (Shah, 2017) is necessary to help

the network administrators in the security monitoring of the

available infrastructure.
Network Intrusion Detection Systems (NIDS) are

fundamentally important to ensure information
reliability, integrity and availability in a network
computer (Moustafa and Slay, 2016). Therefore, this study
describes a methodology to develop an online NIDS using
random forests (Wu and Banzhaf, 2010; Resende and
Drummond, 2018)

The random forests technique is applied and assessed
to define the method efficacy of the intrusion detection in
a computational environment. In this study, an
Application Programming Interface (API) was developed
for the proposed NIDS to operate in a real environment.
The objective of the API is to capture the network traffic
and preprocess the data packet so they can be interpreted
by the random forest technique.

The developed API can perform experiments with
various network infrastructure simulations and in a real
environment. The training of the technique was performed
with the ISCX network traffic database. The ISCX is
composed of many types of traffic (e.g., VoIP, SSH,
HTTP, HTTPS, FTP, etc.).

From the developed API, an auxiliary database was

created for a test to address alternative traffic types to

those found on ISCX in a smaller scale network, with

various operational systems. This can test the

effectiveness of the method conducted on different

infrastructures and modes of use.

The main contributions of this study are: (i) Validation

of the Random Forests technique for the computer

network intrusion detection problem; (ii) development of

an API for packet capture, pre-processing and integration

with various Computational Intelligence techniques; (iii)

use of software and/or host independent features.

The results indicate and average score around 98%

with ISCX database and Random Forest technique and

96% with the testing database. The principal findings

obtained suggests the feasibility of using the Random

Forests technique to solve intrusion recognition problems

in computer networks.

The following section presents a brief literature review

and concepts about network intrusion detection systems and

random forests. In the section materials and methods, the

methodological procedures and resources used are outlined.

The results are presented and discussed in section results.

Finally, the last section contains the conclusions of this study.

Theatrical Foundation

This section presents a brief literature review about

Network Intrusion Detection Systems and Random Forests.

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

906

Network Intrusion Detection Systems

The term “Intrusion Detection” is defined as the

process in monitoring events that are occurring in a

computational system or network computers, looking for

intrusive traffic.

The causes of security incidents have many causes

include the propagation of a malware; attackers trying

to elevate privileges to access unauthorized systems;

and denial of services attacks (Scarfone, 2007).

Intrusion Detection Systems are a useful technology for

network administrators. The function of IDS is to

recognize an anomalous behavior or an intrusive action

and report it to the network administrator to take

necessary measures (Scalco Neto, 2021).

IDS recognize signature-based or anomaly-based

intrusive actions. Signature-based detection systems

identify attacks by analyzing previously configured

signatures about the standard behavior of some type of

attack. In the case of anomaly-based IDS, a network or

host pattern is analyzed and traffic is classified as

anomalous or normal. The main advantage of an

anomaly-based IDS is the possibility of detecting

unknown attacks, which is not the case with signature-based

detection (Wang, 2009).

A NIDS exclusively analyzes the network traffic

without using host-specific information (e.g., memory

usage, processing, interfaces), by usually using an

interface in promiscuous mode, working as a sniffer

(Uchoa, 2009). This type of system usually operates with

one or more sensors on the network and a monitoring

station. When a sensor detects abnormal activity on the

network, an alert is transmitted to the monitoring station

that will notify the network administrator about the

situation. Figure 1 illustrates an example of an IDS

placement on the network (Scalco Neto, 2021), where the

IDS is installed on a shared network segment, usually

between the public network router and the firewall.

Computational Intelligence techniques, such as

Random Forests (Johnson and Jain, 2016; Aburomman and

Reaz, 2017), described in the next section, are a method

for intrusion recognition in computer networks

(Ahmad et al., 2021).

Random Forests

To present the Random Forests technique, the concept

of Decision Trees must first be explained. Decision Trees

use the divide and conquer strategy, whereby a complex

problem is broken down into several simpler subproblems

in a recursive way. The process of building a Decision Tree

is accomplished by selecting an attribute that will be a

divisor of the data set (Oshiro, 2013).

Figure 2 shows the structure of a Decision Tree to

perform a computer network traffic classification where

the result can be “Normal” or “Intrusion”. At the root of

the tree is “Attribute 88”. Hypothetically, if the value of

“Attribute 88” >= 1, then the algorithm moves to the left

side of the tree to reach “Attribute 5”, which performs the

same comparison until it reaches a leaf node with an

associated class. A Decision Tree can be used to classify

samples other than those used for training.

The Random Forests technique uses a set of Decision

Trees to constitute its classification “forest”. Decision Trees

are excellent predictors, but do not always achieve a high

generalization ability. On the other hand, the Random

Forests technique has excellent accuracy characteristics and

high generalizability. This technique uses a recursive

partitioning algorithm that combines predictions made by a

set of Decision Trees (Biau and Scornet, 2016).

Fig. 1: IDS placement on the network

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

907

Fig. 2: Example of a decision tree structure

The learning process, or training, of this technique works

by creating hundreds (or even thousands) of Decision Trees.

Each tree is created based on a small set of samples of the

data (or just one sample). Trees are created without an upper

limit on the depth of nodes (except when using “pruning” –

a process in which the growth of the tree is limited) and

forests are formed by aggregating these trees (Boldt, 2014).

The training of Random Forests requires the definition

of some parameters. Thus, the algorithm for training

Random Forests, using the Scikit-Learn, allows the

following parameters to be defined:

 max_depth: Maximum depth of the tree

 max_features: Maximum number of features used

 n_estimators: Maximum number of trees in the forest

 min_samples_split: Minimum number of samples to

create a node

 min_samples_leaf: Minimum number of samples to

create a leaf

By performing tests, taking into account the

availability of acceptable training time for this type of

application, the parameters can be better adjusted,

considering limitations of the depth of the trees and other

aspects, thus avoiding overfitting (a situation in which the

algorithm specializes in the training data, impairing its

generalization ability) (Shiravi et al., 2012).

Materials and Methods

Performing network traffic analysis and classification,

online and in real environment, is always a challenge.

According to (Scalco Neto, 2021). The difficulty in

building an efficient NIDS is to make the number of true

positives large but keep the number of false positives

small or even zero. In addition to this challenge, the large

amount of information that can be extracted from a

network connection can make detection difficult, because

most of the time, an intrusion can be characterized by one

or more variations of the characteristics of a connection.

To search for a solution to this problem, the Random

Forests technique and a set of characteristics extracted

from a connection were used. The Random Forests

technique presents an advanced degree of generalization

and can benefit the results of the classification of intrusive

traffic in computer networks. Furthermore, after training

the technique, the classification algorithm works with

simple operations, making the system more efficient.

In this study, the Scikit-Learn library was used to

implement the Random Forests technique. It starts from a

principle in which the forest is allowed to grow according

to the characteristics of the data and, subsequently, size

limitations are performed with processes known as

Pruning. The process of solving the proposed problem is

presented in detail in this section.

ISCX 2012 Database

The ISCX 2012 database (Shiravi et al., 2012)

offers some deficiencies found in previously databases

(e.g., CAIDA, DARPA and KDD). Therefore, this

database provides the logs of connections (normal or

intrusive) and all captured traffic (without removing

payloads) in a real environment. In addition to the

network packet replay capability, the database counts

the traffic captured for one full week, totaling 2,450,324

connections. During the traffic capture, several protocols

were used, such as: FTP, HTTP, HTTPS, DNS, Netbios,

POP3, SMTP, SNMP, SSH and others.

Four scenarios were created and reproduced separately

to represent the attacks: Consisting of exploiting

vulnerabilities in applications (Exploits); Denial of

Service (DoS); Distributed Denial of Service (DDoS); and

Brute Force (Shiravi et al., 2012).

To apply the database to Computational Intelligence

techniques, the arrangement of class data (normal or

intrusion) must be evaluated. Preliminary results

showed a high degree of unbalance of this database, so

the oversampling method was used (He and Garcia,

2009) to equalize the data from the majority class to the

minority class.

Packet and Connection Capture and Handling API

To enable the extraction of packet characteristics from

a network, as presented in the ISCX 2012 database

(Shiravi et al., 2012), an application was developed that

captures packets, performs pre-processing and sends the

information to a classification engine (Random Forests

technique). In this way, an Open-Source API is proposed,

with the objective of enabling the pre-processing of existing

databases, the creation of new databases and online intrusion

detection. The API were made available (Scalco Neto, 2021)

to the community, with the goal of allowing other authors to

generate their own databases in a simplified way and with the

ability to change the parameters and the extraction of

characteristics from the packets at any time.

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

908

According to Salem et al. (2014), an effective

methodology for pre-processing a database of network

packets to detect attacks, especially denial of service

attacks, is to use connection vectors (or flows) instead of

analyzing individual packets. Thus, it is possible to create

a representation of the traffic of a time window

(connection) and analyze it as a set. Thus, the main

purpose of the API is to capture packets from the network

(with the definition of a filter) and process them, so that

several “connections” are formed from various packets.

The concept of a “connection” is defined by a data

stream, identified by the Unique_id variable. Thus, the

Unique_id for TCP and UDP protocols is composed of

protocol, source IP address, source port, destination IP

address and destination port. In the case of the ICMP

protocol, which does not contain ports in its header, the

source port and destination port fields have been replaced by

the ICMP ID (if present in the header, otherwise it is filled in

with -1). Some examples of Unique_id formatting are:

 TCP-177.105.60.1:5800-177.60.20.30:80.

 ICMP-177.60.23.32-177.105.60.1;1200.

 ICMP-177.60.23.32-177.105.60.1; -1.

The selection of characteristics used, extracted from

the database by the API for training the Random Forests

technique, was based on the proposals of Moustafa and

Slay (2016) and Araujo et al. (2013). The set of

connection characteristics, used in the connection vectors,

can be divided into three categories: Characteristics

obtained from a connection (Table 1); Characteristics

obtained from a Buffer of connection times in a 2 sec past

(Table 2); and Characteristics obtained from a Buffer of

the last 100 connections (Table 3).

Figure 3 shows the functioning of the API. First, the

information of the received packets is extracted and added to

the corresponding connection (Fig. 3a). Second, after several

iterations, when the connection lifetime is reached, the

information is sent to a classification engine, which generates

or not the log about the attack information (Fig. 3b).

Finally, the format of the application’s output data, which

is made available to the Computational Intelligence

techniques, via socket, is presented following the model of

the following topics, which represent the connection vectors:

 63.0,TCP, HTTP,S0,280,[...],93.0,100.0,6.0, normal

 0.0,TCP, SSH,S0,[...],31,5.0,100.0,0.0,100.0, attack

The different modes of operation – Real Environment,

Database Construction and Database Read – allow

researchers to perform a variety of experiments without

having to change the API. If a new mode of operation is

required, new features can be added to the API.

The next section presents the process of building a new

test database using the developed API.

Process of Building the Test Database

The ISCX 2012 database already provides data from

a computer network in a real environment. However, a

new database was built with a different infrastructure

layout (Computers, Routers, Switches, Smartphones)

than the one presented by ISCX 2012. This allows

experiments to be conducted to prove that the method

is effective for different types of infrastructure and

data, not only those provided in the training.

The network infrastructure is definitely an important

point for the creation of a database. It is necessary to be

cautious about several factors, such as: Topology,

services, security and availability of the network assets. The

infrastructure used included 8 computers, 1 used to execute

the API, 1 to virtualize the servers and 6 others to generate

network traffic, as well as 2 Smartphones to use the

applications. We configured the mirroring of the switch ports

(Mirroring) so that all traffic could be captured (represented

by the “Mirror” in Fig. 4). Figure 4 represents a sketch of the

network environment used to create the database.

The Switch, Access Point and Router (Fig. 4) were

used without any security settings, which ensures the free

transmission of network packets (malicious or not). The

MAC addresses of the computers and Smartphones were

registered in the DHCP server so that the IP addresses did

not change during the database creation process.

To represent both normal and anomalous usage of a

computer network, several everyday services were

executed during the database construction (Table 4).

Denial of Service (DoS) and Distributed Denial of Service

(DDoS) attacks were also executed with TCP (using

several flags), UDP and ICMP protocols, as well as port

scanning. In the end, 115,030 connections were captured,

a sufficient amount to perform effectiveness and

generalization tests on the proposed method.

Data Preprocessing and Normalization

The process of normalization and preprocessing are

undoubtedly very laborious and important steps to ensure

the effectiveness of training the Random Forests

technique. Since the API output data format has some

non-numerical characteristics, a simple pre-processing is

necessary to transform them into numerical inputs.
Because of this, some data entries undergo

modifications, for example: The protocols (TCP, UDP

and ICMP), connection status Flags (Handshake,

Established, Termination, Closed, [...]) and service names

(HTTP, HTTPS, POP3, SMTP, SNMP, [...]). Since the

classification of various protocols, Flags and/or services are

not a quantity that distance values can be defined between

them, it is necessary to implement an algorithm that adds a

different entry for each protocol. Thus, the protocol entry of

the current data is filled out with 1, while the other protocol

entries are filled with the value 0, such that:

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

909

 HTTP = [1 0 0 0 ... n]

 SMTP = [0 1 0 0 ... n]

 POP3 = [0 0 1 0 ... n]

 HTTPS = [0 0 0 1 ... n]

with n the number of distinct Protocols/Flags/Services

found in the data.

In this way, the API output data, which used to contain

28 input variables, now have 96 input variables, due to the

large number of services accounted for and other

information that still needs to be shared in inputs

(Protocols and Flags). Finally, the TAG that displays

whether the connection is intrusive or not is preprocessed

to 0 (Normal) and 1 (Intrusion).

Fig. 3: API Flowcharts

Fig. 4: Network Environment

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

910

Table 1: Connection features

Characteristic Description Type

1 Duration Connection time (in seconds) continuous

2 Protocol Protocol (Ex.: TCP, UDP, ICMP) discreet

3 Service Service used (determined by the port) discreet

4 Connection Flag Connection Status (Ex.: Handshake) discreet

5 SourceToDest Bytes sent from Source to Destination continuous

6 DestToSource Bytes sent from Destination to Origin continuous

7 Land 1 if the connection is to/from the same destination/port, 0 the inverse discreet

8 Wrong Packages with checksum error continuous

9 Urgent TCP packets with Flag Urgent continuous

10 STTL TTL of the first package from Origin continuous

11 DTTL TTL of Destination’s first package continuous

12 SourceToDestPkts Packets sent from Source to Destination continuous

13 DestToSourcePkts Packets sent from Destination to the Origin continuous

Table 2: Time buffer features (Standard: 2s)

Characteristic Description Type

14 CountSameHost Connections to the same host continuous

15 CountSameService Connections with the same service continuous

16 Serror_rate % for the same host, with SYN errors (TCP) continuous

17 Srv_serror_rate % for the same service, with SYN errors (TCP) continuous

18 Same_srv_rate % for the same service continuous

19 Diff_srv_rate % for different services continuous

20 Srv_diff_host_rate % for the same service with different host continuous

Table 3: Connection buffer features (100 connections)

Characteristic Description Type

21 Count Connections to the same host continuous

22 Srv_count Connections with the same service continuous

23 Same_srv_rate % for the same host, with the same service continuous

24 Diff_srv_rate % for the same host, with different services continuous

25 Same_src_port_rate % with the same source port continuous

26 Srv_diff_host_rate % p/the same service, with different host continuous

27 Serror_rate % p/the same host, with SYN error (TCP) continuous

28 Srv_serror_rate % of connections for the same service, with SYN error (TCP) continuous

Table 4: Services used to build the database

Tool Protocol

Navigator Web (Google Chrome and Mozilla Firefox) HTTP, HTTPS

Streaming Audio (Spotify) UDP and TCP

Hangouts, Skype and Facebook Call VOIP (UDP and TCP)

FTP Client (Filezilla) FTP

 Email Client (Outlook, Thunderbird, Gmail (Android)) POP3, IMAP, SMTP

Network Monitoring Tool (Cacti) SNMP

SSH Client (Shell Linux, Putty, WinSCP) SSH

Server DNS (Bind9) and DHCP (ISC DHCP) DNS and DHCP

Time Synchronization with Server NTP

Microsoft Network Discovery NETBIOS

MEGA and Dropbox Client TCP, HTTP, HTTPS

Random Forest Technique Training and Analysis

The training step of the Random Forests technique

was performed using the Scikit-Learn library. First, the

pre-processed training data was mixed and randomly

separated, defining 80% of the database for training and

20% for testing.

To ensure consistency of the results, because the

initialization of some parameters of the training

algorithm was random, the experiments were repeated

10 times. In all repetitions, the data were mixed and

separated randomly, maintaining the proportion of 80 and

20%. Besides the analysis of the hit rates, true

positives, true negatives, false positives and false

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

911

negatives, we obtained the importance of the features

used for traffic classification. The Kappa coefficient

was also calculated, which is responsible for

determining the degree of reliability of the results

obtained (Araujo et al., 2013).

Results

From the experiments performed with the

methodology proposed in this study, using the ISCX 2012

database (Shiravi et al., 2012) and the test database,

created from the API, we were able to obtain several

results using the Random Forests technique, which are

presented in detail in this section.

Table 5 presents the hit percentages with the test data

from the two databases. The standard deviation of the

results is close to zero, which demonstrates a high degree

of consistency. Remember that the test database, created

from the developed API, was used only as test data,

without the data interfering in the training. Thus, the

generalization capacity of the method used could be

evaluated. Table 5 observes that the Random Forests

technique obtained generalization with connections

coming from different infrastructures, traffic and

applications (Tests database - API).

The definition of the training parameters was carried

out empirically, until the expected results were obtained.

The depth and maximum number of trees in the forest

were limited to avoid overfitting. The limitation of the

number of features used was done because, no significant

difference in the results occurred when all the features in the

database were used. The parameters used for training are:

 Maximum depth: 3

 Maximum features: 25

 Number of trees in the forest: 1000

 Minimum number of samples to create a node: 2

 Minimum number of samples to create a leaf

node: 5

Table 6 and 7 present the confusion matrices for the

results of the ISCX 2012 database and the developed API

database, respectively. The ISCX 2012 database (Table 6)

achieves a balance between the numbers of false positives

and false negatives, which occurs to a lesser degree in the

API database (Table 7). The worst situation in a NIDS is

the occurrence of False Negatives because, in this case,

intrusive traffic passes through the network undetected.

Note that the occurrence of False Negatives was close to

zero in both cases. The acronyms TP, TN, FP and FN

stand for True Positive, True Negative, False Positive and

False Negative, respectively.
According to (Araujo et al., 2013), Kappa coefficient

values above 0.75 represent a perfect classifier, in which

the results presented are consistent and not obtained by

mere chance. Figure 5 presents the Kappa coefficient

values for both cases (ISCX database and API database),

taking into account the classification structure of the first

Random Forest training.

Figure 6 shows the important analysis of the features

used in the first training of the technique. The remaining

values have been excluded from the graph, as they do not

present significant importance (very close to zero or equal

to zero). The abbreviations “BC” and “BT” signify the

origin of the features, which are Connection Buffer (Table 3)

and Time Buffer (Table 2), respectively. The high

importance of the Count (BC) characteristic is justified by

virtue of the ability to detect denial of service attacks by

analyzing the volume of traffic to the same host.

Finally, the results obtained with the experiments

performed can be compared to other similar proposals

found in the literature, which also use the Random Forests

technique to classify computer network traffic. Table 8

indicates that the technique proposed here achieved a

higher hit than the other proposals using the ISCX 2012

database. The hit rate of the proposed technique using the

proprietary database extracted from a real environment

and assembled with the developed API is also presented.

Table 5: Percentage of hits using the ISCX 2012 database with random forests

Training Hit Rate with test data (ISCX 2012 database) Hit Rate with test data (Developed API database) Duration

1 98.71% 96.08% 6h14 min

2 98.75% 96.36% 6h15 min

3 98.72% 95.44% 6h17 min

4 98.73% 95.93% 6h12 min

5 98.75% 96.19% 6h26 min

6 98.79% 96.34% 6h17 min

7 98.69% 95.67% 6h20 min

8 98.85% 96.71% 6h11 min

9 98.70% 96.26% 6h22 min

10 98.76% 96.41% 6h06 min

Mean 98.74% 96.14% -

Standard

Deviation 0.07913 0.37442 -

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

912

Table 6: Confusion matrix of NIDS with ISCX 2012 database (first training) with random forests

 Positive Negative Total

Positive 394.702 (49.02%) – TP 5.749 (0.71%) – FN 400.451

Negative 4.587 (0.56%) – FP 400.126 (49.69%) – TN 404.713

Total 399.289– TP+FP 405.875 – FN+TN 805.164

Table 7: Confusion matrix of NIDS with API database (first training) with random forests

 Positive Negative Total

Positive 62,429 (54.27%) – TP 696 (0.60%) – FN 63,125

Negative 3,802 (3.30%) – FP 48,103 (41.81%) – TN 51,905

Total 66,231 – TP+FP 48,799 – FN+TN 115,030

Table 8: Percentage of hits with related work that uses random forests

Proposal ISCX 2012 database Own database

This Proposal 98.7% 96.1%

Thaseen et al., 2013 96.8% -

Zhang et al., 2008 94.7% -

Panda et al., 2011 80.6% -

Fig. 5: Kappa coefficient result values

Fig. 6: Importance of the main features of the ISCX 2012 Data-base, with random forests (First Training)

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

913

Conclusion

The main objective of this study was to explore, evaluate,

present and validate the use of the Random Forests technique

to solve intrusion recognition problems in computer

networks. The results obtained showed a significant gain

in classification accuracy with the proposed methods in

relation to other proposals presented in the literature,

demonstrating effectiveness in detecting intrusions in

various network infrastructures.
The API developed proved to be a great ally to the

scientific community, since it allows the creation of new

network traffic databases and the pre-processing of existing

databases. In this way, a range is opened for other researchers

to extract characteristics from network connections and

apply them to the desired classification methods.

Continuity proposals included situations like the

application of the method in a large-scale network (e.g.,:

University, Internet Providers), the insertion of the proposed

system in a network equipment (e.g.,: Managed Switch) and

the transcription of the API to a low-level language, aiming

at increasing the efficiency of the method.

Acknowledgement

This study was developed in a partnership between

the Federal University of Lavras (UFLA), located in

the state of Minas Gerais, Brazil and the Federal

Institute of Mato Grosso do Sul (IFMS), campus of

Corumbá, located in the state of Mato Grosso do Sul,

Brazil. The authors are grateful for the scholarship

provided by UFLA and the time provided by IFMS.

Author’s Contributions

Heitor Scalco Neto: Conception, implementation of

algorithms and data acquisition, analysis and

interpretation of data, drafting the article

Wilian Soares Lacerda: General design, analysis and

interpretation of data, reviewing

Rafael Verão Françozo: Analysis and interpretation

of data, drafting the article

Ethics

The authors confirm that this article is original and

contains unpublished work. All authors have read and

approved the manuscript and there are no ethical issues

involved.

References

Aburomman, A. A., & Reaz, M. B. I. (2017). A survey of

intrusion detection systems based on ensemble and

hybrid classifiers. Computers & Security, 65, 135-152.

doi.org/10.1016/j.cose.2016.11.004

Ahmad, Z., Khan, A. S., Shiang, C. W., Abdullah, J., &

Ahmad, F. (2021). Network intrusion detection sys-

tem: A systematic study of machine learning and

deep learning approaches. Transactions on Emerging

Telecommunications Technologies, 32 (1), 1-29.

doi.org/10.1002/ett.4150

Araujo, N. V. D. S. (2013). Kappa-PSO-ARTMAP

Fuzzy: uma metodologia para detecção de intrusos

baseado em seleção de atributos e otimização de

parâmetros numa rede neural ARTMAP Fuzzy
https://repositorio.unesp.br/handle/11449/100302

Biau, G., & Scornet, E. (2016). A random forest guided

tour. Test, 25(2), 197-227.
 doi.org/10.1007/s11749-016-0481-7

Boldt, A. S. (2014). Coleções nucleares e associação do teor

de óleo de cártamo com variáveis ecogeográficas por in-

teligência computacional.

 https://www.locus.ufv.br/handle/123456789/1400
Hai, T. H., Khiem, N. T., & Phuclk, N. H. (2021). Toward

an Online DoS/DDoS Classification: An Empirical

Study for Network Intrusion Detection Systems.

Journal of Computer Science, 17 (3), 304-318.

doi.org/10.3844/jcssp.2021.304.318.

He, H., & Garcia, E. A. (2009). Learninga from imbal-

anced data. IEEE Transactions on knowledge and

data engineering, 21(9), 1263-1284.

 doi.org/10.1109/TKDE.2008.239

Johnson, S. R., & Jain, A. (2016). An Improved Intrusion

Detection System using Random Forest and Random

Projection. International Journal of Scientific & En-

gineering Research, 7 (10), 1424-1430.

Moustafa, N., & Slay, J. (2016). The evaluation of Net-

work Anomaly Detection Systems: Statistical analy-

sis of the UNSW-NB15 data set and the comparison

with the KDD99 data set. Information Security Jour-

nal: A Global Perspective, 25(1-3), 18-31.

doi.org/10.1080/19393555.2015.1125974.

Oshiro, T. M. (2013). Uma abordagem para a construção

de uma única árvore a partir de uma Random Forest

para classificação de bases de expressão gênica (Doc-

toral dissertation, Universidade de São

Paulo).https://www.teses.usp.br/teses/dis-

poniveis/95/95131/tde-15102013-183234/pub-

lico/monografia

Panda, M., Abraham, A., Das, S., & Patra, M. R. (2011).

Network intrusion detection system: A machine

learning approach. Intelligent Decision Technolo-

gies, 5 (4), 347–356.

 doi.org/10.3233/IDT-2011-0117

Resende, P. A. A., & Drummond, A. C. (2018). A survey

of random forest based methods for intrusion detec-

tion systems. ACM Computing Surveys (CSUR),

https://doi.org/10.1016/j.cose.2016.11.004
https://doi.org/10.1016/j.cose.2016.11.004
https://repositorio.unesp.br/handle/11449/100302
https://www.locus.ufv.br/handle/123456789/1400

Heitor Scalco Neto et al. / Journal of Computer Science 2021, 17 (10): 905.914

DOI: 10.3844/jcssp.2021.905.914

914

51(3), 1-36. doi.org/10.1145/3178582

Salem, M., Reißmann, S., & Buehler, U. (2014, Febru-

ary). Persistent dataset generation using real-time op-

erative framework. In 2014 International Conference

on Computing, Networking and Communications

(ICNC) (pp. 1023-1027). IEEE.

 doi.org/10.1109/ICCNC.2014.6785478

Scalco Neto, H. (2021). NIDS Project.

https://github.com/heitorscalco/NIDSProject/

Scarfone, K., & Mell, P. (2007). Guide to intrusion detec-

tion and prevention systems (idps). NIST special

publication, 800(2007), 94.

 https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspe-

cialpublication800-94.pdf

Shah, J. (2017, January). Understanding and study of intru-

sion detection systems for various networks and do-

mains. In 2017 International Conference on Computer

Communication and Informatics (ICCCI) (pp. 1-6).

IEEE. doi.org/10.1109/ICCCI.2017.8117726

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A.

(2012). Toward developing a systematic approach to

generate benchmark datasets for intrusion detection.

computers & security, 31(3), 357-374.

 doi.org/10.1016/j.cose.2011.12.012

Thaseen, S., & Kumar, C. A. (2013, February). An analysis

of supervised tree based classifiers for intrusion detec-

tion system. In 2013 international conference on pattern

recognition, informatics and mobile engineering (pp.

294-299). IEEE.

 doi.org/10.1109/ICPRIME.2013.6496489

Uchoa, J. Q. (2009). Algoritmos Imunoinspirados

aplicados em segurança computacional: utilizaçao

de algoritmos inspirados no sistema imune para

detecçao de intrusos em redes de computadores.

https://repositorio.ufmg.br/handle/1843/GRFO-

7VWGHS

Wang, J., 2009. Computer network security: theory and

practice. Springer, Massachusetts. ISBN: 978-3-540-

79697-8, pp: 400.

Wu, S. X., & Banzhaf, W. (2010). The use of computa-

tional intelligence in intrusion detection systems: A

review. Applied soft computing, 10(1), 1-35.

doi.org/10.1016/j.asoc.2009.06.019

Zhang, J., Zulkernine, M., & Haque, A. (2008). Random-

forests-based network intrusion detection systems.

IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 38(5), 649-659.

doi.org/10.1109/TSMCC.2008.923876

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F3178582
https://github.com/heitorscalco/NIDSProject/
https://repositorio.ufmg.br/handle/1843/GRFO-7VWGHS
https://repositorio.ufmg.br/handle/1843/GRFO-7VWGHS

