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Abstract: This study proposes a methodology to build an Online Network 

Intrusion Detection System by using the Computational Intelligence technique 

called Random Forests and an API to preprocess the network packets. The 

experiments were carried out from two network traffic databases: The ISCX (i); 

and a test database (ii) created with the proposed API in our own network 

environment. The results obtained with the Random Forests technique show 

accuracy rates around 98%, bringing significant advances in the area of Intrusion 

Detection and affirming the high efficiency of the use of the technique to solve 

problems of intrusion detection in real network environments.  
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Introduction  
The volume of internet traffic in Brazil increased from 

0.5 Tb in 2014 to 10.5 Tb in 2021. This growth is due the 

new services available through the internet, such as banking 

applications, multimedia and real-time finance systems (Hai, 

2021). To accommodate this volume of data reliability and 

availability, the implementation of tools such as Intrusion 

Detection Systems (IDS) (Shah, 2017) is necessary to help 

the network administrators in the security monitoring of the 

available infrastructure. 
Network Intrusion Detection Systems (NIDS) are 

fundamentally important to ensure information 
reliability, integrity and availability in a network 
computer (Moustafa and Slay, 2016). Therefore, this study 
describes a methodology to develop an online NIDS using 
random forests (Wu and Banzhaf, 2010; Resende and 
Drummond, 2018) 

The random forests technique is applied and assessed 
to define the method efficacy of the intrusion detection in 
a computational environment. In this study, an 
Application Programming Interface (API) was developed 
for the proposed NIDS to operate in a real environment. 
The objective of the API is to capture the network traffic 
and preprocess the data packet so they can be interpreted 
by the random forest technique.  

The developed API can perform experiments with 
various network infrastructure simulations and in a real 
environment. The training of the technique was performed 
with the ISCX network traffic database. The ISCX is 
composed of many types of traffic (e.g., VoIP, SSH, 
HTTP, HTTPS, FTP, etc.). 

From the developed API, an auxiliary database was 

created for a test to address alternative traffic types to 

those found on ISCX in a smaller scale network, with 

various operational systems. This can test the 

effectiveness of the method conducted on different 

infrastructures and modes of use. 

The main contributions of this study are: (i) Validation 

of the Random Forests technique for the computer 

network intrusion detection problem; (ii) development of 

an API for packet capture, pre-processing and integration 

with various Computational Intelligence techniques; (iii) 

use of software and/or host independent features. 

The results indicate and average score around 98% 

with ISCX database and Random Forest technique and 

96% with the testing database. The principal findings 

obtained suggests the feasibility of using the Random 

Forests technique to solve intrusion recognition problems 

in computer networks. 

The following section presents a brief literature review 

and concepts about network intrusion detection systems and 

random forests. In the section materials and methods, the 

methodological procedures and resources used are outlined. 

The results are presented and discussed in section results. 

Finally, the last section contains the conclusions of this study. 

Theatrical Foundation 

This section presents a brief literature review about 

Network Intrusion Detection Systems and Random Forests. 
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Network Intrusion Detection Systems 

The term “Intrusion Detection” is defined as the 

process in monitoring events that are occurring in a 

computational system or network computers, looking for 

intrusive traffic.  

The causes of security incidents have many causes 

include the propagation of a malware; attackers trying 

to elevate privileges to access unauthorized systems; 

and denial of services attacks (Scarfone, 2007). 

Intrusion Detection Systems are a useful technology for 

network administrators. The function of IDS is to 

recognize an anomalous behavior or an intrusive action 

and report it to the network administrator to take 

necessary measures (Scalco Neto, 2021). 

IDS recognize signature-based or anomaly-based 

intrusive actions. Signature-based detection systems 

identify attacks by analyzing previously configured 

signatures about the standard behavior of some type of 

attack. In the case of anomaly-based IDS, a network or 

host pattern is analyzed and traffic is classified as 

anomalous or normal. The main advantage of an 

anomaly-based IDS is the possibility of detecting 

unknown attacks, which is not the case with signature-based 

detection (Wang, 2009).  

A NIDS exclusively analyzes the network traffic 

without using host-specific information (e.g., memory 

usage, processing, interfaces), by usually using an 

interface in promiscuous mode, working as a sniffer 

(Uchoa, 2009). This type of system usually operates with 

one or more sensors on the network and a monitoring 

station. When a sensor detects abnormal activity on the 

network, an alert is transmitted to the monitoring station 

that will notify the network administrator about the 

situation. Figure 1 illustrates an example of an IDS 

placement on the network (Scalco Neto, 2021), where the 

IDS is installed on a shared network segment, usually 

between the public network router and the firewall. 

Computational Intelligence techniques, such as 

Random Forests (Johnson and Jain, 2016; Aburomman and 

Reaz, 2017), described in the next section, are a method 

for intrusion recognition in computer networks  

(Ahmad et al., 2021). 

Random Forests 

To present the Random Forests technique, the concept 

of Decision Trees must first be explained. Decision Trees 

use the divide and conquer strategy, whereby a complex 

problem is broken down into several simpler subproblems 

in a recursive way. The process of building a Decision Tree 

is accomplished by selecting an attribute that will be a 

divisor of the data set (Oshiro, 2013). 

Figure 2 shows the structure of a Decision Tree to 

perform a computer network traffic classification where 

the result can be “Normal” or “Intrusion”. At the root of 

the tree is “Attribute 88”. Hypothetically, if the value of 

“Attribute 88” >= 1, then the algorithm moves to the left 

side of the tree to reach “Attribute 5”, which performs the 

same comparison until it reaches a leaf node with an 

associated class. A Decision Tree can be used to classify 

samples other than those used for training. 

The Random Forests technique uses a set of Decision 

Trees to constitute its classification “forest”. Decision Trees 

are excellent predictors, but do not always achieve a high 

generalization ability. On the other hand, the Random 

Forests technique has excellent accuracy characteristics and 

high generalizability. This technique uses a recursive 

partitioning algorithm that combines predictions made by a 

set of Decision Trees (Biau and Scornet, 2016). 

 

 

 
Fig. 1: IDS placement on the network
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Fig. 2: Example of a decision tree structure 

 

The learning process, or training, of this technique works 

by creating hundreds (or even thousands) of Decision Trees. 

Each tree is created based on a small set of samples of the 

data (or just one sample). Trees are created without an upper 

limit on the depth of nodes (except when using “pruning” – 

a process in which the growth of the tree is limited) and 

forests are formed by aggregating these trees (Boldt, 2014). 

The training of Random Forests requires the definition 

of some parameters. Thus, the algorithm for training 

Random Forests, using the Scikit-Learn, allows the 

following parameters to be defined: 

 

 max_depth: Maximum depth of the tree 

 max_features: Maximum number of features used 

 n_estimators: Maximum number of trees in the forest 

 min_samples_split: Minimum number of samples to 

create a node 

 min_samples_leaf: Minimum number of samples to 

create a leaf 
 

By performing tests, taking into account the 

availability of acceptable training time for this type of 

application, the parameters can be better adjusted, 

considering limitations of the depth of the trees and other 

aspects, thus avoiding overfitting (a situation in which the 

algorithm specializes in the training data, impairing its 

generalization ability) (Shiravi et al., 2012). 

Materials and Methods 

Performing network traffic analysis and classification, 

online and in real environment, is always a challenge. 

According to (Scalco Neto, 2021). The difficulty in 

building an efficient NIDS is to make the number of true 

positives large but keep the number of false positives 

small or even zero. In addition to this challenge, the large 

amount of information that can be extracted from a 

network connection can make detection difficult, because 

most of the time, an intrusion can be characterized by one 

or more variations of the characteristics of a connection. 

To search for a solution to this problem, the Random 

Forests technique and a set of characteristics extracted 

from a connection were used. The Random Forests 

technique presents an advanced degree of generalization 

and can benefit the results of the classification of intrusive 

traffic in computer networks. Furthermore, after training 

the technique, the classification algorithm works with 

simple operations, making the system more efficient.  

In this study, the Scikit-Learn library was used to 

implement the Random Forests technique. It starts from a 

principle in which the forest is allowed to grow according 

to the characteristics of the data and, subsequently, size 

limitations are performed with processes known as 

Pruning. The process of solving the proposed problem is 

presented in detail in this section. 

ISCX 2012 Database 

The ISCX 2012 database (Shiravi et al., 2012) 

offers some deficiencies found in previously databases 

(e.g., CAIDA, DARPA and KDD). Therefore, this 

database provides the logs of connections (normal or 

intrusive) and all captured traffic (without removing 

payloads) in a real environment. In addition to the 

network packet replay capability, the database counts 

the traffic captured for one full week, totaling 2,450,324 

connections. During the traffic capture, several protocols 

were used, such as: FTP, HTTP, HTTPS, DNS, Netbios, 

POP3, SMTP, SNMP, SSH and others. 

Four scenarios were created and reproduced separately 

to represent the attacks: Consisting of exploiting 

vulnerabilities in applications (Exploits); Denial of 

Service (DoS); Distributed Denial of Service (DDoS); and 

Brute Force (Shiravi et al., 2012). 

To apply the database to Computational Intelligence 

techniques, the arrangement of class data (normal or 

intrusion) must be evaluated. Preliminary results 

showed a high degree of unbalance of this database, so 

the oversampling method was used (He and Garcia, 

2009) to equalize the data from the majority class to the 

minority class. 

Packet and Connection Capture and Handling API 

To enable the extraction of packet characteristics from 

a network, as presented in the ISCX 2012 database 

(Shiravi et al., 2012), an application was developed that 

captures packets, performs pre-processing and sends the 

information to a classification engine (Random Forests 

technique). In this way, an Open-Source API is proposed, 

with the objective of enabling the pre-processing of existing 

databases, the creation of new databases and online intrusion 

detection. The API were made available (Scalco Neto, 2021) 

to the community, with the goal of allowing other authors to 

generate their own databases in a simplified way and with the 

ability to change the parameters and the extraction of 

characteristics from the packets at any time.  
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According to Salem et al. (2014), an effective 

methodology for pre-processing a database of network 

packets to detect attacks, especially denial of service 

attacks, is to use connection vectors (or flows) instead of 

analyzing individual packets. Thus, it is possible to create 

a representation of the traffic of a time window 

(connection) and analyze it as a set. Thus, the main 

purpose of the API is to capture packets from the network 

(with the definition of a filter) and process them, so that 

several “connections” are formed from various packets. 

The concept of a “connection” is defined by a data 

stream, identified by the Unique_id variable. Thus, the 

Unique_id for TCP and UDP protocols is composed of 

protocol, source IP address, source port, destination IP 

address and destination port. In the case of the ICMP 

protocol, which does not contain ports in its header, the 

source port and destination port fields have been replaced by 

the ICMP ID (if present in the header, otherwise it is filled in 

with -1). Some examples of Unique_id formatting are: 

 
 TCP-177.105.60.1:5800-177.60.20.30:80. 

 ICMP-177.60.23.32-177.105.60.1;1200. 

 ICMP-177.60.23.32-177.105.60.1; -1. 

 

The selection of characteristics used, extracted from 

the database by the API for training the Random Forests 

technique, was based on the proposals of Moustafa and 

Slay (2016) and Araujo et al. (2013). The set of 

connection characteristics, used in the connection vectors, 

can be divided into three categories: Characteristics 

obtained from a connection (Table 1); Characteristics 

obtained from a Buffer of connection times in a 2 sec past 

(Table 2); and Characteristics obtained from a Buffer of 

the last 100 connections (Table 3).  

Figure 3 shows the functioning of the API. First, the 

information of the received packets is extracted and added to 

the corresponding connection (Fig. 3a). Second, after several 

iterations, when the connection lifetime is reached, the 

information is sent to a classification engine, which generates 

or not the log about the attack information (Fig. 3b). 

Finally, the format of the application’s output data, which 

is made available to the Computational Intelligence 

techniques, via socket, is presented following the model of 

the following topics, which represent the connection vectors: 

 

 63.0,TCP, HTTP,S0,280,[...],93.0,100.0,6.0, normal 

 0.0,TCP, SSH,S0,[...],31,5.0,100.0,0.0,100.0, attack 

 

The different modes of operation – Real Environment, 

Database Construction and Database Read – allow 

researchers to perform a variety of experiments without 

having to change the API. If a new mode of operation is 

required, new features can be added to the API.  

The next section presents the process of building a new 

test database using the developed API. 

Process of Building the Test Database 

The ISCX 2012 database already provides data from 

a computer network in a real environment. However, a 

new database was built with a different infrastructure 

layout (Computers, Routers, Switches, Smartphones) 

than the one presented by ISCX 2012. This allows 

experiments to be conducted to prove that the method 

is effective for different types of infrastructure and 

data, not only those provided in the training. 

The network infrastructure is definitely an important 

point for the creation of a database. It is necessary to be 

cautious about several factors, such as: Topology, 

services, security and availability of the network assets. The 

infrastructure used included 8 computers, 1 used to execute 

the API, 1 to virtualize the servers and 6 others to generate 

network traffic, as well as 2 Smartphones to use the 

applications. We configured the mirroring of the switch ports 

(Mirroring) so that all traffic could be captured (represented 

by the “Mirror” in Fig. 4). Figure 4 represents a sketch of the 

network environment used to create the database. 

The Switch, Access Point and Router (Fig. 4) were 

used without any security settings, which ensures the free 

transmission of network packets (malicious or not). The 

MAC addresses of the computers and Smartphones were 

registered in the DHCP server so that the IP addresses did 

not change during the database creation process.  

To represent both normal and anomalous usage of a 

computer network, several everyday services were 

executed during the database construction (Table 4). 

Denial of Service (DoS) and Distributed Denial of Service 

(DDoS) attacks were also executed with TCP (using 

several flags), UDP and ICMP protocols, as well as port 

scanning. In the end, 115,030 connections were captured, 

a sufficient amount to perform effectiveness and 

generalization tests on the proposed method. 

Data Preprocessing and Normalization 

The process of normalization and preprocessing are 

undoubtedly very laborious and important steps to ensure 

the effectiveness of training the Random Forests 

technique. Since the API output data format has some 

non-numerical characteristics, a simple pre-processing is 

necessary to transform them into numerical inputs. 
Because of this, some data entries undergo 

modifications, for example: The protocols (TCP, UDP 

and ICMP), connection status Flags (Handshake, 

Established, Termination, Closed, [...]) and service names 

(HTTP, HTTPS, POP3, SMTP, SNMP, [...]). Since the 

classification of various protocols, Flags and/or services are 

not a quantity that distance values can be defined between 

them, it is necessary to implement an algorithm that adds a 

different entry for each protocol. Thus, the protocol entry of 

the current data is filled out with 1, while the other protocol 

entries are filled with the value 0, such that: 
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 HTTP = [1 0 0 0 ... n] 

 SMTP = [0 1 0 0 ... n] 

 POP3 = [0 0 1 0 ... n] 

 HTTPS = [0 0 0 1 ... n] 

 

with n the number of distinct Protocols/Flags/Services 

found in the data. 

In this way, the API output data, which used to contain 

28 input variables, now have 96 input variables, due to the 

large number of services accounted for and other 

information that still needs to be shared in inputs 

(Protocols and Flags). Finally, the TAG that displays 

whether the connection is intrusive or not is preprocessed 

to 0 (Normal) and 1 (Intrusion). 

 

 
 

Fig. 3: API Flowcharts 

 

 
 

Fig. 4: Network Environment 
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Table 1: Connection features 

# Characteristic Description Type 

1 Duration  Connection time (in seconds) continuous 

2 Protocol Protocol (Ex.: TCP, UDP, ICMP) discreet 

3 Service Service used (determined by the port) discreet 

4 Connection Flag  Connection Status (Ex.: Handshake) discreet 

5 SourceToDest Bytes sent from Source to Destination continuous 

6 DestToSource Bytes sent from Destination to Origin continuous 

7 Land 1 if the connection is to/from the same destination/port, 0 the inverse discreet 

8 Wrong Packages with checksum error continuous 

9 Urgent TCP packets with Flag Urgent continuous 

10 STTL TTL of the first package from Origin continuous 

11 DTTL TTL of Destination’s first package continuous 

12 SourceToDestPkts Packets sent from Source to Destination continuous 

13 DestToSourcePkts Packets sent from Destination to the Origin continuous 

 

Table 2: Time buffer features (Standard: 2s) 

# Characteristic Description Type 

14 CountSameHost Connections to the same host continuous 

15 CountSameService Connections with the same service continuous 

16 Serror_rate % for the same host, with SYN errors (TCP) continuous 

17 Srv_serror_rate % for the same service, with SYN errors (TCP) continuous 

18 Same_srv_rate % for the same service continuous 

19 Diff_srv_rate % for different services continuous 

20 Srv_diff_host_rate % for the same service with different host continuous 

 

Table 3: Connection buffer features (100 connections) 

# Characteristic Description Type 

21 Count Connections to the same host continuous 

22 Srv_count Connections with the same service continuous 

23 Same_srv_rate % for the same host, with the same service continuous 

24 Diff_srv_rate % for the same host, with different services continuous 

25 Same_src_port_rate % with the same source port continuous 

26 Srv_diff_host_rate % p/the same service, with different host continuous 

27 Serror_rate % p/the same host, with SYN error (TCP) continuous 

28 Srv_serror_rate % of connections for the same service, with SYN error (TCP) continuous 

 
Table 4: Services used to build the database 

Tool Protocol 

Navigator Web (Google Chrome and Mozilla Firefox) HTTP, HTTPS 

Streaming Audio (Spotify) UDP and TCP 

Hangouts, Skype and Facebook Call VOIP (UDP and TCP) 

FTP Client (Filezilla) FTP 

 Email Client (Outlook, Thunderbird, Gmail (Android)) POP3, IMAP, SMTP 

Network Monitoring Tool (Cacti) SNMP 

SSH Client (Shell Linux, Putty, WinSCP) SSH 

Server DNS (Bind9) and DHCP (ISC DHCP) DNS and DHCP 

Time Synchronization with Server NTP 

Microsoft Network Discovery NETBIOS 

MEGA and Dropbox Client TCP, HTTP, HTTPS 

 

Random Forest Technique Training and Analysis 

The training step of the Random Forests technique 

was performed using the Scikit-Learn library. First, the 

pre-processed training data was mixed and randomly 

separated, defining 80% of the database for training and 

20% for testing. 

To ensure consistency of the results, because the 

initialization of some parameters of the training 

algorithm was random, the experiments were repeated 

10 times. In all repetitions, the data were mixed and 

separated randomly, maintaining the proportion of 80 and 

20%. Besides the analysis of the hit rates, true 

positives, true negatives, false positives and false 
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negatives, we obtained the importance of the features 

used for traffic classification. The Kappa coefficient 

was also calculated, which is responsible for 

determining the degree of reliability of the results 

obtained (Araujo et al., 2013). 

Results 

From the experiments performed with the 

methodology proposed in this study, using the ISCX 2012 

database (Shiravi et al., 2012) and the test database, 

created from the API, we were able to obtain several 

results using the Random Forests technique, which are 

presented in detail in this section. 

Table 5 presents the hit percentages with the test data 

from the two databases. The standard deviation of the 

results is close to zero, which demonstrates a high degree 

of consistency. Remember that the test database, created 

from the developed API, was used only as test data, 

without the data interfering in the training. Thus, the 

generalization capacity of the method used could be 

evaluated. Table 5 observes that the Random Forests 

technique obtained generalization with connections 

coming from different infrastructures, traffic and 

applications (Tests database - API). 

The definition of the training parameters was carried 

out empirically, until the expected results were obtained. 

The depth and maximum number of trees in the forest 

were limited to avoid overfitting. The limitation of the 

number of features used was done because, no significant 

difference in the results occurred when all the features in the 

database were used. The parameters used for training are: 

 

 Maximum depth: 3 

 Maximum features: 25 

 Number of trees in the forest: 1000 

 Minimum number of samples to create a node: 2 

 Minimum number of samples to create a leaf 

node: 5 

Table 6 and 7 present the confusion matrices for the 

results of the ISCX 2012 database and the developed API 

database, respectively. The ISCX 2012 database (Table 6) 

achieves a balance between the numbers of false positives 

and false negatives, which occurs to a lesser degree in the 

API database (Table 7). The worst situation in a NIDS is 

the occurrence of False Negatives because, in this case, 

intrusive traffic passes through the network undetected. 

Note that the occurrence of False Negatives was close to 

zero in both cases. The acronyms TP, TN, FP and FN 

stand for True Positive, True Negative, False Positive and 

False Negative, respectively. 
According to (Araujo et al., 2013), Kappa coefficient 

values above 0.75 represent a perfect classifier, in which 

the results presented are consistent and not obtained by 

mere chance. Figure 5 presents the Kappa coefficient 

values for both cases (ISCX database and API database), 

taking into account the classification structure of the first 

Random Forest training. 

Figure 6 shows the important analysis of the features 

used in the first training of the technique. The remaining 

values have been excluded from the graph, as they do not 

present significant importance (very close to zero or equal 

to zero). The abbreviations “BC” and “BT” signify the 

origin of the features, which are Connection Buffer (Table 3) 

and Time Buffer (Table 2), respectively. The high 

importance of the Count (BC) characteristic is justified by 

virtue of the ability to detect denial of service attacks by 

analyzing the volume of traffic to the same host. 

Finally, the results obtained with the experiments 

performed can be compared to other similar proposals 

found in the literature, which also use the Random Forests 

technique to classify computer network traffic. Table 8 

indicates that the technique proposed here achieved a 

higher hit than the other proposals using the ISCX 2012 

database. The hit rate of the proposed technique using the 

proprietary database extracted from a real environment 

and assembled with the developed API is also presented. 

 

Table 5: Percentage of hits using the ISCX 2012 database with random forests 

Training Hit Rate with test data (ISCX 2012 database) Hit Rate with test data (Developed API database) Duration 

1 98.71% 96.08% 6h14 min 

2 98.75% 96.36% 6h15 min 

3 98.72% 95.44% 6h17 min 

4 98.73% 95.93% 6h12 min 

5 98.75% 96.19% 6h26 min 

6 98.79% 96.34% 6h17 min 

7 98.69% 95.67% 6h20 min 

8 98.85% 96.71% 6h11 min 

9 98.70% 96.26% 6h22 min 

10 98.76% 96.41% 6h06 min 

Mean 98.74% 96.14% - 

Standard 

Deviation 0.07913 0.37442 - 
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Table 6: Confusion matrix of NIDS with ISCX 2012 database (first training) with random forests 

 Positive Negative Total 

Positive 394.702 (49.02%) – TP 5.749 (0.71%) – FN 400.451 

Negative 4.587 (0.56%) – FP 400.126 (49.69%) – TN 404.713 

Total 399.289– TP+FP 405.875 – FN+TN 805.164 
 
Table 7: Confusion matrix of NIDS with API database (first training) with random forests 

 Positive Negative Total 

Positive 62,429 (54.27%) – TP 696 (0.60%) – FN 63,125 

Negative 3,802 (3.30%) – FP 48,103 (41.81%) – TN 51,905 

Total 66,231 – TP+FP 48,799 – FN+TN 115,030 
 
Table 8: Percentage of hits with related work that uses random forests 

Proposal ISCX 2012 database Own database 

This Proposal 98.7% 96.1% 

Thaseen et al., 2013 96.8% - 

Zhang et al., 2008 94.7% - 

Panda et al., 2011 80.6% - 
 

 
 

Fig. 5: Kappa coefficient result values 

 

 
 

Fig. 6: Importance of the main features of the ISCX 2012 Data-base, with random forests (First Training) 
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Conclusion 

The main objective of this study was to explore, evaluate, 

present and validate the use of the Random Forests technique 

to solve intrusion recognition problems in computer 

networks. The results obtained showed a significant gain 

in classification accuracy with the proposed methods in 

relation to other proposals presented in the literature, 

demonstrating effectiveness in detecting intrusions in 

various network infrastructures. 
The API developed proved to be a great ally to the 

scientific community, since it allows the creation of new 

network traffic databases and the pre-processing of existing 

databases. In this way, a range is opened for other researchers 

to extract characteristics from network connections and 

apply them to the desired classification methods. 

Continuity proposals included situations like the 

application of the method in a large-scale network (e.g.,: 

University, Internet Providers), the insertion of the proposed 

system in a network equipment (e.g.,: Managed Switch) and 

the transcription of the API to a low-level language, aiming 

at increasing the efficiency of the method. 
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