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Introduction  

Time series data captures a particular attention in 

different studies fields such as weather readings and 

psychological signals (Cui et al., 2015) (Kadous, 2002) 

(Sharabiani et al., 2017). A data set of time series can be 

classified into univariate, where a series of measurements 

is collected from the one variable, or multivariate where a 

series of measurements is collected from multi variables 

or multiple sensors (Prieto et al., 2015). Therefore, 

multivariate time series are more complicated and are not 

easy to predict comparing to the time series of univariate. 

Multivariate Time Series (MTS) has received a massive 

attention in the field of data mining, because of its wide 

applicability in different domains such as medical 

diagnosis, motion detection, anomaly detection, financial 

prediction and remote sensing fields that uses satellite 

images, etc. (Huai-Shuo Huang et al., 2018) (Wang et al., 

2016) (Spiegel et al., 2011). Over the past decade, the 

classification of multivariate time series has a great 

attention in many domains such as healthcare (Kang and 

Choi 2014), sound classification (Kang and Choi 2014), 

phoneme classification (Graves and Schmidhuber, 2005), 

object recognition, human activity recognition and actions 

recognition (Fu, 2015) (Geurts, 2001) (Yu and Lee, 2015). 

One of the common approaches of multivariate time series 

classification is by applying dimensional reduction 

techniques or concatenating all dimensions of 

multivariate time series into a univariate time series 

(Karim, 2019). Symbolic representation approach applied 

the random forest on Multivariate Time Series named 

(SMTS) by (Baydogan and Runger, 2015) to partition it 

into leaf nodes and each leaf is represented by a word to 

form a codebook. Then, every word was utilized with 

another random forest for the multivariate time series 

classification. A similar classifier model that is Learned 

Pattern Similarity (LPS) by (Baydogan and Runger, 2016) 

extracted segments from the multivariate time series. The 

regression trees were trained by these segments to explore 

the dependencies between them. Each node in the tree was 

represented by a word and a similarity measure in 

conjunction with these words were used to classify 

unknown multivariate time sequence. Ultra-Fast 

Shapeless (UFS) technique (Wistuba et al., 2015) 
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extracted random shape let from the multivariate time 

series and used the linear SVM or the Random Forest 

as classifier. Thereafter, UFS was improved by 

calculating the derivatives as features (dUFS). Also, 

the Auto-Regressive (AR) kernel approach (Cuturi and 

Doucet, 2011) performed an AR kernel based on 

distance measure to classify the multivariate time 

series. On the other hand, Auto-Regressive forests 

(Tuncel and Baydogan, 2018) used a tree ensemble for 

modeling multivariate time series, where the trees were 

trained with different time lags. Most recently, the 

method combining WEASEL and MUSE techniques 

(Schäfer and Leser, 2017) build a multivariate feature 

vector by using a classical approach of bag of patterns 

on each variable to capture the discrete features such as 

words and pairs of words. The final classification result 

is produced by using a logistic classifier on the final 

feature vector. 
In recent years, deep learning has gained incredible 

popularity and many achievements can be found in 

literatures Längkvist et al., 2014) (Bengio, 2013) (Bengio, 

2009) (Schmidhuber, 2015). As one of deep networks, 

Convolutional Neural Network (CNN) has been 

successfully used in pattern recognition field. Instead of 

human-designed features, CNN can automatically mine 

and generate deep features of input images. Besides, it 

has a strong robustness against transformation, scaling 

and rotation. Three important points make CNN 

discriminative than other traditional feed-forward 

neural networks which are: Local receptive field, 

weights sharing and pooling (Swietojanski et al., 

2014). Inspiring from the CNN structure for image 

recognition, a deep learning framework for time series 

classification was proposed by the work (Zhao B. et al., 

2017), in which a novel CNN framework was presented 

for this domain. Both of convolution and pooling 

operations are used as a substitution to create deep 

features and then features are connected to a Multilayer 

Perceptron (MLP) to perform classification. 

Experimental results on both simulated and real data 

sets prove that CNN achieves best results comparing to 

the state-of-the-art methods in terms of the 

classification accuracy and noise tolerance. Among the 

previous work of CNN for multivariate time series 

classification was summarized as follows.  

Zheng et al. (2014) proposed a deep convolution 
neural network with Multi-Channels Named (MC-
DCNN) which separated multivariate time series into 
univariate ones ones and thereafter latent features are 
detected from an input of each variable. Finally, the 
classification is performed through the latent features 
which fed into MLP laye and it was found from 
experiments that a good classification performance was 
achieved by the presented method. However, one major 
limitation of this method is that it cannot extract the 
interrelationship between different univariate time series. 

 The work by (Zaho et al., 2017) modified the 

previous algorithm, instead of feature learning 

individually, the multivariate time series was jointly 

trained for feature extraction using a typical CNN 

architecture for three-variate time series classification 

with two convolutional layers and two pooling layers 

as illustrated in his work. 

In this study, a new hybrid model that incorporates 

both Convolutional Neural Network (CNN) and 

Bidirectional long-short term memory (BiLSTM) 

named Conv-BiLSTM is suggested for classifying 

landcover multivariate time series. The proposed 

Conv-BiLSTM network has the advantages of 

combining the effective features and the embedded 

relationships in the long time sequences over other 

techniques. Comparing to Random Forest (RF), BiLSTM 

and CNN techniques, the proposed Conv-BiLSTM has 

classification accuracy on average 6.5, 8 and 8.7% 

respectively over that of those classifiers.  

Related Work 

For the last decades, Earth observation has been utilized to 

study our planet surface and follow its development. The 

surface changes characterization resulted from deforestation, 

evolution of agricultural activity or urbanization, are 

essential to estimate population increasing and climate 

changes (Running, 2008). Land cover and Land use are 

among the applications of remote sensing field for Earth 

surface monitoring. The data and information concerning the 

land cover such as buildings, rivers, fields, mountains, trees 

and others are very important for studying the human 

resources and beings life. As the use of unclean energy 

sources, human activity, rapid urbanization and climate 

changes, the earth's surface changes largely on both scales of 

regional and universal (Schafer et al., 2018). Therefore, the 

accurate analysis in a proper time to the land resources 

use and any happen surface changes plays an important 

role in enhancing human societies. 

 Remote sensing satellites are among the tools used to 

capture and collect time series data especially for the 

applications of earth's surface monitoring. They produce 

up-to-date maps for land use/land cover changes such as 

urbanization, deforestation and desertification (Schafer et al., 

2018). Earth's surface data collected by satellites is large 

sets of hyper-spectral or multi-spectral data with a spatial 

resolution and a temporal density either in form of images 

or time series and needs to the classification. So, the 

balancing between the runtime and accuracy of 

classification becomes more challenging with existing of 

multiple readings for pixel via the periodic scans of 

satellite (Schafer et al., 2018). Automatic classification 

especially of remote sensing data has a very attention 

because the object label phase is restricted by the 

following issues: (a) The high cost in both of human 
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resources and time either through using the field 

campaigns or the labelling method by experts, (b) by the 

huge amount of data to be labelled and (c) in addition to the 

fast changes in landscape which required to the updating of 

maps and this cannot be done manually (Bailly, 2018). The 

machine learning methods used in land use and land cover 

(Rajendran, 2020) classification are as follows. 

Random Forest (RF) is one of the most machine 

learning algorithms that is widely used (Breiman, 2001) 

for the purposes of classification and regression Among 

the RF applications is the Earth science which includes 

modeling the forest cover (Betts et al., 2017), land-use (Araki 

et al., 2018), land-cover (Nitze et al., 2015) and object 

oriented mapping (Kavzoglu, 2017). In the work presented 

by (Rodriguez-Galiano et al., 2012), they proved that RF 

algorithm outperformed the classification by decision trees 

algorithm and achieved a high accuracy reached to 92%. The 

high accuracy of RF algorithm compared to other 

classification trees was imputed to its sets architecture in 

which several of them were trained on subsets of training 

data.  

 Also, Support Vector Machine (SVM) has a high 

capability to generalize complicated features, accordingly it 

outperformed the other classifiers as presented in following 

works (Shao and Lunetta, 2012) (Mountrakis et al., 2011). 

In a study to the land cover classification which was 

involved six classes of land-cover of the Landsat-8 data, 

SVM proved its ability to achieve a relatively high overall 

accuracy of 88% as mentioned in work (Goodin et al., 2015). 

Recently, a study to analysis the effect of the training size 

samples on the overall accuracies of both SVM and RF 

was presented by (Mansaray et al., 2020) with application 

for mapping the paddy rice in China in 2015 and 2016. In 

this study for mapping the paddy rice in 2015, the overall 

accuracies of SVM and RF classifiers reached to 90.8 and 

89.2%, respectively using 10 observations from Landsat-8 

and Sentinel-1A satellites. While in the presented study 

for mapping the paddy rice in 2016, SVM and RF 

achieved overall accuracies of 93.4 and 95.2%, 

respectively by using 14 observations from Landsat-8, 

Sentinel-1A and Sentinel-2A satellite. 

 Lately, neural networks have been used for 

classifying satellite images and were usually using one or 

two hidden layers which still remained low efficiency due 

to the expensive of data and the inadequate of computing 

power (Mas and Flores, 2008). At the beginning of the 

21st century and with increasing the earth observations 

data and the computing resources, the deeper hidden 

layers and complex network architectures were merited 

using. Deep Learning (DL) embeds a family of different 

algorithm architectures which are constructed using 

neural networks. These architectures include multi-layer 

perceptrons, deep belief networks, stacked auto-encoders, 

deep neural networks and restricted Boltzmann machines 

and others. DL has been widely used in many applications 

since 2015 such as mapping land-cover (Li et al., 2016) and 

crops (Kussul et al., 2017) (Zhong, 2019), estimating crop 

yields (Kuwata and Shibasaki, 2015), detecting oil palm trees 

(Li et al., 2017) and plant diseases (Mohanty et al., 2016) 

with accuracies reached to 90%. A review to Different 

methods of deep learning for classifying land cover and land 

use of remote sensing data were presented in (Abebaw Alem 

and Shailender, 2020). An easy systematic review to the 

application of transfer learning for scene classification using 

different Dataset of Land cover and land Use and with 

different models of deep learning were presented in (De 

Lima and Marfurt, 2020). In this study (Unnikrishnan et al., 

2019), the Normalized Difference Vegetation Index (NDVI) 

concept is utilized and consequently only the information of 

the red and Near Infrared (NIR) bands are used for the 

classification of the available public SAT-4 and SAT-6 

datasets. New deep learning architectures of the three 

common networks Alex Net, Conv-Net and VGG were 

suggested in this study by tuning the hyper-parameters of 

networks with two the bands data as input. 

Data Sets 

Monitoring the changes in land use is a significant area 

of research because the land cover is the main variable that 

drives balancing in Earth's energy, carbon and hydrological 

cycle and the supplying of the natural resources (Bengio, 

2009). Since land surfaces have various structures and 

different chemical properties, they absorb and reflect the 

sunlight differently and dependently on the wavelength and 

consequently information of land cover can be extracted 

from these spectral bands. For example, water surface 

absorbs much of the near infrared radiation; therefore, these 

wavelengths are benefit for discriminating the boundaries of 

the land water which are not clear in visible light. Similarly, 

the green vegetation’s absorb much of the arrived radiation 

in the red spectrum while about 50% from this radiation is 

reflected in the near-infrared spectrum. Multi-spectral 

sensors for Earth surface observation receive the sun’s 

energy reflected by a surface with a few distinct spectral 

wavelengths named bands, e.g. blue, green and red in the 

visible spectrum bands from (400 to 700 nm), near infrared 

bands from (700 to 1100 nm) and short-wave infrared with 

wavelengths from (1100 to 3000 nm). Among the multi-

spectral sensors are the American Landsat 8 sensor and the 

two European Sentinel-2 sensors. Landsat 8 sensor takes 

images to the Earth with spatial resolution at 30-m every 16 

days, while Sentinel-2 sensor acquires images with a spatial 

resolution of 10−20 m frequently every 5 days. 

 In this study, a public dataset given in the published 

research by (Bailly, 2018) for Time Series Land Cover 

Classification Challenge (TiSeLaC, 2017) is used. This 

dataset was collected by Landsat 8 satellite over 

Reunion Island in 2014 during intervals of 16 days 

where it included time series data of length 23 steps, 

the Island is shown in Fig. 1. 
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For each time step, ten spectral features were collected 

which are seven reflectance bands and three vegetation 

indices. The vegetation indices are Normalized 

Difference Vegetation Index (NDVI), the Normalized 

Difference Water Index (NDWI) and the Brightness Index 

(BI). Consequently, each time sequence of the collected 

data consists of 23-time steps with 10 bands for each time 

step meaning it has length equals 230. The time series data 

of Landsat 8 was reshaped to be appeared in image format 

of size 2866 rows and 2633 columns with 10 bands for 

each of time step as shown in Fig. 2. and 3 shows 

examples of NDVI spectral band of twenty three time 

series data for different classes of land cover.  
As shown in Fig. 3, NDVI values range from -1.0 to +1.0. 

Low NDVI values which are 0.1 or less are corresponding to 

rocks, sand or snow. While, the medium NDVI values are 

representing the sparse vegetation such as shrubs, grasslands 

or crops in low season harvesting. Finally, for the high NDVI 

values which are 0.6 or more are matching the dense 

vegetation such as forests and crops before harvest. 

Each time series of data is labeled with a class name 

from predefined labels. The reference dataset ((TiSeLaC, 

2017) contains 81714 readings categorized to 9 classes 

and are used for training the classifier model as detailed in 

Table 1, while the dataset of 17973 readings are used for 

testing the classifier model as depicted in the same table. 

The description of the different classes of dataset by 

(Bailly, 2018) are as follows. Urban Areas in Reunion Island 

are not dense like European cities, while Other-built-up 

surfaces may indicate to greenhouses. Due to the tropical 

climate on Reunion Island, NDVI values of Forests class 

have high values but stable. The Sparse Vegetation 

category combines all samples that do not belong to any 

of the other classes with intermediate values of NDVI. 

The Rocks and bare soil category has samples of low 

NDVI values which close to or below 0. The Grassland 

class combines both grazed and mowed grasslands but 

with different time series signatures due to variation in 

their re-growth. The time series of Sugarcane crop has the 

most differentiate profiles because its NDVI values drop 

after harvests. Sugarcane crops represent 60% of the 

cultivated area on Reunion Island (Denize, 2015). The 

Other crops class formed from many crops such as 

pineapple and bananas crops as well as mangos and this 

diversity of crops results in high intra-class variability 

and this faces a difficulty in classification. The Water 

class has a high intra-class variability which results in 

NDVI values perturbation. 

In classification process, a classifier is a module with 

a function that is learned via a set of a labeled time series 

data which is the training data set and then in test phase it 

takes an un-labeled time series data as input and results a 

labeled data. The proposed network for land cover 

classification is detailed in the next section. 

 

 
 
Fig.1: Reunion Island localization 

 

 
 

Fig. 2: Time series Landsat 8 images with 10 Bands for each time step 
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Fig. 3: NDVI band to different classes of time series data 
 

The Proposed Conv-BiLSTM Network 

 In this study new structure of a hybrid model 
combining both of Convolutional Neural Network (CNN) 
and Bidirectional long Short-Term Memory (BiLSTM) 
named Conv-BiLSTM is proposed. The proposed 
Conv-BiLSTM network is trained for classifying the 
multivariate time series of land cover with its different 
categories. The proposed Conv-BiLSTM network 
differentiates itself from other classification techniques by 
combining the effective features and the embedded 
relationships in the long time series which results in 
increasing its classification accuracy. Both of BiLSTM 
and CNN is detailed in the following sections. 

Convolutional Neural Network  

Convolutional Neural Network (CNN) is a type of    

multi-layers neural network and it usually includes two main 

parts (Pires de Lima et al., 2020). One is a feature extractor, 

which learns features automatically from initial data. And the 

other part is a trainable fully connected Multi-Layer 

Perceptron (MLP), which implements the classification 

process depend on the learned features from the preceding 

part. Generally, the feature extractor consists of multiple 

identical stages and each stage is comprised of three 

cascade layers: Filter layer, activation layer and 

pooling layer. The output from each layer is called 

feature map (LeCun and Bengio 1995). CNN is with 

more detailed in (Krizhevsky 2012).  

Recurrent Neural Network 

Recurrent Neural Network (RNN) is a category of 

Adaptive Neural Network (ANN) and differentiates itself 

from the neural network by it depending on feed forward 

through the possibility of utilizing its internal state (memory) 

to handle sequences of inputs. RNN can remember the state 

of an input from the preceding time steps which helps it to 

take a decision for the posterior time step. Recently, the Long 

Short-Term Memory (LSTM) network is a new structure of 

Recurrent Neural Network (RNN) and it further addresses 

the problem of vanishing gradients of the previous RNN and 

holds the long short-term memory. LSTM has two aspects 

differentiate it from RNN which are as follows. First, the cell 

state is divided into two parts, the long-term state c(t) and the 

short-term state h(t). Second, LSTM has three control gates 

which are the forget gate, the input gate and the output gate, 

all of them are along the state path to regulate the cell states 

as introduced in (Gharghory, 2020). 

Bidirectional Long Short-Term Memory  

 Bidirectional Long Short-Term Memory (BiLSTM) 

learns bidirectional long-term dependencies between time 

steps of time series data and this is useful to a network needed 

to be learned at each time step from the complete time series. 

BiLSTM processes input sequences in both directions with 

two sub-layers. It consists of two recurrent network layers 

(Schuster and Paliwal, 1997), in which the first one processes 

the sequence of inputs in forwards direction, while the 

second processes the inputs sequence in backwards. Both 

layers connected to the same output layer and consequently, 

BiLSTM network reaches to the total information about 

previous and future sequence of data points. These two 

sub-layers compute forward and backward hidden 

sequences ℎ⃗  and ℎ⃖⃗ respectively, which are then combined to 

compute the output sequence as depicted in the following 

equations. Also, both the structures of LSTM cell and 

BiLSTM network are shown in Fig. 4 and 5, respectively: 
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 1tant t txh hh h
h ch W x W h b    (1) 

 

 1t t txh hh h
h tanch W x W h b    (2) 

 

t t thy hy
y W h W h by    (3) 

 

Where: 
xh

W  denotes the connection weight between 

input layer and forward hidden layer, 
xh

W  denotes the 

connection weight between input layer and backward 

hidden layer, 𝑊ℎ⃗⃗  ℎ⃗⃗ denotes the connection weight between 

the sequences among forward hidden layer and 𝑊ℎ⃗⃗ 𝑦 

denotes the connection weight between forward hidden 

layer and output layer. 

The Architecture of the Proposed Conv-BiLSTM 

Network Model  

A hybrid model combining CNN and BiLSTM 

networks named conv-BiLSTM is proposed in this study 

for the classification of multivariate time series of land 

cover data. The suggested model is used as a semantic 

classifier to classify sequences of time series samples of 

length 23 and multivariable of 10 bands into 9 classes. The 

proposed network consists of multi-layers included the 

suggested convolutional layers and BiLSTM layers, 

thereafter the fully connected layers and the layers of 

softmax and classification. To perform the convolutional 

operations on each time step independently, a sequence of 

folding layer is included before the convolutional layers. To 

restore the sequence structure and reshape the output of the 

convolutional layers to sequences of feature vectors, a 

sequence of unfolding layer and a flatten layer are inserted 

between the convolutional layers and the BiLSTM layer. The 

different layers as well as their parameters values of the 

proposed network structure are depicted as follows: 

 

 A sequence input layer with an input size of 

dimensions [10 23 1] 

 Sequence Folding Layer 

 CNN consists of convolutional layer, batch 

normalization layer and ReLU layer with number of 

filters equals 30 and with filter size of 5-by-5. Two 

series of the abovementioned structural layers are 

used with the proposed network 

 Sequence Unfolding Layer restores the sequence 

structure of the input data after sequence folding 

 Flatten Layer 

 BiLSTM network with 350 hidden units that outputs 

the last time step only 

 A fully connected layer of size 9 which is the number 

of classes followed by a softmax layer and a 

classification layer 

 

The structure of the proposed hybrid Conv-BiLSTM 

network as well the structure and graph of its layers are 

shown in Fig. 6 and 7. 

 

 
 

Fig. 4: The structure of LSTM cell 
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Fig. 5: The structure of BiLSTM network 

 

 

 
Fig. 6: The structure of convolutional network and BiLSTM network 

 

 
 (a) 
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 (b) 

 
Fig. 7: (a) Layers structure of the suggested network; (b) the graph layers of the suggested network 

 

The Exeperimental Results 

The suggested Conv-BiLSTM classifier is verified 

using four different training data sets of land cover which 

are presented as follows: 

 

 In first case, all training samples 81714 depicted in 

Table 1 are used for training the suggested 

classifier, while all test samples descriped in the 

same table are used for testing the proposed Conv-

BiLSTM network 

 In the second case, half the training samples which 

are 40875 samples are used for training the 

proposed classifier, while the other half training 

samples are used for testing the suggested Conv-

BiLSTM network . The training dataset used in this 

case represents 0.5 from the total training dataset 

demonstrated in Table 1 

 In the third case, 1600 samples from each class of 

the training data set are used for trianing the 

model, while 999 samples from each class of the 

training data set is utilized for testing the suggested 

network. This means that the training dataset from 

all class in this case are 14400 samples which 

represent 0.18 from the total training dataset 

depicted in Table 1 

 In the fourth case, 1000 samples from each class of 

the training data set are used for trianing the 

network, while the Conv-BiLSTM network is 

tested using 600 samples from each class of the 

training data set. This means that the training 

dataset from all class in this case are 9000 samples 

which represent 0.11 from the total training dataset 

 Also, to evaluates the correctness and efficiency of 

proposed Conv-BiLSTM network compared to the 

classifiers of BiLSTM and Random Forest (RF) 

(Breinman, 2001), Precision, Recall and F-score metrics 

are used as metric for this purpose as depicted in equations 

from (4-6). 

 

 
TP

Precision
TP FP




 (4) 

 

Re
TP

call
TP FN




 (5) 

 

1 2
CEC

xPrecision Recall
F Score

C Precision Recall


 


  (6) 

 

Where:  

TP = The positive samples which are classified truly,  

FP = False classified positive samples and FN are the 

false negative classified samples 

 

The classification results of the suggested Conv-

BiLSTM classifier with the above mentioned four training 

cases compared to BiLSTM classifier and the Random 

Forest classifier in metric of Precision, Recall and F-score are 

depicted from Table 2 to 5. Also, both the average of F-Score 

results and the accuracy of the suggested Conv-BiLSTM 

network compared to that of BiLSTM, CNN and RF 

classifiers versus the ratio of the used training dataset in each 

aforementioned case to the total training data are shown in 

Fig. 8 and 9 respectively. The classification accuracy of 

suggested Conv-BiLSTM classifier compared to the the 

accuracy of the other classifiers is depicted in Table 6. 
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Fig. 8: The classification accuracy of the suggested Conv-BiLSTM network compared to the BiLSTM, CNN networks and the 

traditional RF technique versus the ratio of training samples used in different training cases 
 

 
 
Fig. 9: The classification accuracy of of the suggested Conv-BiLSTM network compared to the BiLSTM nework and the traditional 

RF technique in metric of F-Score versus the ratio of training samples used in different training cases 
 
Table1: The training samples and test samples with the corresponding class label for each of them. 

Class ID Class name   Number of training samples Number of test samples 

1 Urban area 16000 4000 

2  Other-built-up surfaces  3236 647 

3  Forests  16000 4000 

4  Sparse vegetation  16000 3398 

5  Rocks and bare soil  12942 2588 

6  Grassland  5681 1136 

7  Sugarcane crops  7656 1531 

8  Other crops  1600 154 
9  Water  2599 519 
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Table 2: Classification accuracy of the suggested Conv-BiLSTM network compared to BiLSTM network and RF classifier in terms 

of Precision, Recall and F-Score using the first training case 

 1- All 81714 samples of training data sets are used for training the classifiers 

 -------------------------------------------------------------------------------------------------------------------------------- 

 BiLSTM and CNN  BiLSTM   Random forest 

 ----------------------------------------- --------------------------------------- --------------------------------------- 

Class name Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score 

Urban Areas 93.62 90.4 91.99 92.5 82.7 87.3 90.2 85.7 87.9 

 Other-built-up surfaces 64.91 80.1 71.70 33.3 65.6 44.2 53.2 72.0 61.2 

 Forests 89.97 92.04 90.99 87.0 88.5 87.8 91.9 85.6 88.6 

 Sparse Vegetation 92.70 93.7 93.2 89.8 87.7 88.8 91.8 91.8 91.8 

 Rocks & bare soil 94.66 95.1 94.9 90.6 94.2 92.4 94.9 95.3 95.1 

 Grassland 91.02 86.8 88.8 80.3 66.5 72.7 82.6 79.6 81.1 

 Sugarcane  93.27 96.2 94.7 86.2 96.1 90.9 92.8 93.3 93.08 

 Other crops 65.58 38.4 48.4 4.5 33.3 8 34.9 91.9 50.6 

 Water 85.74 84.6 85.1 73.7 76.4 75.1 77.7 89.3 83.1 

Average% 85.7 84.4 84.4 70.9  76.8 71.9 78.9 87.2 81.4 

Classification Accuracy 90.1%   85.8%    88.4% 

 
Table 3: Classification acuracy of the suggested Conv-BiLSTM network compared to BiLSTM network and RF classifier in terms of 

Precision, Recall and F-Score using the second training case 

 2- 40 857samples of training data sets is used for training the classifiers and 40857 samples for testing the  

 classifiers 

 --------------------------------------------------------------------------------------------------------------------------------- 

 BiLSTM and CNN  BiLSTM   Random forest 

 -------------------------------------- ---------------------------------------- ------------------------------------ 

Class name Prec. Recall F-score Prec. Recall F-score Prec. Recall F-score 

Urban Areas 93.38 84.7 88.8 93.46 79.36 85.84 89.2 84.5 86.8 

 Other-built-up surfaces 59.73 77.3 67.4 30.09 66.35 41.40 49.4 69.3 57.6 

 Forests 85.59 90.3 87.9 88.72 81.94 85.20 91.3 83.6 87.3 

 Sparse Vegetation 92.59 91.5 92.06 88.69 85.71 87.17 90.4 90.4 90.4 

 Rocks and bare soil 95.22 94.3 94.7 87.95 94.89 91.29 93.8 94.6 94.2 

 Grassland 87.13 82.2 84.6 78.43 71.83 74.98 80.05 76.7 78.6 

 Sugarcane  91.34 94.9 92.7 84.77 96.01 90.12 91.6 92.6 92.1 

 Other crops 47.70 52.6 50.06 5.657 81.13 10.57 24.1 84.4 37.5 

 Water 78.52 89.1 83.5 72.2 76.5 74.3 75.4 87.2 80.9 

Average % 81.2 84.1 82.4 70% 81.5% 71.2% 76.1 84.8 78.4 

Classification accuracy 89.2%   83.9%   86.8% 

 

Table 4: Classification accuracy of the suggested Conv-BiLSTM network compared to BiLSTM network and RF classifier in terms 

of precision, recall and F-score using the third training case 

 3-1600samples from each class of training data sets are used for training the classifiers and 999 samples  

 for testing the classifiers 

 ----------------------------------------------------------------------------------------------------------------------------- 

 BiLSTM and CNN  BiLSTM   Random forest 

 --------------------------------------- ------------------------------------- ----------------------------------- 

Class name Prec. Recall F-score Prec. Recall F-score Prec. Recall F-score 

Urban Areas 82.58 81.6 82.1 81.6 77.2 79.4 71.77 75.7 73.6 

 Other-built-up surfaces 79.87 85.7 82.6 65.4 78.6 71.4 70.7 72.6 71.76 

 Forests 79.27 83.8 81.4 69.5 74.7 72.2 79.6 72.6 75.9 

 Sparse Vegetation 93.09 93.9 93.5 91.89 92.2 92.07 89.5 92.5 91.04 

 Rocks & bare soil 89.48 87.0 88.2 82.68 71.4 76.6 81.1 75.0 77.9 

 Grassland 90.79 87.4 89.1 80.98 85.6 83.2 82.5 86.2 84.3 

 Sugarcane  87.58 97.4 92.2 86.6 93.6 90.0 88.4 90.6 89.5 

 Other crops 97.89 83.7 90.2 74.8 65.2 69.7 69.1 67.9 68.4 

 Water 90.79 92.1 91.4 86.2 85.4 85.7 83.4 85.1 84.2 

Average% 87.9 88.1 87.8 80% 80.4% 80.04% 79.3 79.8 79.6 

Classification accuracy 88%   79.99%   79.7% 
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Table 5: Classification accuracy of the suggested Conv-BiLSTM network compared to BiLSTM network and RF classifier in terms 

of Precision, Recall and F-Score using the fourth training case 

 4-1000 samples from each class of training data sets are used for training the classifiers and 600 samples  

 from each class of training data sets are used for testing the classifiers 

 ------------------------------------------------------------------------------------------------------------------------------ 

 BiLSTM and CNN  BiLSTM  Random forest 

 --------------------------------------- -------------------------------------- -------------------------------------- 

Class name Prec. Recall F-score Prec. Recall F-score Prec. Recall F-score 

Urban areas 80.5 78.1 79.3 80.5 68.1 73.7 73.3 75.9 74.6 

Other-built-up surfaces 74.1 83.4 78.5 54.5 73.1 62.4 68.5 67.2 67.8 

Forests 81.6 83.4 82.5 67.6 74.3 70.8 76.5 72.6 74.5 

Sparse Vegetation 90.6 92.9 91.8 86.6 93.3 89.8 85.1 89.3 87.2 

Rocks & bare soil 83.6 86.7 85.1 81.3 71.5 76.1 79.1 71.1 74.9 

Grassland 84.6 85.1 84.8 84.1 77.2 80.5 78.3 82.4 80.3 

Sugarcane  90.8 93.1 91.9 89 90.9 89.9 87.6 88.7 88.1 

Other crops 96.8 82.1 88.9 71.6 66.4 68.9 64 66.6 65.3 

Water 89.8 88.5 89.1 82 86.1 84.0 83.1 83.3 83.2 

Average % 85.8 85.9 85.8% 77.5 77.9 77.4% 77.3 77.5% 77.4 

Classification accuracy 85.8%   77.5   77.3% 

 
Table 6: Classification Accuracy of the Suggested Conv-BiLSTM network using the different training samples cases and compared to 

the BiLSTM, CNN and RF classifiers 

Classes training samples Accuracy CNN and BiLSTM Accuracy BiLSTM Accuracy CNN Accuracy RF 

81714 samples 90.1% 85.8% 86.5% 88.4% 

40587 samples 89.2% 83.9% 83% 86.8% 

14400 samples 88% 80% 78.2% 79.7% 

9000 samples 85.8% 77.5% 77.4% 77.3% 

 
Besides, the efficiency of the proposed Conv-BiLSTM 

is verified through its comparison to the state-of-the-art 

method; weasel + muse (Word ExtrAction for time SEries 

cLassification + MUltivariate Symbols and dErivatives) 

(Schäfer and Leser, 2017) in metric of F-Score. The 

average F-Score of the proposed Conv-BiLSTM network 

reached to 87.8% when training by 1600 samples from 

each class of training data sets, while the WEASEL + MUSE 

technique reached to 86.6% when training with half training 

samples. The proposed Conv-BiLSTM network has larger 

F-Score value comparing to the state-of- the- art 

WEASEL + MUSE by 1.38%. 

Results and Dissucision 

 From the results given in Table 2 to 5, the suggested 

network for multivariate time series classification of nine 

land cover categories outperforms the other compared 

classifiers BiLSTM, CNN and Random Forest. The 

classification accuracy of the suggested Conv-BiLSTM 

network reaches to 90.1%. Also, it is demonstrated that 

the suggested network has best F-Score value when it is 

trained using equal samples from each class of the training 

dataset and its F-Score value ranges from 87.8 to 85.8%. 

While the suggested network has smaller F-Score value 

when it is trained with non-equal samples from each class 

of the training dataset either using the total training 

samples or half samples and its F-Score value ranges from 

84.4 to 82.2% respectively. Concerning the other 

compared classifiers, the accuracy of classification of 

both BiLSTM and RF in terms of F-Score have same 

values when training the two classifiers with 1000 

samples from each class of land cover dataset. The 

accuracy of classification with BiLSTM has larger value 

in average by 0.55% compared to RF when using the last 

two cases of training data. While the accuracy of RF 

classifier in terms F-Score is larger than that of BiLSTM 

classifier in average 11.65% with the two first cases of 

training data respectively. On other side, the accuracy in 

classifying the other crops class with all classifiers using 

the first cases of training dataset in metric of Precision and 

F-Score was very poor due to the diversity of crops inside 

the class which result in high intra-class variability and 

this faced a difficulty in classification. Generally, the 

classification accuracy of the suggested Conv-BiLSTM 

network with all training cases has larger value in average 

by 6.5, 8 and 8.7% compared to RF, BiLSTM and CNN 

classifiers respectively. Besides, the accuracy of 

classification of the proposed Conv-BiLSTM network in 

metric of F-score is in average larger by 1.38% than that 

value of the state-of-the-art WEASEL+MUSE technique.  

Conclusion 

In this study, a hybrid model for multivariate time 

series classification of land cover is suggested. The 

suggested model combines both of the convolutional 

network and BiLSTM network which enable the 

suggested model to extract the spatial and temporal 

features of the small land cover data set used. From the 
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simulation results of training the suggested network in 

metrics of F-Score, Precision and Recall which are given in 

previous tables prove that the suggested model outperforms 

the other comparison techniques. The classification accuracy 

of the suggested network using the aforementioned different 

cases of training data set ranges from 90.1 to 85.8% 

respectively. Moreover, the accuracy of classification of the 

proposed Conv-BiLSTM network in metric of F-Score is in 

average 1.38% better than that value of the state-of-the-art 

WEASEL+MUSE technique in literature.  
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