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Abstract: Sunflower oil is widely used as edible oil. It is commonly 

extracted by solvent extraction method from the sunflower seed. After 

extraction, crude sunflower oil is obtained. Crude sunflower oil has some 

undesirable impurities and dark colors. These impurities and dark colors 

require removal. The bleaching process is applied to remove the color. The 

bleaching earth is used in the refining and removes color. The 

specifications of crude sunflower oil such as impurity, free fatty acid ratio, 

wax, color index and the temperature of the process, the vacuum of the 

process, the amount of bleaching earth used affect the bleaching output 

color value. In this study, machine learning algorithms are used to predict 

the bleaching output color. In order to predict, Waikato Environment for 

Knowledge Analysis (WEKA), an open-source Data Mining workbench is 

run. 15 well-known machine learning classifier algorithms, suitable for our 

data such as k-nearest neighbors, multilayer perceptron and random forest 

are performed. Each algorithm is tested on a real dataset by a 10-fold cross-

validation method. The correlation coefficient, mean absolute error and 

root mean squared error is calculated for each algorithm and benchmarked. 

Results show that Random Forest Classifier is the most effective classifier 

for our data. Additionally, Wilcoxon Signed-Rank statistical test is 

conducted whether Random Forest Classifier is the most effective classifier 

for some k-fold cross validation. 
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Introduction 

Today, rather than the data problem, there is a problem 

of extracting meaningful information from large volumes 

of data. Data mining techniques help to transform large 

volumes of data into meaningful information so that data 

can be classified, grouped, make past and future 

predictions or utilize to design effective business 

strategies for an enterprise (Arora et al., 2020; Sharma, 

2020a). Data mining contains the use of complex data 

analysis tools to detect previously unknown, valid forms 

and relationships in large data set (Karasozen et al., 2006). 

These tools can contain mathematical algorithms, 

statistical models and machine learning methods. One of 

the machine learning techniques is the classification that 

is used to forecast group membership for data instances 

(Kumar et al., 2014).  

Machine Learning is defined by Stanford University 

as a science that provides computer to carry out some 

intelligent activities based on actual data and without 

being clearly programmed (Sharma et al., 2019). Machine 

learning algorithms are used in different research domains 

such as healthcare (Gupta et al., 2013; Vijiyarani and 

Sudha, 2013; Sharma et al., 2017; Kaur and Sharma, 

2019; Meng and Saddeh, 2019; Sharma, 2020b), stock 

management (Khedr and Yaseen, 2017; Sharma et al., 

2018; Zhong and Enke, 2019), software (Gilal et al., 2018; 

Sharma, 2017; Dias Canedo and Cordeiro Mendes, 2020). 

Additively, benchmarking of machine learning algorithms 

are used in many real-life applications in order to 

recognize handwritten digit (Bottou et al., 1994), to 

classify clinical samples (Sampson et al., 2011), to predict 

heart diseases (Austin et al., 2013; Abdar et al., 2015; 

Pouriyeh et al., 2017; Tougui et al., 2020), to detect 
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software defect (Aleem et al., 2015; Abdou and Darwish, 

2018; Alsaeedi and Khan, 2019; Aquil and Ishak, 2020), 

to classify diabetes mellitus (Maniruzzaman et al., 2017; 

Rodríguez-Rodríguez et al., 2021), or to predict 

congenital heart defects (Luo et al., 2017).  

Sunflower oil is one of the indispensable sources of 

vegetable oil in Turkey. It is extracted by solvent 

extraction method from sunflower seed and after 

extraction crude oil is obtained. Crude sunflower oil is 

refined to make it edible. Both physical and chemical 

refining processes are used in these oils. These processes 

are degumming, neutralization, dewaxing and 

winterization, bleaching, deodorization, respectively.  

This study considers the bleaching process that is 

applied in order to remove the color. Crude sunflower oil 

has some impurities and dark colors. To remove the 

undesirable dark color the bleaching earth is used. 

Impurity, free fatty acid ratio, wax, color index and the 

temperature of the process, the vacuum of the process and 

the amount of bleaching earth used to affect the bleaching 

output color value.  

The ability to predict the forthcoming changes is of 

great importance for proper decision-making (Goli et al., 

2018). In this study, 15 well-known machine learning 

classifier algorithms are used to predict the bleaching 

output color of sunflower oil using the aforamentioned 

specifications. In addition, these 15 algorithms are 

compared by calculating a correlation coefficient, mean 

absolute error and root mean squared error. Finally, the 

Wilcoxon Signed-Rank statistical test is used to see if 

the best performing algorithm is the same for some k-

fold cross-validation.  

The contributions of this study can be listed as 

follows: (i) machine learning techniques are used for a 

real life application, (ii) machine learning techniques are 

applied for the first time for bleaching process, (iii) the 

results obtained are evaluated for a possible decision 

support system for input parameters in the bleaching 

process. That is, with the best algorithm obtained, the 

output color can be predicted against the changes that 

may occur in the input parameters. This provides the 

opportunity to change the input parameters in advance to 

achieve the desired output color. 

The rest of paper is organized as follows. In the 

following part, the framework of the study is presented 

and each stage (Data description, Data pre-processing, K-

fold cross validation, Classifier algorithms) explained 

step by step. Results are discussed and then a statistical 

test is conducted. Finally, the study is concluded.  

Study Framework  

 The study framework steps are shown in Fig. 1. 

 
 
Fig. 1: Study framework 

 

Data Description 

In this study, a real data set is used to predict the 

bleaching output color. Impurity, free fatty acid ratio, 

wax, color index, the temperature of the process, the 

vacuum of the process, the amount of bleaching earth are 

the essential specifications that affect the bleaching output 

color value. The real 79-day data set obtained from the 

bleaching process is presented in Table 1. 

Data Pre-processing 

Pre-processing of bleaching process data is carried out 

by using min-max normalization. Min-max normalization 

formulation is given in Eq. (1) (Han et al., 2011): 
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minA and maxA denote the minimum and maximum values 

of an attribute, A. Min-max normalization matches a 

value, vi, of A to 
iv in the range[new_minA, new_maxA]. 

 

Table 1: Bleaching process data 

Sample  Free fatty  Color   Bleaching Final color 

no Impurity acid Wax ındex Vacuum Temperature earth ındex 

1 0.18 0.74 17.45 3.80 79 103 5.1 1.6 

2 0.20 0.74 19.20 3.80 85 102 5.1 1.6 

3 0.16 0.73 18.05 3.70 84 104 6.0 1.4 

4 0.16 0.74 19.70 3.80 85 100 6.2 1.4 

5 0.16 0.73 19.10 3.80 91 101 6.2 1.2 

6 0.19 0.73 18.60 3.80 86 103 6.0 1.4 

7 0.18 0.74 11.20 3.70 84 102 6.1 1.4 

8 0.17 0.81 20.20 4.10 99 102 5.4 1.8 

9 0.18 0.81 20.10 4.10 92 102 5.2 1.5 

10 0.19 0.78 19.10 4.00 92 105 5.3 1.5 

11 0.84 0.83 21.20 5.40 78 101 5.1 1.9 

12 0.76 0.84 21.10 5.20 68 93 5.7 1.4 

13 0.66 0.84 19.10 5.50 95 102 5.7 1.4 

14 0.68 0.85 22.40 5.40 98 103 5.6 1.7 

15 0.98 0.84 22.60 5.40 98 102 6.8 1.5 

16 0.72 0.80 17.20 5.30 98 103 6.8 1.5 

17 0.81 0.82 18.20 5.40 98 103 5.3 1.6 

18 1.17 0.85 23.50 5.40 92 102 5.6 1.6 

19 0.55 0.83 21.30 5.40 95 101 5.3 1.8 

20 0.36 0.67 16.80 5.60 91 101 5.6 1.7 

21 0.27 0.66 17.60 5.60 83 98 5.3 1.8 

22 0.30 0.65 18.40 5.50 92 102 5.3 1.6 

23 0.41 0.65 28.10 5.60 96 102 5.5 1.7 

24 0.32 0.65 25.10 5.60 94 101 5.2 1.9 

25 0.32 0.65 28.50 5.40 96 102 5.3 1.6 

26 0.36 0.65 28.70 5.40 96 103 5.3 1.6 

27 0.21 0.65 28.70 5.30 88 102 5.4 1.8 

28 0.33 0.64 30.10 5.40 98 102 5.2 1.9 

29 0.49 0.81 20.20 4.50 96 95 5.8 1.4 

30 0.37 0.74 27.10 4.20 92 101 5.8 1.4 

31 0.34 0.73 24.10 4.20 94 102 6.2 1.5 

32 0.36 0.73 22.50 4.20 96 102 5.7 1.4 

33 0.30 0.73 20.60 4.20 96 102 5.8 1.3 

34 0.24 0.73 17.40 4.00 98 102 6.2 1.3 

35 0.30 0.70 19.30 3.80 92 100 6.0 1.4 

36 0.28 0.74 17.90 3.70 85 99 6.0 1.4 

37 0.28 0.75 19.30 3.70 96 99 5.3 1.5 

38 0.32 0.79 20.50 3.70 95 99 6.0 1.4 

39 0.27 0.79 17.90 3.70 95 97 5.3 1.5 

40 0.25 0.78 18.50 3.70 73 99 6.3 1.3 

41 0.26 0.75 18.30 3.60 86 98 6.3 1.3 

42 0.24 0.75 14.80 4.30 94 98 6.2 1.5 

43 0.28 0.74 20.20 4.40 96 102 6.2 1.5 

44 0.28 0.77 18.25 4.30 93 99 5.8 1.3 

45 0.27 0.74 18.60 4.40 103 99 5.7 1.4 

46 0.27 0.66 19.00 4.30 98 100 6.2 1.5 

47 0.25 0.64 19.50 4.30 90 98 5.7 1.4 

48 0.28 0.64 19.30 4.20 82 105 6.2 1.5 

49 0.28 0.64 19.20 4.20 96 97 6.2 1.5 

50 0.30 0.64 17.50 4.10 94 99 5.2 1.5 

51 0.23 0.62 16.50 4.10 92 95 5.2 1.5 

52 0.29 0.69 20.30 4.20 99 105 5.2 1.5 

53 0.25 0.68 19.30 4.20 94 100 5.8 1.4 
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Table 1: Continues 

54 0.26 0.68 19.50 4.20 106 92 6.3 1.2 

55 0.26 0.67 18.90 4.20 92 98 5.2 1.5 

56 0.24 0.68 18.80 4.20 95 100 5.2 1.5 

57 0.26 0.72 19.90 4.20 135 100 5.2 1.5 

58 0.24 0.58 17.00 4.00 98 101 6.2 1.2 

59 0.33 0.78 21.30 4.40 105 101 6.3 1.1 

60 0.25 0.76 20.20 4.10 98 102 6.2 1.4 

61 0.27 0.72 20.10 4.10 95 100 5.3 1.5 

62 0.28 0.75 19.50 4.00 101 100 6.2 1.4 

63 0.38 0.68 23.40 4.10 95 101 6.2 1.4 

64 0.40 0.71 24.60 4.10 99 103 5.6 1.6 

65 0.40 0.71 24.60 4.10 99 103 5.1 1.6 

66 0.33 0.71 25.80 4.10 95 102 5.2 1.9 

67 0.30 0.73 25.60 4.10 92 99 6.2 1.4 

68 0.24 0.74 22.60 4.00 98 100 6.3 1.1 

69 0.27 0.70 24.30 4.10 89 93 5.3 1.5 

70 0.27 0.70 24.70 4.10 110 91 6.3 1.3 

71 0.26 0.71 24.80 4.10 95 90 6.2 1.4 

72 0.29 0.96 26.90 4.10 95 105 6.2 1.4 

73 0.28 1.09 26.40 3.90 96 102 6.2 1.4 

74 0.25 1.13 26.10 3.80 95 101 6.2 1.2 

75 0.25 1.13 26.10 3.80 95 101 6.3 1.2 

76 0.22 1.10 25.10 3.80 68 103 6.3 1.3 

77 0.24 1.09 26.10 4.40 78 102 5.8 1.3 

78 0.29 0.75 26.70 4.40 82 101 5.8 1.4 

79 0.35 0.75 29.80 4.40 90 102 5.2 1.5 

 

K-fold Cross Validation 

K-fold cross-validation, one of the commonly used 

methods, is conduct to test the proposed algorithm. In k-

fold cross-validation, the data is divided into k subsets. 

The method is repeated k times, in each time, one of the k 

subsets is used as the validation set and the other k-1 

subset are separated to create a training set (Kenger and 

Özceylan, 2020). In this study, each algorithm is conduct 

on dataset by 10-fold cross-validation method.  

Classifier Algorithms 

 In this study, a real-life application is conducted. 

Some machine learning algorithms such as K-Nearest 

Neighbors classifier (KNN), Simple Linear Regression 

(SLR), Gaussian Processes (GP), KStar classifier (KS), 

Decision Table Classifier (DTC), Decision Stump 

Classifier (DSC), Zeror Classifier (ZR), Random Tree 

Classifier (RTC), M5Rules classifier (M5R), REPTree 

classifier (REPT), Locally Weighted Learning 

classifier (LWL), M5 model trees classifier (M5P), 

Random Forest Classifier (RFC) and Multilayer 

Perceptron (MP) that are suitable to our data are run 

and results are discussed.  
K-nearest neighbors classifier algorithm is the most 

popular classification technique in data mining 

(Gazalba and Reza, 2017). The algorithm classifies an 

instance according to a majority choice of its k most 

similar instances (Aha et al., 1991). It can select the 

suitable value of K based on cross-validation and also do 

distance weighting. 

Steps of K-nearest neighbors classifier algorithm is 

given in following (Damarta et al., 2021): 

 

Step1. Choose the number K of desired to be number of 

nearest neighbors. 

Step2. Compute the Euclidean distance between the test 

examples and all training examples 

Step3. Sort the distance and set the training examples 

belonging to the k (nearest neighbors)  

Step4. Assign a class based on the majority of your 

nearest neighbors. 

Step5. Repeat steps 3 and 4 until all examples are 

classified. 
 

The simple linear regression model is used to 

demonstrate or forecast the relationship between two 

variables or factors (Gupta, 2015). Equation (2) represents 

the formulation of the simple linear regression: 
 

y x     (2) 

 
X and Y are the two factors that are included in a simple 

linear regression analysis. The regression model defines 

how y is related to x is known as (Han et al., 2011).  in the 

equation represents the y intercept of the regression line and 

β represents the slope. A regression line can demonstrate a 

negative linear relationship, a positive linear relationship, 

or no relationship (Duda and Hart, 1973). 
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Gaussian processes classifier provides a powerful 

unifying model for approximating and reasoning about 

datasets. Gaussian processes supply the ‘glue’ that allows 

us to conduct active mining on spatial clusters 

(Ramakrishnan et al., 2005). 

KStar is an instance-based classifier and a type of lazy 

learning. KStar holds a training set and then performs 

small processing; finally looks for a test set. Then the test 

set is classified according to the similarity of the stored 

training set (Sultana et al., 2016). 

Decision table classifier chooses the most discerning 

attributes from the training sample set to form a search 

table, then used to classify new cases. Dissimilar subsets 

of attributes are assessed by using a performance 

estimation method (Sinha and Zhao, 2008). 

Decision stumps are one level decision trees (Iba and 

Lankley, 1992). In classification problems, each node in a 

decision stump represents a feature in an instance to be 

classified and each branch represents a value that the node 

can take (Kotsiantis et al., 2006). 

ZeroR classifier is a simple algorithm and classifies 

the majority class. Although there is no forecasting ability 

in ZeroR, it is useful for the benchmark for other 

classification methods (Nasa and Suman, 2012). 

Random tree algorithm builds a tree considering K 

randomly chosen attributes at each node. It does not use 

pruning method (Nithya and Santhi, 2015). 

M5rules works as follows: A tree learner (in this case 

model trees) is applied to the full training dataset and a 

pruned tree is learned. Next, the best leaf (according to 

some heuristic) is made into a rule and the tree is 

discarded. All instances covered by the rule are removed 

from the dataset. The process is applied recursively to the 

remaining instances and terminates when all instances are 

covered by one or more rules (Holmes et al., 1999). 

RepTree generates multiple trees in different iterations 

by using the regression tree logic. Then, it chooses the 

best one from all generated trees (Kalmegh, 2015). 
The locally weighted learning approach is a sort of 

training data selection method that is built on the idea of 
a naive Bayes on the neighborhood of the test instance, 
instead of on the whole training data (Jiang et al., 2013). 

M5 model trees classifier algorithm is modified from the 
original M5 tree algorithm by (Wang and Witten, 1997). 

The M5P tree algorithm processes enumerated 

attributes and attribute missing values. All enumerated 

attributes are turned into binary variables before tree 

construction (Zhan et al., 2011). 

The random forest classifier is a machine learning 

method and classifies data by using decision trees. The 

basic principle is to construct a multitude of independent 

trees built from an initial sample. The forest construction 

uses two random processes. Firstly, every tree of the forest 

is constructed from a random sample picked with 

replacement. Then, a decision tree is built as a binary tree 

from this sample (Paul et al., 2017). 

A multilayer perceptron is a feedforward artificial 

neural network model that matches the input data set onto 

the appropriate output set. It derivates from the standard 

linear perceptron and uses three or more layers of 

neurons with nonlinear activation functions. The 

complexity of the multilayer perceptron network can be 

altered by changing the number of layers and units in 

each layer (Khalil Alsmadi et al., 2009). 

The machine learning algorithms briefly described 

above have been applied as a case study in the sunflower 

oil industry. These algorithms are used to predict 

bleaching output color and results of each algorithm are 

compared with each other. 

Evaluation 

In this study, machine learning algorithms are used 

to predict the bleaching output color. Waikato 

Environment for Knowledge Analysis (WEKA) is used 

to run the 15 well-known machine learning classifier 

algorithms. For each algorithm, correlation coefficient, 

mean absolute error and root mean squared error are 

calculated and benchmarked. The power of the linear 

relationship between two variables is measured by the 

correlation coefficient (Ratner, 2009) and correlation 

coefficient is calculated by Eq. (3). (Goli et al., 2019). 

Mean absolute error is calculated by summing the 

absolute values of the errors to obtain the ‘total error’ 

and then dividing it into the total error by sample size 

(Willmott and Matsuura, 2005). The equality is 

presented in Eq. (4) (Goli et al., 2019). 

Finally, the root mean square error measures the mean 

greatness of the error (Saigal and Mehrotra, 2012). The 

Eq. (5) calculates the root mean square error (Goli et al., 

2021). The results are presented in Table 2. According to 

the Table 2, random forest classifier is the best classifier 

algorithm and Zeror classifier is the worst classifier 

algorithm for our data. Locally weighted learning is the 

second best algorithm, followed by linear regression and 

REPTree Classifier. With the best algorithm obtained, the 

output color can be predicted against the changes that may 

occur in the input parameters. This provides the 

opportunity to change the input parameters in advance. 

So, the desired output color can be achieved: 
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Statistical Test 

As can be seen in Table 2, Random Forest Classifier is 
better than the other competitive classifiers for 10-fold cross 
validation. However, the Wilcoxon Signed Rank statistical 
test is used to see whether the Random Forest Classifier is 
the most effective classifier when 5-fold, 15-fold, 20-fold, 
25-fold, 30-fold and 50-fold is implemented instead of 10-
fold cross validation. We suggest two hypotheses to test this 
situation. Hypothesis theses are as follows: 

H0: Random Forest Classifier isn't better than other 

classifier for all k-fold cross validation. 

Ha: Random Forest Classifier is better than other 

classifier for all k-fold cross validation. 

 

Table 3 shows the effectivity of all classifiers 

according to 5-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-

fold and 50-fold cross validation. 

 
Table 2: Results 

 Correlation coefficient Mean absolute error  Root mean squared error 

Linear Regression 0.741 0.124 0.149 

K-nearest Neighbours Classifier  0.521 0.136 0.200 

Simple Linear Regression 0.622 0.142 0.174 

Gaussian Processes 0.669 0.124 0.166 

Kstar Classifier 0.536 0.136 0.193 

Decision Table Classifier 0.717 0.111 0.156 

Decision Stump Classifier 0.721 0.125 0.154 

Zeror Classifier -0.275 0.169 0.224 

Random Tree Classifier 0.639 0.117 0.188 

M5Rules Classifier 0.628 0.135 0.182 

REPTree Classifier 0.725 0.120 0.156 

Locally Weighted Learning 0.752 0.118 0.146 

M5 Model Trees (M5P) 0.698 0.127 0.161 

Random Forest Classifier 0.772 0.100 0.141 

Multilayer Perceptron 0.504 0.167 0.220 

 
Table 3: Results for all k-fold cross validation  

  5-fold 10-fold 15-fold 20-fold 25-fold 30-fold 50-fold 

Linear Regression 0.159 0.149 0.150 0.150 0.151 0.151 0.152 

K-nearest Neighbours  0.222 0.200 0.195 0.191 0.200 0.191 0.191 

Simple Linear Regression 0.189 0.174 0.185 0.186 0.174 0.174 0.175 

Gaussian Processes 0.172 0.166 0.165 0.167 0.166 0.165 0.166 

Kstar Classifier 0.197 0.193 0.192 0.189 0.195 0.187 0.187 

Decision Table Classifier 0.151 0.156 0.141 0.143 0.144 0.144 0.144 

Decision Stump Classifier 0.153 0.154 0.153 0.153 0.154 0.154 0.154 

Zeror Classifier 0.224 0.224 0.224 0.225 0.225 0.225 0.225 

Random Tree Classifier 0.242 0.188 0.177 0.168 0.169 0.202 0.163 

M5Rules Classifier 0.201 0.182 0.174 0.159 0.159 0.160 0.163 

REPTree Classifier 0.146 0.156 0.169 0.157 0.163 0.154 0.164 

Locally Weighted Learning 0.148 0.146 0.145 0.145 0.146 0.146 0.146 

M5 Model Trees(M5P) 0.165 0.161 0.160 0.155 0.155 0.156 0.159 

Random Forest Classifier 0.146 0.141 0.141 0.135 0.141 0.134 0.138 

Multilayer Perceptron 0.330 0.220 0.222 0.208 0.298 0.217 0.212 

 
Table 4: Summary of Wilcoxon Signed- Rank test between the random forest classifier and other compared classifiers (α  = 

0.05, one-tail) 

 RFC-LR RFC-KNN RFC-SLR RFC-GP RFC-KS RFC-DTC RFC-DSC 

Test Statistic 0 0 0 0 0 0 0 

Critical Value 3 3 3 3 3 2 3 

Sum of Rank + + + + + + + 

Reject Ho Yes Yes Yes Yes Yes Yes Yes 

  RFC-ZC RFC-RTC RFC-M5R RFC-REPT RFC-LWL RFC-M5P RFC-MP 

Test Statistic 0 0 0 0 0 0 0 

Critical Value 3 3 3 3 3 3 3 

Sum of Rank + + + + + + + 

Reject Ho Yes Yes Yes Yes Yes Yes Yes 
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Wilcoxon signed rank test is conducted based on 

Table 3. The results of Wilcoxon signed rank test is 

shown in Table 4. The ‘+’ in Table 4 refers to the sum 

of rank values in the results, where the Random Forest 

Classifier is better than the other classifier. According 

to the Wilcoxon signed-rank test, if the test value is less 

than critical value, null hypothesis (H0) is rejected. 

Reject H0 refers there is enough evidence at the 5% 

level of significance to support the claim that Random 

Forest Classifier is better than other classifier for all k-

fold cross validation. 

Wilcoxon Signed-Rank Test results are given in 

Appendix A as a paired comparison. 

Conclusion 

Bleaching is an important process in order to obtain 

the proper output color, for sunflower oil. There are 

multiple factors that affect bleaching output color, such 

as impurity, free fatty acid ratio, wax, color index and 

the temperature of the process, the vacuum of the 

process, the amount of bleaching earth. We obtain a 

real 79-day data set from the bleaching process. Then 

we normalize the data by using min-max 

normalization. We select 15 well-known classifier 

algorithms suitable for the bleaching process data. We 

conduct 10-fold cross-validation to test the selected 

algorithms. Finally, correlation coefficient, mean 

absolute error and root mean squared error are 

calculated to benchmark classifier algorithms. 

According to obtained results, for our data set, the best 

and worst classifier algorithms are random forest 

classifier and ZeRor classifier, respectively.  

In addition, the Wilcoxon Signed Rank statistical 

test is conducted to test if the Random Forest Classifier 

is the most effective classifier when also 5-fold, 15-

fold, 20-fold, 25-fold, 30-fold and 50-fold is 

implemented. The Wilcoxon Signed Rank statistical 

test results also show that Random Forest Classifier is 

better than other 14 classifiers. 

For future research, (i) a decision support system 

can be developed by using new classifier algorithms 

and applied in the sunflower oil company or other 

inputs for the bleaching process can be considered; ( ii) 

the effects of inputs on output quality can be analyzed; 

(iii) the current data set can be tested with new 

algorithms or hybrid algorithms; (iv) the impact 

(weight) of each input parameter can be calculated.  
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Appendix A 

Table 1: Wilcoxon signed-rank test (random forest classifier-linear regression) 

K-Fold cross     Absolute Rank of absolute Positive Negative 

Validation RFC RMSE LR RMSE Diffe-rence difference difference ranks ranks 

5-fold 0.146 0.159 -0.012 0.012 4 - 4 

10-fold 0.141 0.149 -0.008 0.008 1 - 1 

15-fold 0.141 0.150 -0.008 0.008 2 - 2 

20-fold 0.135 0.150 -0.015 0.015 6 - 6 

25-fold 0.141 0.151 -0.010 0.010 3 - 3 

30-fold 0.134 0.151 -0.018 0.018 7 - 7 

50-fold 0.138 0.152 -0.014 0.014 5 - 5 

            0 28 

 
Table 2: Wilcoxon signed-rank test (random forest classifier - k-nearest neighbours classifier ) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE KNN RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.222 -0.075 0.075 7 - 7 

10-fold 0.141 0.200 -0.059 0.059 5 - 5 

15-fold 0.141 0.195 -0.054 0.054 2 - 2 

20-fold 0.135 0.191 -0.057 0.057 3 - 3 

25-fold 0.141 0.200 -0.060 0.060 6 - 6 

30-fold 0.134 0.191 -0.057 0.057 4 - 4 

50-fold 0.138 0.191 -0.053 0.053 1 - 1 

            0 28 
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Table 3: Wilcoxon signed-rank test (random forest classifier-simple linear regression ) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE SLR RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.189 -0.043 0.043 5 - 5 

10-fold 0.141 0.174 -0.033 0.033 1 - 1 

15-fold 0.141 0.185 -0.043 0.043 6 - 6 

20-fold 0.135 0.186 -0.051 0.051 7 - 7 

25-fold 0.141 0.174 -0.033 0.033 2 - 2 

30-fold 0.134 0.174 -0.040 0.040 4 - 4 

50-fold 0.138 0.175 -0.037 0.037 3 - 3 

            0 28 

 

Table 4: Wilcoxon signed-rank test (random forest classifier-gaussian processes ) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE GP RMSE Difference difference Difference ranks ranks 

5-fold 0.146 0.172 -0.026 0.026 4 - 4 

10-fold 0.141 0.166 -0.025 0.025 2 - 2 

15-fold 0.141 0.165 -0.024 0.024 1 - 1 

20-fold 0.135 0.167 -0.032 0.032 7 - 7 

25-fold 0.141 0.166 -0.025 0.025 3 - 3 

30-fold 0.134 0.165 -0.031 0.031 6 - 6 

50-fold 0.138 0.166 -0.028 0.028 5 - 5 

            0 28 

 

Table 5: Wilcoxon signed-rank test (random forest classifier-kstar classifier) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE KS RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.197 -0.051 0.051 3 - 3 

10-fold 0.141 0.193 -0.052 0.052 4 - 4 

15-fold 0.141 0.192 -0.050 0.050 2 - 2 

20-fold 0.135 0.189 -0.055 0.055 7 - 7 

25-fold 0.141 0.195 -0.054 0.054 6 - 6 

30-fold 0.134 0.187 -0.054 0.054 5 - 5 

50-fold 0.138 0.187 -0.049 0.049 1 - 1 

            0 28 

 
Table 6: Wilcoxon signed-rank test (random forest classifier-decision table classifier) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE DTC RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.151 -0.004 0.004 2 - 2 

10-fold 0.141 0.156 -0.015 0.015 6 - 6 

15-fold 0.141 0.141 0.000 0.000  -  

20-fold 0.135 0.143 -0.008 0.008 4 - 4 

25-fold 0.141 0.144 -0.004 0.004 1 - 1 

30-fold 0.134 0.144 -0.010 0.010 5 - 5 

50-fold 0.138 0.144 -0.006 0.006 3 - 3 

            0 21 

 
Table 7: Wilcoxon signed-rank test (random forest classifier-decision stump classifier) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE DSC RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.153 -0.007 0.007 1 - 1 

10-fold 0.141 0.154 -0.013 0.013 3 - 3 

15-fold 0.141 0.153 -0.011 0.011 2 - 2 

20-fold 0.135 0.153 -0.019 0.019 6 - 6 

25-fold 0.141 0.154 -0.013 0.013 4 - 4 

30-fold 0.134 0.154 -0.020 0.020 7 - 7 

50-fold 0.138 0.154 -0.016 0.016 5 - 5 

            0 28 
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Table 8: Wilcoxon signed-rank test (random forest classifier-zeror classifier) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE ZC RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.224 -0.078 0.078 1 - 1 

10-fold 0.141 0.224 -0.083 0.083 3 - 3 

15-fold 0.141 0.224 -0.082 0.082 2 - 2 

20-fold 0.135 0.225 -0.091 0.091 6 - 6 

25-fold 0.141 0.225 -0.085 0.085 4 - 4 

30-fold 0.134 0.225 -0.091 0.091 7 - 7 

50-fold 0.138 0.225 -0.087 0.087 5 - 5 

            0 28 

 

Table 9: Wilcoxon signed-rank test (random forest classifier-random tree classifier) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE RTC RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.242 -0.096 0.096 7 - 7 

10-fold 0.141 0.188 -0.047 0.047 5 - 5 

15-fold 0.141 0.177 -0.035 0.035 4 - 4 

20-fold 0.135 0.168 -0.033 0.033 3 - 3 

25-fold 0.141 0.169 -0.029 0.029 2 - 2 

30-fold 0.134 0.202 -0.068 0.068 6 - 6 

50-fold 0.138 0.163 -0.025 0.025 1 - 1 

            0 28 

 

Table 10: Wilcoxon signed-rank test (random forest classifier-M5Rules classifier) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE M5R RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.201 -0.054 0.054 7 - 7 

10-fold 0.141 0.182 -0.041 0.041 6 - 6 

15-fold 0.141 0.174 -0.033 0.033 5 - 5 

20-fold 0.135 0.159 -0.024 0.024 2 - 2 

25-fold 0.141 0.159 -0.019 0.019 1 - 1 

30-fold 0.134 0.160 -0.026 0.026 4 - 4 

50-fold 0.138 0.163 -0.025 0.025 3 - 3 

            0 28 

 

Table 11: Wilcoxon signed-rank test (random forest classifier - REPTree classifier) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE REPT RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.146 0.000 0.000 1 - 1 

10-fold 0.141 0.156 -0.015 0.015 2 - 2 

15-fold 0.141 0.169 -0.028 0.028 7 - 7 

20-fold 0.135 0.157 -0.022 0.022 5 - 5 

25-fold 0.141 0.163 -0.022 0.022 4 - 4 

30-fold 0.134 0.154 -0.020 0.020 3 - 3 

50-fold 0.138 0.164 -0.026 0.026 6 - 6 

            0 28 

 

Table 12: Wilcoxon signed-rank test (random forest classifier - locally weighted learning) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE LWL RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.148 -0.001 0.001 1 - 1 

10-fold 0.141 0.146 -0.005 0.005 3 - 3 

15-fold 0.141 0.145 -0.004 0.004 2 - 2 

20-fold 0.135 0.145 -0.011 0.011 6 - 6 

25-fold 0.141 0.146 -0.006 0.006 4 - 4 

30-fold 0.134 0.146 -0.012 0.012 7 - 7 

50-fold 0.138 0.146 -0.008 0.008 5 - 5 

            0 28 
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Table 13: Wilcoxon signed-rank test (random forest classifier - M5 model trees (M5P)) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE M5P RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.165 -0.019 0.019 2 - 2 

10-fold 0.141 0.161 -0.020 0.020 5 - 5 

15-fold 0.141 0.160 -0.019 0.019 3 - 3 

20-fold 0.135 0.155 -0.020 0.020 4 - 4 

25-fold 0.141 0.155 -0.014 0.014 1 - 1 

30-fold 0.134 0.156 -0.022 0.022 7 - 7 

50-fold 0.138 0.159 -0.021 0.021 6 - 6 

            0 28 

 

Table 14: Wilcoxon signed-rank test (random forest classifier - multilayer perceptron) 

K-Fold cross    Absolute Rank of absolute Positive Negative 

validation RFC RMSE MP RMSE Difference difference difference ranks ranks 

5-fold 0.146 0.330 -0.183 0.183 7 - 7 

10-fold 0.141 0.220 -0.079 0.079 3 - 3 

15-fold 0.141 0.222 -0.081 0.081 4 - 4 

20-fold 0.135 0.208 -0.073 0.073 1 - 1 

25-fold 0.141 0.298 -0.157 0.157 6 - 6 

30-fold 0.134 0.217 -0.084 0.084 5 - 5 

50-fold 0.138 0.212 -0.074 0.074 2 - 2 

            0 28 


