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Abstract: Today’s most of the data are streaming time-series data, where 

is very important anomaly detection over this data because gives 

significant information of possible critical situations. Detecting anomalies 

in big streaming data is yet difficult task because we have to process them 

in real time, even before they are stored and instantly alarm on potential 

threats. For real time streaming data is important the algorithm used for 

anomaly detection to be robust with low processing time, eventually at 

the cost of the accuracy. The aim of this paper is to measure the 

performance of such algorithms and them to compare with our previously 

proposed algorithm HW-GA with other existing methods as ARIMA, 

Moving Average and Holt Winters. The algorithms are implemented in R 

system and tested on the three Numenta datasets, with known anomalies 

and own e-dnevnik dataset with unknown anomalies. Evaluation is done 

by comparing achieved results (the algorithm execution time and CPU 

usage). As a result of this research we may say that our algorithm HW-

GA outperforms others algorithm that we have compared by showing less 

CPU usage and execution time. Our continues interest is to monitor the 

streaming log data that are generating in the national educational network 

(e-dnevnik) that acquires a massive number of online queries and to 

detect anomalies in order to scale up performance, prevent network 

downs, alarm on possible attacks and similar. 

 

Keywords: Time Series Data, Big Streaming Data, Anomaly Detection, 

Numenta, E-dnevnik 
 

Introduction 

The focus of researches nowadays is on anomaly 

detection in real time Big Data. The amount of data is 

bigger and bigger every day, the data are produced by 

different equipment like sensors, manufactory 

equipment, web applications, etc. 

The speed of anomaly detection algorithm is very 

important when we have to deal with real time data. 

Anomaly detection algorithm proposal for real time 

big data is not an easy task due to the fact that many 

researchers tend to show that their solution is better. In 

the previous research (Hasani et al., 2018) we have 

proposed an algorithm for detecting anomalies in large 

real-time data. There we have tested the accuracy of the 

algorithm, comparing it to several other algorithms that 

we singled out from previous research such as ARIMA 

(Kasunic et al., 2011), Moving Average and Holt 

Winters (Ekberg et al., 2011). 

In this work the idea is to test the performance of 

the proposed algorithm HW-GA and compare it with 

other algorithms which are used for finding anomalies 

in large amounts of data. We are going to compare 

different algorithm such as HW-GA, ARIMA, 

MovingAverage, Holt Winter, etc. 

Anomaly detection in real time Big Data is actual 

because the amount of data is increasing every day. 

There are three characteristics of large amount of data: 

Volume, veracity and variety of data. Hence the need for 

performance testing in order to meet the speed 

characteristic of large amounts of data. It is a vast field 

of research because it involves algorithms from 

different disciplines. Before selecting the correct 

algorithm for anomaly detection is important to specify 

firstly the data that will be analyzed in order to know 

how we make the algorithm selection. 
The comparative methods will use this study in order 

to draw conclusions regarding comparative performance. 
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Experiments, statistical analysis and visualization were 

managed in R, a free software environment for statistical 

computing and graphics. 

To test the algorithm there will be used benchmark and 

real time data. The NUMENTA benchmark (Lavin and 

Ahmad, 2015) database will be used and real time data 

from e-dnevnik application which is electronic education 

system in North Macedonia. 

The paper has the following structure: In the second 

section is related work; in the third section is shown the 

benchmark datasets that are sed for experimental work, 

in the fourth section are shown the algorithms that are 

used for testing; the fifth section describe the comparison 

of algorithms performance; six section discuss the results 

and conclusion from this research.  

Related Work  

As our continuous research in this area (Hasani, 

2017a) we have compared many algorithms as MAD, 

RunMAD, Boxplot, Twitter ADVec, DBSCAN, Moving 

Range Technique, Statistical Control Chart Techniques, 

ARIMA and Moving Average, to find which one is 

faster. During this study the most important aspect which 

we have considered in order to find anomaly detection 

algorithm suitable for future implementation in the 

online environment was the execution time (complexity), 

the CPU usage and the satisfactory quality of algorithm 

(measured through TP- True Positive, FP-False Positive, 

FN-False Negative, TN-True Negative anomalies found). 

As a result of this research are selected the best 

algorithms ARIMA and Moving Average are compared 

with our proposed algorithm (Hasani et al., 2018) and 

Holt Winters where we have tested the correctness of our 

algorithm in our previous research (Hasani et al., 2018) 

and now in this research we are going to test the 

performance/speed and CPU usage of our algorithm. 

The benchmark Numenta Anomaly Benchmark 

(NAB) (Lavin and Ahmad, 2015) is proposed, this 

benchmark is used in our research. Numenta Anomaly 

Benchmark (NAB), this benchmark provides a 

controlled and repeatable environment of open-source 

tools to test and measure anomaly detection algorithms 

on streaming data. The perfect detector would detect all 

anomalies as soon as possible, trigger no false alarms, 

work with real-world time-series data across a variety of 

domains and automatically adapt to changing statistics.  

Zhang et al. (2019) propose an online and 

unsupervised anomaly detection algorithm for streaming 

data using an array of sliding windows and the Probability 

Density-based Descriptors (PDDs) (based on these 

windows). The experimental results and performances are 

presented based on the Numenta anomaly benchmark.  

Boldt et al. (2020) investigate to what extent sequence-

based Markov models can be used for anomaly detection 

by means of the end-users’ control sequences in the video 

streams, i.e., event sequences such as play, pause, resume 

and stop. This anomaly detection approach is further 

investigated over three different temporal resolutions in 

the data, more specifically: 1 h, 1 day and 3 days. The 

proposed anomaly detection approach supports anomaly 

detection in ongoing streaming sessions as it recalculates 

the probability for a specific session to be anomalous for 

each new streaming control event that is received.  

Falcão et al. (2019) they evaluate experimentally a 

pool of twelve unsupervised anomaly detection algorithms 

on five attacks datasets. Results allow elaborating on a 

wide range of arguments, from the behavior of the 

individual algorithm to the suitability of the datasets to 

anomaly detection. They identify the families of 

algorithms that are more effective for intrusion detection 

and the families that are more robust to the choice of 

configuration parameters.  

Zhu et al. (2018) propose a real-time anomaly 

detection framework with low computational complexity 

and high efficiency. They propose Histogram of 

Magnitude Optical Flow (HMOF) which capture the 

motion of video patches. They show that HMOF is more 

sensitive to motion magnitude and more efficient to 

distinguish anomaly information. Experimentally they 

show that the framework outperforms state-of-the-art 

methods and can reliably detect anomalies in real-time. 

Yuanyan et al. (2018) this paper introduces the extreme 

value theory and proposes a data streams anomaly detection 

algorithm based on self-set threshold with extreme value 

theory (ESOD). They say that the proposed algorithm an 

update the threshold in real time in order to adopt it for real 

time streams. In their results that say that their algorithm has 

good usability and high efficiency. 

Jankov et al. (2017) presents the implementation of a 

real-time anomaly detection system over data streams. 

They implement their algorithm in Java and C++ and in 

this paper, they provide technical details about the data 

processing pipelines. They detect anomalies in real time 

streaming data produced by manufactory equipment. 

Also, Wang et al. (2019) in their work show the 
anomaly detection with K-Means clustering algorithm in 
both batch and real time environment. Their method is 

dedicated to diagnose potential problems for offshore 
rotating machinery. Their experiments are compared 
with the conventional signal analysis method.  

Starting from this research related to the works done 

before, we have identified a research gap related to the 

analysis of speed of anomaly detection algorithms HW-GA. 

Benchmark Datasets 

The experiments are done by real data and 

benchmarks. The real data from e-dnevnik and NAB 

benchmark (Lavin and Ahmad, 2015). The aim of the 

experiments is to test the performance of HW-GA 

algorithm and to camper it with other algorithms.  
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Table 1: Part of benchmark data used for experiments 

HotGym  CPU utilization  Nyctaxi  Rtime e-dnevnik 
--------------------------------------------------------- ------------------------------------------ ------------------------------- ---------------------------------- 
timestamp kw_wnwrgy_consumption timestamp metric_value timestamp value timestamp value 

7/2/2010 0:00 21.2 4/10/2014 0:04 93.1456 7/1/2014 0:00 10844 6/13/2016 0:00 6413 
7/2/2010 1:00 16.4 4/10/2014 0:24 94.5935 7/1/2014 0:30 8127 6/13/2016 0:00 345 

7/2/2010 2:00 4.7 4/10/2014 0:44 93.5210 7/1/2014 1:00 6210 6/13/2016 0:00 354 

 

 
 

Fig. 1: e-dnevnik two-week data 

 

 
 

Fig. 2: Anomalies in e-dnevnik data 

 
NAB contains datasets with a real world, labeled 

data files across multiple domains and the associated 

anomaly detectors applicable for the streaming data. 

We use three NAB datasets, HotGym (the energy 

consumption in one gym center in Australia), CPU 

utilization and NycTaxi (the number of rides for NYC 

taxi), as also our e-dnevnik. Parts of the datasets are 

in the Table 1. 
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The datasets contain a timestamp and single value 

based on the log. The first two have real and next two 

integer values. Known anomalies are detected by human 

inspection and confirmed by HTM algorithm in all three 

NAB datasets, while in the e-dnevnik dataset anomalies 

are not known.  

In Fig. 1 is presented a sequence of data analyzed 

from e-dnevnik. They are data with seasonality, is the 

working period from 07:00 to 19:00 and not the 

working period 19: 00-07: 00. If there is an increase 

in demand during the non-working period, it is 

calculated as an anomaly. Figure 1 shows the data for 

the two-week period. 

In Fig. 2 are shown with red circles what means one 

anomaly in our real data and the algorithms tend to pick 

them in the result.  

Algorithms used for Testing 

In statistics and econometrics and in particular in 

time series analysis, an Autoregressive Integrated 

Moving Average (ARIMA) (Kasunic et al., 2011) model 

is a generalization of an Autoregressive Moving Average 

(ARMA) model. Both of these models are fitted to time 

series data either to better understand the data or to 

predict future points in the series (forecasting) Moving 

average. In time series analysis, the Moving-Average 

(MA) model is a common approach for modeling 

univariate time series. Together with the autoregressive 

(AR) model, the moving-average model is a special case 

and key component of the more general ARMA and 

ARIMA models of time series, which have a more 

complicated stochastic structure. 

HW-GA algorithm: The Adaptive Algorithm for 

Anomaly Detection. In Fig. 3 the positive feedback 

optimization method for continuous adaptation of the 

anomaly detection parameters is shown. The method is 

composed of four different stages.  

First is the annotation of the anomalies in the training 

dataset. The anomaly annotation is defined as a time 

interval where an anomaly is located. The annotation is 

done by a human or an oracle.  

The second stage is the computation of anomaly 

detection parameters for our algorithm using GAs, i.e., 

computation of HW or TDHW parameters, together with 

δ, k and n. GAs have been successfully applied to solve 

optimization problems, both for continuous (whether 

differentiable or not) and discrete functions. This enables 

us to find near-optimal values of the anomaly detection 

parameters very successfully. 

The third stage is the actual anomaly detection engine 

based on the computed optimal parameters from the 

second stage. This stage outputs the detected anomalies 

with our proposed algorithm.  

The fourth stage is the human acknowledgment of the 

output data and classify the output data into TP (true 

positive), False Positive (FP) and False Negative (FN). 

The result of the verification/acknowledgment stage is 

then used again in the second stage for further 

optimization of the anomaly detection parameters. 

Performance Comparison of Anomaly 

Detection Algorithms 

In real time analytic is very important the speed 

because it have to deal with real time data. Our 

proposed algorithm HW GA (Hasani et al., 2018) is 

tested for correctness but not for performance. In this 

paper we test the performance of our algorithm and 

compare it with other selected algorithms from 

previous research. 

 

 
 

Fig. 3: Model for HW-GA method for anomaly detection 

Data set 

Parameters GA 

optimization 

Anomaly interval 

Data set Data streams 

Anomaly detection 

Verifying by human 
Output 



Zirije Hasani / Journal of Computer Science 2020, 16 (7): 950.955 

DOI: 10.3844/jcssp.2020.950.955 

 

954 

Table 2: Experimental results from CPU usage and execution time 

 E-dnevnik>40000  NYcTaxi-1441  HotGYM-169  CPU usage-3653 

 ------------------------------- ------------------------------- ----------------------------- ----------------------------- 

 Execution CPU Execution CPU Execution CPU Execution CPU 

Algorithms time (seconds) Usage time (seconds) Usage time (seconds) Usage time (seconds) Usage 

HW GA 3.36 27% 1.20 9.8% 1.69 9.9% 0.32 12% 

HW calc. MASE 12.17 43% 1.28 11.3% 1.47 14.6% 5.66 18% 

HW def. MASE(k) 5.77 39% 1.44 10.4 1.21 10.4% 5.04 17.9% 

HW def. MASE(k,n) 5.98 45% 1.22 10.6% 1.37 10.5 5.51 18% 

ARIMA 3.52 32% 1.21 3% 0.73 2.3% 4.07 17.6% 

MA 23.38 65% 1.27 7.6% 0.53 3.2% 14.38 22% 

 

Our proposed algorithm (HW GA) (Hasani et al., 

2018) with GA optimized parameters (α, β, γ, δ, k, n) and 

with improved MASE(α,β,γ,δ,k,n) is compared with ARIMA, 

MA (implemented in our previous work (Hasani, 2017a), 

HW where smoothing parameters are calculated by 

formula and default MASE (HW calc.MASE), HW by 

default smoothing parameters (optimized in R) and default 

MASE (HW def.MASE), HW by default smoothing 

parameters and improved MASEk,n (HW def.MASE(k,n)). 

Algorithms evaluation focus on execution response time 

and CPU usage. These two parameters are measured in the 

running time of the algorithms. The algorithms are 

implemented in R language and we have added in the code 

in the star of the algorithm the timer and in the end of the 

algorithm it shows the time taken to finish the algorithm, on 

the other side the CPU usage is monitored in real time when 

the algorithm is running how much CPU it use. 

These parameters are important for us because, in the 

future, the algorithm HW-GA have to work in the real-

time environment. Other criteria should be robustness, 

flexibility, scalability and simplicity to implement in our 

online infrastructure (Hasani et al., 2015; Hasani, 2017b). 

Table 2 show the execution time and CPU usage for 

six algorithms which are compared between them HW-

GA with others. The experiments are done in real data and 

benchmark data as a described above. From the result we 

can see that in real data e-dnevnik data the execution time 

is faster in HW-GA 3.36 sec compared to other which is 

larger also the CPU usage is smaller in real data. The 

Execution time depends also from the amount of data to 

be tested this affects also the CPU usage but when it is 

compared to HW-GA it shows better results. 

In real data the last algorithm MA show the larger 

CPU usage 65% but is not the same situation which 

benchmark data, but this happen because the amount of 

data in e-dnevnik real data is larger than 40000 where in 

others is much smaller (NYcTaxi-1441 records, 

HotGYM-169 records, CPU usage-3653 records). 

Results and Discussion 

The results from experiments are shown in Table 2 

from where we can see that CPU usage depends from the 

number of records in one dataset. In general, two smaller 

datasets of NYcTaxi and HotGYM the execution time is 

smaller compared to CPU usage which have more than 

three thousand records. This is for benchmark dataset but 

the real dataset from e-dnevnik have larger amount of 

data more than 40 thousand and here we can see that 

CPU usage is larger compared to others. The other thing 

that we can see is that ARIMA and MA in general in all 

datasets have smaller CPU usage this because they are 

not complicated algorithms compared to HW-GA but 

related to correctness they are not good.  

If we compare HW-GA with Holt Winters and 

their modifications we made the CPU usage is smaller 

in all datasets. 

The result we get from experiments for execution 

time we can say that when the dataset is larger our 

algorithm HW-GA show better results compared to 

smaller datasets. For example, the execution time in e-

dnevnik dataset for HW-GA is 3.36 sec all others have 

more than 5 sec execution time. The worse result show 

MA with 23.38 sec execution time on e-dnevnik dataset. 

On two smaller datasets NYcTaxi and HotGYM our 

algorithm good execution time 1.2 and 1.69 sec on these 

two datasets. Also, the others algorithm is these two 

small benchmark datasets outperform well.  

On the other side the third benchmark dataset CPU-

Usage which have more than 3 thousand records our 

algorithm has performed much better than others with 

execution time 0.32 sec. When it is compared with 

others the difference is very large more than 5 sec. The 

worst case is with MA with 14.38 sec execution time.  

Based on these facts that we describe here we can say 

that our algorithm outperforms others algorithm in both 

measurements parameters (execution time and CPU 

usage) and better results are shown with large amount of 

data which is very important for Big Data. 

Conclusion 

The researchers are focused now mainly in anomaly 

detection in real time Big Data because the amount of 

data is growing every day.  

This paper covers this problem and our previously 

proposed algorithm HW-GA for real time anomaly 

detection is compared with other existing methods by 

measuring the performance. As a conclusion from our 

experiment, we may say that HW-GA is efficient 
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concerning execution time and CPU usage. Our algorithm 

has smaller CPU usage and less execution time compared 

to other algorithm. The results are shown in Table 2. 

As a result of this research we can say that our 

algorithm outperforms others algorithm in both 

measurements parameters (execution time and CPU 

usage) and better results are shown with large amount of 

data which is very important for Big Data. 

In or Continuous Work  

In our continuous work, we are building an 
infrastructure for anomaly detection in the big log files 
in real-time that contains computational, storage, 
scalability and real-time challenge. To make proper 
choice of infrastructure we have done extensive 
investigation reported in (Hasani et al., 2015; Hasani, 
2017b). We have found infrastructure appropriate, 
because it is possible to modify it when needed by 
adding various other components or scale up or down by 
adding (duplicate, triplicate) some of its existing 
components. Ongoing experiments are motivated by 
need to use such an infrastructure for anomaly detection 
in big log data generated by load balancers of servers in 
Faculty of Computer Sciences and Engineering (FINKI).  

The next phase of our research is to modify the 
proposed algorithm in order to add more parameters 
into the optimization procedure with Genetic 
Algorithms in order to see if it will give better 
performance. Also, we plane to implement this 
algorithm in our proposed infrastructure (Hasani, 
2017b) and to test it in real time environment. 
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