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Abstract: There are a large numbers of jobsites/job portals that provide 

information about employment on the internet. These websites facilitate 

employers to post job lists. Job seekers go through those job posts and 

apply for the same. But, due to the availability of dozens of job portals, job 

seekers are unable to concentrate on the efforts to see the best outcomes. 

The overall objective of the paper is to develop a prototype system that 

provides a platform for the job seeker to access all the job lists from various 

job sites on a single click, at the same place with respect to the fired query. 

For this purpose, an ontology driven information system named as 

Jobology is discussed that integrates various Jobboards using the approach 

of ontology alignment. The system takes user’s query in keyword format 

and in response generates a set of SPARQL queries. These SPARQL 

queries are then fired on their respective ontologies and in turn they yield 

the results. These results are merged and finally presented to user. As a 

contribution of this paper, we have proposed an “OntoJob” Query 

processor that takes job seeker query in keyword format and in turn 

generates a set of SPARQL queries with respect to every jobboard. The 

proposed approach is implemented in JAVA using OWLAPI on window 

platform. To evaluate the proposed work, comparison analysis between 

Jobboards, proposed ontologies and integrated system was performed. The 

results came out to be very satisfactory. 

 

Keywords: Ontology, Semantic Web, Data Heterogeneity, Query 

Processing, SPARQL 
 

Introduction 

In today’s time, internet (Brin and Page, 1998) is the 

biggest data source used by job seekers for job search. It 

provides a number of jobboard sites where job-seeker 

enrolls himself with his expertise and qualification and 

gets job related information according to his 

requirements. The internet is considered as an excellent 

tool for locating the job but job-seeker faces a number of 

challenges while handling various accounts on the 

respective jobboard sites such as visiting each site 

individually to look for opportunity and updating same 

data on each registered site. To deal with these issues, 

data integration seems to be a very convenient solution. 

Data integration provides the ability to manipulate data 

transparently across multiple data sources. But, the 

biggest challenge that comes across data integration is 

data heterogeneity. As data sources can be 

heterogeneous in syntax, schema, or semantics, thus 

making data interoperation a difficult task (Jain et al., 

2018a). Syntactic heterogeneity is caused by the use of 

different models or languages. Schematic heterogeneity 

results from structural differences and Semantic 

heterogeneity is caused by different meanings or 

interpretations of data in various contexts. To achieve 

data integration, the issues posed by data heterogeneity 

need to be eliminated. To handle semantic heterogeneity, 

ontology plays a very important role in semantic web. 

Ontology (Jain et al., 2018b) is considered as a backbone 

of the semantic web (Berners-Lee et al., 2006). It is an 

explicit specification of a domain which gives a formal 

defined meaning to the terms used in annotation 

associated with data. Ontologies have been realized as 

the key knowledge representation technology for shaping 

and exploiting information for the effective management 

and evolution of semantic web. 

In semantic web, it is the general perception that in 

order to define a domain, there exists a single ontology 
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which is used by different data sources. But, in reality, it 

is just opposite of what is assumed. For instance, today 

there are already more than hundred ontologies available 

for public access in only DAML (Mcguinness et al., 

2002) ontology library and with the increasing number 

of user participation in semantic web, this number will 

increase significantly in such kinds of ontology 

libraries. This will ultimately create issue during query 

processing. The problems which will occur in this 

situation are discussed as below: 
 
1. Since the developer is using its own ontology to 

represent its data, establishing link between two data 

sources to handle complex queries will become a 

challenge because the search system would not be 

able to communicate with each other due to different 

ontology as vocabulary they are using 

2. Conventional query processing techniques cannot be 

applied on these structured data as they are unaware 

of the annotation used by the data 

3. Users generally fire query in a Natural Language, 

handling of which on a structured data is a major 

challenge 

4. Ontologies are defined at conceptual level and 

normally, they do not contain instances. Rather they 

are used as annotation. User gives a query at an 

instance level and not at conceptual level. Mapping 

instances with its respective concepts and then 

further plan a query in SPARQL (O'Connor and 

Das, 2007) format is a big challenge 
 

Therefore, looking at the rapidly evolving 

technological environment, “OntoJob” a query 

processing method, is being proposed in this paper that 

describes the working of retrieving relevant information 

corresponding to the query from the N number of data 

sources at one place. The proposed method is divided 

into two phases: First phase covers the identifying 

concepts of the instances and the Second phase covers 

generating SPARQL query to be fired on ontologies to 

retrieve relevant results. The paper has been organized in 

six sections afterwards, wherein section 2 describes the 

preliminaries required before starting the work. Section 3 

describes the related work that has been done in this 

domain. Section 4 describes the proposed work 

“ONTOJOB” query processor which explains the 

architecture and formation of SPARQL queries. Section 

5 shows the implementation of the proposed work 

followed by performance evaluation and at last; section 6 

concludes the paper with some light on future work.  

Preliminaries 

This section describes the indexes and various 

datasets maintained by the proposed system which are 

used during query processing. 

(a) Indexes 

The proposed system aligns selected ontologies and 

with respect to those maintains three global indexes 

named as Global Concept Index (GCI), Global Object 

Property Index (GOPI) and Global Data Property Index 

(GDPI) using following steps: 

 

i. First it takes n number of ontologies as an input 

which are to be aligned concurrently 

ii. then, it performs semantic matching on concepts, 

data properties and object properties 

iii. And develops knowledge base of synonym of concepts 

and properties to fasten the matching process 

iv. And at last it finally builds Global Concept Index, 

Global Data Property Index, Global Object Property 

Index which stores all information of the aligned 

ontologies and also maps them with their local 

ontologies to which they actually belong, thereby 

supporting backward engineering 

 

(b) Datasets 

A repository of different datasets is maintained which 

plays a very important role during query processing 

because ontologies are normally defined at conceptual 

level. User gives query in keyword or in natural 

language form. These dataset helps in finding to which 

concept a keyword may belong; which ultimately helps 

in planning query. For example; if a user is finding 

‘java’ related jobs and he enters ‘java jobs’ then 

looking at the skill dataset, it can be identified that java 

is a skill and therefore this would help in understanding 

that user is looking for job on the basis of skill named 

as ‘Java’. In the same way, if the user is looking for 

“Java, Delhi”, then location dataset would identify that 

Delhi is a location and thus makes a high probability of 

belongingness to Indlocation concept as defined in 

Table 1, which would ultimately help in planning a 

query in SPARQL format. In this work, following 

datasets are maintained for finding the context of the 

keywords of the query given by user. 

These datasets maintain a list of their respective data. 

They have built by extracting relevant data from various 

jobboard sites. With the recognition of new data, it gets 

updated in its corresponding dataset.  

 
Table 1: List of dataset 

S. No. Dataset Description 

1. Skill dataset List of skillsets. 

2. Indlocation dataset List of locations. 

3. Salary dataset List of salary packages from 

  minimum to maximum range. 

4. Experience dataset List of experiences in terms of 

  years a job can ask for. 

5. Designation dataset List of job titles. 
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Literature Background 

In the recent past, several ontology-based approaches 

have been proposed. This literature work illustrates some 

of the query processing methods proposed by researchers 

by using ontologies. 

Sander et al. (2014) proposed Ontology based 

Translation of natural Queries to SPARQL where it 

interprets natural language input under consideration of 

domain specific concepts, individuals, relations and 

restrictions in the ontology, as well as additional 

knowledge e.g., keywords, synonyms etc. which are 

stored in a Simple Knowledge Organization System 

(SKOS) lexicon. After the interpretation or extraction of 

required information to parse a Natural Language query 

successfully, the input is mapped to the predefined 

SPARQL Inferencing Notation (SPIN) rules which 

provide the skeleton for the required SPARQL query. 

Delbru et al. (2011) has examines the shift from the 

traditional web document model to a web data object 

(entity) model and has studies the challenges faced in 

implementing a scalable and high performance system 

for searching semi-structured data objects over a large 

heterogeneous and decentralized infrastructure. Towards 

this goal, they have defined an entity retrieval model and 

developed methodologies for supporting this model and 

show how to achieve a high performance entity retrieval 

system introducing an indexing methodology for semi--

structured data which offered a good compromise 

between query expressiveness, query processing and 

index maintenance compared to other approaches. They 

have address high performance by optimization of the 

index data structure using appropriate compression 

techniques. Finally, they have demonstrate that the 

resulting system could index billions of data objects and 

provide keyword based as well as more advanced search 

interfaces for retrieving relevant data objects in           

subsecond time. Weiand (2011) has developed KWQL; a 

keyword based querying for the social semantic search. 

Zhou et al. (2007) explored a novel approach of adapting 

keywords to querying the semantic web. This approach 

automatically translates keyword queries into formal 

logic queries so that end users can use familiar keywords 

to perform semantic search. A prototype system named 

‘SPARK’ has been implemented in light of this 

approach. Given a keyword query, SPARK outputs a 

ranked list of SPARQL queries as the translation result. 

In the methods for (Shekarpour, 2011) automatically 

transforming keyword based queries into SPARQL has 

been suggested. Also work has been done in improving 

those methods in order to apply them on (a large subset 

of) the Linked Data Web. A heuristic method has been 

proposed for generating SPARQL queries out of 

arbitrary number of keywords. Yahya et al. (2012) has 

proposed Natural Language questions for the web of 

data. They identified that structured query language is a 

difficult task even for skill person and thus presented a 

methodology for translating natural language questions 

into structured SPARQL queries over linked data sources. 

They proposed a framework DEep Answers for maNy 

Naturally Asked question (DEANNA), that composes a 

full suite of components for question decomposition, 

mapping constituents into the semantic concept space, 

generating alternative candidate mappings and computing 

a coherent mapping of all constituents into a set of 

SPARQL triple patterns that can be directly executed on 

one or more linked data sources.  

“ONTOJOB” Query Processor: Query 

Processing in Aligned Ontologies 

This section describes ONTOJOB, architecture for 

query processing in global information systems as 

shown in Fig. 1 motivated by the problems discussed 

in the introduction section. 

At an abstract level, the process starts with 

tokenizing the query given by user which resides at 

the token buffer. Query is entered by the user in 

keyword form and keywords are separated by the 

delimiter. Once the tokenization is done, tokenizer 

sends signal to token mapper to find if token belongs 

to any dataset and respective information gets stored 

in Token_Dataset Table. 

At the back end, dataset_concept mapping table is 

maintained which contains a list designating which 

concept is mapped with which dataset. For instance, skill 

dataset contains a list of keyskills which can be the 

instance of skill concept. Once this is done, token 

mapper sends the signal to token_concept mapper to map 

the tokens with their respective concepts. For this, 

token_concept mapper refers token_dataset table and 

concept_dataset table and generates instance_concept 

table. Once, it is found to which concept a token 

belongs; next task is to find the relation between the 

classes and for this, Token_Concept mapper sends the 

signal to property finder to find the relation and the 

ontologies in which those concepts and property exist. 

The generated information gets stored in the property 

table. Once this is done, property finder sends signal to 

property transformer which creates an inverse property 

table by placing all the properties at one place 

corresponding to the each ontology which would be 

helpful in planning a query with respect to selected 

ontologies. After this, inverse query transformer sends 

signal to query generator process to take input from 

inverse property table and generate individual 

SPARQL queries for selected ontologies and then fires 

them to the respective ontologies which in turn 

generate results. At last, Result merger merges all the 

results and display it to the user at one place.  
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Fig. 1: Architecture of ONTOJOB query processor 

 

The schema of various data structures used during 

query processing is shown in Table 2. 

The schema of data structures used during query 

processing is defined as follows. 

Token Buffer 

This buffer contains the tokens generated by 

tokenizer. The descriptions of various fields maintained 

in this table are described in Table 3. 

Token_Dataset Table 

Token_dataset process finds whether a token belongs 

to any dataset maintained in dataset repository and its 

corresponding information gets stored in Token_Dataset 

table. The descriptions of various fields maintained in 

this table are described in Table 4. 

Concept_Dataset Table 

This table stores the mapping information between 

concept and dataset. For instance, skill dataset is mapped 

with skill concept. The descriptions of various fields 

maintained in this table are described in Table 5. 

Instance_Concept Table 

This table stores the mapping information between 

token and concept. For instance, if a token ‘PHP’ 

belongs to skill dataset and skill dataset is mapped with 

skill concept then PHP is considered as instance of skill 
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concept. The descriptions of various fields maintained in this table are described in Table 6. 

 
Table 2: Schema of various data structures used in query processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3: Description of token buffer 

Field Description 

TID Unique id of token t in the query q. 

TN token name in the query q 

 
Table 4: Description of Token_Dataset table 

Field Description 

TID Unique id of token t in the query q. 

TN Token name in the query q. 

DSID Unique dataset id collected in dataset repository. 

 

Table 5: Description of Concept_Dataset Table 

Field Description 

GCID Global concept id of the concept maintained in 

 global concept indexer (Jain et al., 2017). 

GCN Global concept name of the concept maintained 

 in global concept indexer. 

DSID Unique dataset id collected in dataset repository. 

DSN Name of the dataset stored in dataset repository. 

 
Table 6: Description of Instance_Concept Table 

Field Description 

GCID Global concept id of the concept  

 maintained in global concept indexer. 

GCN Global concept name of the concept 

 maintained in global concept indexer. 

TID Unique id of token t in the query q. 

TN Token name in the query q. 

Table 7: Description of Data Property Table 

Field Description 

GPID Global concept id of the concept maintained in 

 global concept indexer. 

Domain Local concept name of the concept maintained 

 in global data property table. 

Range Local concept name of the concept (if object 

 property) or data type (if data property) 

 maintained in global object/data 

 property table. 

OID Ontology ID. 

LPID Local property id of the property. 

Domain Local concept name of the concept maintained 

 in its respective local property table. 

Range Local concept name (if object property) or data 

 type (if data property) maintained in its 

 respective local property table. 

 
Table 8: Description of property table 

Field Description 

OID ontology ID. 

LPID local property id of the property in its respective 

 ontology. 

LPN local property name of the property in its 

 respective ontology. 

Domain Local concept id, global concept id and local 

 concept name of domain concept. 

Range Local concept id, global concept id and local 

 concept name of range concept 

 (if object property); data type (if data property) 
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Property Table 

Once the tokens get mapped with their respective 

concepts, next step is to find the relationship that exists 

between the concepts. For this, all the relationships 

which are maintained between job concept and identified 

concept c are collected from Global Object Property 

Indexer and Global Data Property Indexer which in turn 

are maintained in Data Property table and Object 

Property Table. The descriptions of various fields 

maintained in this table are described in Table 7. 

Inverted Property Table 

This table is an inverted version of Property Table. It 

contains the list of properties with respect to individual 

ontology which will help in constructing SPARQL 

query. The descriptions of various fields maintained in 

this table are described in Table 8. 

The details of the various modules along with their 

working are outlined as below: 

Tokenizer 

It takes user query keywords as an input and split it 

into tokens. The generated tokens are stored in token 

buffer. Once the tokens have been generated, it then 

sends signal to token mapper for further process.  

Token Mapper 

Upon getting the signals from tokenizer, it finds to 
which dataset the token may belong to. For instance, 
if a java as token is received from token buffer and if 
that is found in the skill dataset, then at the 
generalized level it would be considered as skill.  

Dataset_Concept Mapper 

 This process maps datasets present in dataset 
repository with the concept indexed in GCI. This is a 
one- time process in which concepts are already 
mapped with the datasets. For instance, skill concept 
is mapped with skill dataset; location concept is 
mapped with location dataset and so on.  

Token_Concept Mapper 

This process maps tokens with their respective 
concepts by referring token_dataset table which contains 
a list of tokens along with the dataset (to which they 
belong) and concept_dataset table which holds a list of 
concepts mapped with datasets. By joining these two 
tables, the resultant table instance_concept table is 
generated which contains a list of instances with their 
respective concepts.  

Property Finder 

Once the concept has been identified with respect to 
query keywords, token_concept mapper sends a signal to 
property finder to find the relation that exists between 

job and the concept. Property finder refers to GOBJPI 
and GDPI and retrieves the property that exists between 
the two concepts (Job and other concept identified from 
token_concept mapper) and stores it into the 
Dataproperty table (if retrieved from GDPI) and 
Objectproperty table (if retrieved from GOBJPI). Along 
with this, it retrieves other information such as 
ontologies in which this property exists; and domain and 
range concepts which would be required during query 
planning. Once it is done, it sends transform property 
signal to property transformer process. 

Property Table Transformer 

The data generated from Property Finder process gets 

collected in Property Table. In this table, the head of every 

row is the property followed by the nodes containing 

information about the ontology and local property. This 

defines the ontologies in which the property exists. Property 

table transformer represents the same information but in 

inverted form. This process upon getting the signals from 

property finder process creates an inverted property table in 

which each row is headed with ontology name followed by 

the nodes containing the properties that are identified from 

GOBJPI and GDPI with respect to the query. After this, a 

signal is sent to a SPARQL_query_generator process. With 

this step, writing SPARQL query becomes a simple 

process. Once the instances get mapped with their 

respective concepts and properties have been identified, 

next step is to generate SPARQL query. 

In the next section, the process of generation of 

SPARQL queries with respect to ontologies is presented. 

Generation of SPARQL Queries 

This phase generates SPARQL queries with respect 

to selected ontologies using Instance_Concept Table. 

While generating the SPARQL queries; a number of 

things have been taken into consideration for retrieving 

better and relevant results for user: 

 

1. Since all Job board results have to be displayed at the 

same place to its intended user, the topmost results 

should contain all the options given by user at the user 

interface. For instance, if a user has given java, nodeJS, 

AngularJS as keyword at the user interface, then 

system should display all the job posts from different 

ontologies which contain all these skills 

2. It should also retrieve those job posts which contains 

2 keywords followed by job posts with 1 keyword to 

provide maximum opportunities  

 

The process of SPARQL Query Generator is shown 

in Fig. 2. 

It starts working once it gets signal from the inverse 

property transformer. It plans to build separate queries 

corresponding to the each ontology listed in Inverse 
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Property Table. It collects ontology name, property name, 

domain and range and constructs separate SPARQL query 

with respect to the ontologies. It performs two tasks: First, 

builds SPARQL Query using SPARQL Querybuilder 

process and second, generates filters that will be appended 

to SPARQL query using Filter combination generator. 

The process of generating filters using Filter Combination 

generator is shown in Fig. 3. 

At one side filter combination generator generates all 

the combinations of the instances and store them in filter 

combination table and on the other side SPARQL 

querybuilder builds SPARQL query using inverse 

property table. 

Once the SPARQL queries have been generated, 

these queries are applied on their respective ontologies to 

retrieve results from ontologies one by one and stores the 

results in their respective result tables. Along with this, 

each row of the result table contains the count of filters 

taken from filter combination table. For instance, if the 

filter_count is of the retrieved jobpost is 4 then this 

designates that this job post contains 4 keywords given 

by user. This will be required during merging operation. 

Once this is done, it sends signal to result merger to 

merge the results and present it to the user. 

Result Merger 

It merges the results upon getting the signal from 
query generator. Now the motive is to provide those 
jobpost on the top from various job boards which 
contains maximum keywords given by user at user 
interface. Therefore, looking at the filter_count in each 
result table, merging operation is performed. For 
instance jobpost containing all the keywords will be 
displayed on the top. Now, on the basis of date and time 
of job post uploaded, these posts will be displayed at the 
interface and presented to user. 

 

 
 

Fig. 2: SPARQL query generator 

 

 
 

Fig. 3: Filter combination generator 
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Illustration  

Let’s consider an example whose illustration is 

shown in Fig. 4 which will help in understanding the 

construction of SPARQL query from keyword based 

query corresponding to ontologies. Consider a query: 

Python, Java, XML and Location: Delhi, Noida 

The output of Filter Combination Generator i.e.; 

Filter Combination Table and Inverse property table is 

given to SPARQL Query builder which yields various 

SPARQL queries. The sample of newly generated 

SPARQL queries from the above process is shown in 

Appendix I. The illustration as explained in Fig. 4 shows 

the step by step process of converting keyword based 

queries into SPARQL queries. These queries are then 

fired over respective ontology independently. The 

generated results are then merged by result merger and 

finally get available to the user. 
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Fig. 4: Illustration of user query 

 

Implementation of the Proposed Work 

To analyze the proposed work, various experiments 

have been conducted. The proposed approach has been 

implemented in Java Eclipse. For the implementation 

of the proposed system, keyword based query is taken 

from user interface which retrieves results from ‘n’ 

number of ontologies and displays the results at the 
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Filter_combination table 

ID Instance_Comb Filter_count 

ID1 Skill:Python;Skill:Java;Skill:XML;Location:Delhi 4 

ID2 Skill:Python;Skill:Java;Skill:XML;Location:Noida 4 

ID3 Skill:Python;Skill:Java;Location:Delhi 3 

ID4 Skill:Python;Skill:Java;Location:Noida 3 
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ID8 Skill:Java;Skill:XML;Location:Delhi 3 

ID8 Skill:Java;Skill:XML;Location:Noida 3 

ID9 Skill:Python;Location:Delhi 2 

ID10 Skill:Python;Location:Noida 2 

ID11 Skill:Java;Location:Delhi 2 

ID12 Skill:Java;Location:Noida 2 
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same platform. The snapshot shown in Fig. 5 illustrates 

the results related to the user query “Java” as keyword 

and “Noida” as location. 

Performance Evaluation of the Proposed System 

To evaluate the Proposed System, the architecture 

has been implemented in JDK 1.8 Eclipse framework.  

For analysis, three sets of queries as shown in 

Table 9 were given to the 20 users. Top 50 posts were 

considered as retrieved post and out of those, top 10 

posts were used for making decision. The comparative 

analysis of Precision P, P’, P’’ for the queries 

belonging to corresponding query sets is shown in 

Fig. 6 where p depicts the average precision with 

respect to query q1 from all the jobboard, p’ depicts 

the average precision with respect to q1 from all the 

individual proposed ontologies and p’’ depicts the 

average precision from the proposed integrated system 

i.e., Jobology search system. 

The average precision graph at system level is shown 

in Fig. 7. 

It can be observed from Fig. 6a that the proposed 

system gives more relevant results as it exhibits high 

precision in comparison with Jobboards and individual 

Jobboard’s ontologies. For QS3, the plotted values are 

comparatively low. 

 

 

 
Fig. 5: Output 
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 (a) (b) 

 

 
(c) 

 
Fig. 6: (a) Precision analysis of queries for Query Set1 (b) Precision analysis of queries for Query Set2 (c) Precision analysis of 

queries for Query Set3 

 

 
 

Fig. 7: Plotted values of average precision of query sets 
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Table 9: Sample query set 

Query Set1 Query Set2 Query Set3 

-------------------------------------------- -------------------------------------------------- ----------------------------------------------- 

S. no Query S. no Query S. no Query 

1 Java, Delhi 1 Oracle, Delhi 1 Advanced Java, Mumbai 

2 PHP, Bangalore 2 SAP, Gurugram 2 .net, Pune 

3 Python, Chennai 3 ADO, Dehradun 3 HTML, Javascript, Delhi 

4 CSS, Delhi 4 Core Java, Ahmednagar 4 NodeJS, Javs, Ahemdabad 

5 .net, Indore 5 Java, Struts, Bhopal 5 Abndroid, Bangalore 

6 AngularJS, Ahemdabad 6 Java, Hibernate, Bhubeneshwar 6 Java, Spring, Kolkata 

 

Conclusion 

In this paper, a novel approach has been proposed 

for that allows querying of aligned ontologies. The 

basic idea of proposed approach is to make use of 

ontology alignment systems for querying. The system 

supports writing queries using global indexers built 

during alignment process and dataset. By this, more 

relevant results from n number of websites are 

presented to the user at one place.  

While the contributions in this paper provide a novel 

and in our opinion, a scalable querying approach for 

querying, there is a scope of extension also. Given the 

fact that, currently proposed system is considering only 

jobboard websites as data for building ontology driven 

knowledge base, coverage area of knowledge base can 

be enhanced by considering direct jobs posted at the 

company’s websites. The proposed system is focusing on 

converting semi-structured data available on the current 

web into structured data. The data coverage of proposed 

system can be expanded by taking unstructured text data 

into consideration and converting it into structured data 

using ‘gate tools’. 
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APPENDIX- I 

QID SPARQL Query Filter_count 

O1Q1 "PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" + 4 

 "PREFIX p:  

 <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+ 

 "SELECT ?Job ?title ?skill ?location where" { 

 "?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+ 

 “FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+ 

 “FILTER(?skill=”XML”)."+ “FILTER(?location=”Delhi”)." 

 } 

O1Q2 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" + 4 

 "PREFIX p: 

 http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+ 

 "SELECT ?Job ?title ?skill ?location where" { 

 "?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+ 

 “FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+  

 “FILTER(?skill=”XML”)."+ “FILTER(?location=”Noida”)." 

 } 

O1Q3 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" + 3 

 "PREFIX p: <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+ 

 "SELECT ?Job ?title ?skill ?location where" { 

 { 

 "?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+ 

 “FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+ 

 “FILTER(?location=”Delhi”)." 

 } 

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>/n
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl

