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Abstract: Predicting processor throughput and performance is one of the 

essential aspects of computer architecture. It is crucial to model processor 

performance behavior for future architectures based on the existing data set. 

Modeling processor performance for a given workload enables architects to 

enhance processor features to meet specific performance targets for a given 

benchmark. Developing an estimation method to predict performance using 

one micro-architecture parameter is limited, given the need to model 

multiple parameters simultaneously. In this paper, we propose a novel 

performance prediction method for SPEC CPU 2006 and HDxPRT 2014 

benchmarks based on a combination of measured and estimated 

performance data. The performance project model predicts processor 

performance while altering multiple microarchitecture parameters 

simultaneously such as memory speed, number of cores and the core 

frequency. We also present a detailed timing analysis for each processor 

sub-component. The model is verified to project performance with less than 

5% error margin between projected and measured baseline. 
 

Keywords: Performance Analysis, Performance Estimations, Processor 

Architecture, Microarchitecture, Computational Modeling 
 

Introduction 

Accessing processor performance is critical for the 

effectiveness of the entire system combining both 

hardware and software. The task of performance 

estimation is challenging, given that performance 

depends on different software and hardware variables. 

Given the complexity of this task, it is still essential to 

predict processor performance for a given benchmark 

and be able to change the micro-architecture parameters 

so that to estimate future performance numbers. The first 

task to achieve this is to understand what determines the 

processor performance. The two apparent settings in 

processor performance are throughput and latency. 

Unlike transaction-processing workloads, some 

workloads are incredibly diverse in their use and stress 

on different server sub-systems. Some are Central 

Processing Unit (CPU)-bound and others are strongly 

memory-bound. There is a big difference between CPU-

bound vs. memory-bound workloads. The most 

important characteristic affecting the performance of any 

workload on any system is the number of primary 

memory transactions it does. 
For the CPU-bound workloads, the performance is 

gated by activity on the processor chip. The critical 

performance parameters are core frequency, latencies 
and bandwidth from processor caches. The unimportant 
parameter is the memory subsystem. Usually, systems 
are cheaper to build for CPU-bound workloads. The 
memory-bound workloads are the opposite of CPU-
bounded workloads. The performance is mainly 
determined by the off-chip events, primarily how many 
main memory transactions can be completed per unit 
time. CPU-bound workloads have few main memory 
transactions and are constrained by core frequency, 
cache latency/bandwidth, cache design and pipeline. 
Memory-bound workloads have many principal memory 
transactions and are limited by memory bandwidth and 
sometimes by memory latency. 

In this paper, we present a novel performance 

prediction method based on a mathematical regression 

approach, which takes as inputs different processor 

microarchitecture parameters simultaneously to predict 

performance for SPEC CPU (2006) and HDxPRT 

benchmarks. The measured baseline is a Nehalem 

processor in which the measured data is used for the 

model. We propose a method to develop a projection 

model that utilizes measured and mathematical methods 

using regression data analysis and Amdahl’s Law. The 

measured data assures that we are capturing the proper 
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effect of the workload behavior and its architecture 

capabilities. The performance contributions from the 

processor and memory can be mathematically 

determined using Amdahl’s Law and carefully crafted 

through experiments. We can look at the impact of 

different architectural features for CPU and Memory by 

studying them individually. The data regression 

techniques are used to find mathematical relationships in 

the data that can be used in developing extendable 

models to predict performance for CPU configurations 

which cannot be measured. 

The method presented in this paper is analytical, 

which means it does not require simulation data or 

sampling traces for simulation. The simulation approach 

requires developing a software-based simulator and 

capturing significant traces based on Cycles-Per- 

Instruction (CPI) and other architecture constraints that 

resembles the entire benchmark. The paper is structured 

as follows: In Section II, we discuss the motivation 

behind developing the proposed analytical model. In 

Section III, we discuss SPEC CPU 2006 and HDxPRT 

benchmarks. In section IV we review previous work in 

which we compare our analytical model to other 

published modules, which estimate processor 

performance using a systematic approach. In section V 

we present the performance and sensitivity analysis for 

SPEC CPU 2006 and HDxPRT using Nehalem 

processor. In section VI we present the proposed 

performance projection model supported by 

experimental results and we conclude in Section VII. 

Motivation 

Modeling processor performance is essential for 

processor engineers and designers using an analytical 

approach as compared to a simulation approach. The 

important feature is to evaluate different hardware 

configurations and predict the performance for a 

benchmark without using a trace-based simulator. This 

approach will help processor architects in designing and 

fine-tuning different architecture parameters for future 

processors. The model can give an estimate for 

performance indicators for SPEC CPU 2006 and 

HDxPRT workloads by selecting the desired processor 

architecture parameters. For example, what is the change 

in performance when the number of cores increases? 

This can provide processor engineers a leading edge to 

estimate performance without having to measure the 

benchmark on a processor that is not yet developed. The 

model also enables evaluating performance for different 

benchmarks projected performance score (Unit less 

performance metric) for different processors, given they 

are within the same family architecture. The score 

variable used in this paper is inversely proportional to 

the time domain for performance measurements. 

 
 
Fig. 1: CPU and Memory architecture parameters 
 

Usually, we expect an increase in benchmark 

performance for future processors, given that more 

technology, hardware features and capabilities are added 

throughout the processor roadmap. Some of the essential 

elements are an increase in the number of cores, an 

increase in memory speed and memory capacity, or an 

increase in the core frequency itself. In the model 

proposed in this paper, we covered all the critical 

features that will enable developers to get an early 

projected performance number for SPEC CPU 2006 and 

HDxPRT fora future processor configuration. A similar 

approach can be developed for a different workload. We 

chose SPEC CPU 2006 and HDxPRT because they are 

CPU intensive (compute-bound) workload; other 

workloads can be more memory intensive (memory-

bound). In order to develop a new module for a different 

workload, a new set of processor sensitivity analysis is 

required. Measurement provides the expected 

performance of the workload on a given set of 

architecture settings. The benchmark characteristics 

consist of a collection of measured data, defining a set 

of architecture parameters of interest and statistical 

output for the architecture parameters. The concept in 

Amdahl’s Law allows us to determine the contribution 

of the CPU and Memory to the overall performance and 

how specific elements change the component 

contribution. We do this by running experiments where 

we keep one side constant and vary parameters, on the 

other hand, as shown in Fig. 1. 

Benchmarks Overview 

The SPEC CPU2006 was released by the Standard 

Performance Evaluation Corporation (SPEC). It’s a 

standardized processor and memory benchmark, which is 

what we need for our performance projection model. It is 

designed to stress the CPU and memory subsystems and 

provides a comparative measure of compute-intensive 

performance by measuring integer and floating-point 

performance. This benchmark is widely used in the 

industry by several computers and processor 
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manufacturers to test their processor performance. It’s 

also used for comparing the performance of different 

processors by different vendors to decide what 

processor to purchase based on performance and other 

factors. It is also used to compare the high-end 

processor versus the low-end processor’s performance; 

this is used to determine the cost of each processor 

segment. There are two metrics to measure processor 

performance, the first metric is time and the second 

metric is throughput. Time determines the execution 

time, which is how fast a task is completed per unit 

time. Another parameter is the throughput, which is to 

measure how the amount of computation achieved per 

unit time. In SPEC CPU 2006, we used throughput as 

performance metrics and also execution time. SPEC 

CPU 2006 is categorized as a compute-intensive 

workload, which means it’s a compute-bound workload 

or bounded by the number of cores. Every workload 

belongs to these two categories, a compute-bound 

workload or memory-bound workload or in between. 

For compute-bound workloads mean that the workload 

is only sensitive to the number of cores and the core 

frequency. This also means that if memory bandwidth 

and capacity increases, the performance will not 

increase. Memory-bound workloads mean that the 

workload is bounded to the capacity of memory and 

memory speed. So, any increase in the number of cores 

and/or the core frequency will not be translated into an 

increase in performance even though the computation 

power increased. Workloads can have different 

sensitivity; for example, some workloads are sensitive 

to memory bandwidth and memory speed as compared 

to being sensitive to the number of cores, core 

frequency or the total number of threads. The 

performance contributions coming from the CPU and 

memory can be mathematically determined using a 

measured baseline. The impact of performance change 

from different parts of processors and memory and be 

analyzed individually. A regression method is used to 

determine the relationship to performance in order to 

construct the performance projection model. In this 

paper, we propose a performance equation as a function 

of different microarchitecture parameters, which 

includes the number of cores, CPI, core frequency, 

memory frequency and memory latency. This enables 

the processor engineer to change different 

microarchitecture parameters and estimate the change in 

processor performance. 
HDxPRT scoring benchmark is divided into two sub-

categories. The first category consists of creating the HD 
score, which in turn includes an edit and convert videos 
from camcorder, edit photos and video from a digital 
camera and prepare media for portable devices. The 
second category is the HD video playback, which 
consists of HD video (1080 p, H.264) and HD video 
online (1080 p with Flash).  

Related Work 

Researchers have developed different prediction 

models to predict processor performance for a given 

benchmark using an analytical approach instead of a trace-

based simulation. The analytical model presented in this 

paper enables the performance projection of relative 

performance with a <10% error margin difference 

between measured and estimated performance scores 

using the SPEC CPU 2006 and HDxPRT benchmarks. 

In our previously published papers, we proposed a 

performance estimation model using Amdahl’s law 

regression method in (Issa and Figueira, 2010). 

Amdahl’s law is based on the law of diminishing returns, 

which means increasing the number of processors or the 

number of cores, do not lead to a proportional increase in 

the same amount in performance. The definition for 

Amdahl’s law states that the performance improvement 

gained from implementing a faster mode of execution is 

limited by the fraction of the time the quicker mode can 

is used. Amdahl’s Law states that a system’s overall 

performance increase is limited by the fraction of the 

system that cannot take advantage of the enhanced 

performance. The method published in (Issa and 

Figueira, 2010) predicts benchmark performance with 

less than a 10% error margin. The way presented in 

(Issa and Figueira, 2010) is limited, given that it can 

only accept only one architecture parameter change at a 

time to estimate performance for different values of that 

same parameter. The method requires at least two 

measured data points to establish a measured baseline 

and this enables performance estimation for 

microarchitecture parameters that cannot be measured on 

the processor under test. Note that the measured baseline 

and the projected performance must be of the same 

microarchitecture parameter, for example, the number of 

cores or the core frequency. 

This paper is also a continuation of the work we 

published in (Issa, 2016) for our initial work on this 

project. In this paper, we added more elaboration, fine-

tuned the regression method and added the timing 

analysis in the results section to show the breakdown in 

time between the core time and the memory time for 

SPEC CPU 2006. 

Saavedra and Smith (1996) proposed a method for a 

given benchmark to characterize the machine 

performance and the program execution. The paper 

focuses on determining the execution time of the 

benchmark. The difference between our method and the 

method published in (Saavedra and Smith, 1996) is that 

our approach is more general and can be used for any 

processor by changing different microarchitecture 

parameters. Krishnaprasad (2001) presented various 

ways of using Amdahl’s law in a different form. Our 

method presented in this paper has the same objectives, 

but we use a regression approach instead. 
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Hoste et al. (2007) presented a method based on 

computing a set of microarchitecture parameters 

independent characteristics and weights these 

independent characteristics resulting in locating the 

application of interest in benchmark space. The 

performance prediction is implemented by weighting the 

performance number of a benchmark in the 

neighborhood of the application of interest. In our 

method, we do not apply any weighting mechanism for a 

given benchmark to predict performance, as this may 

change and becomes different for a different benchmark. 

Phansalkar et al. (2007) proposed a simulation-based 

approach for SPEC CPU 2006 by calculating the CPI for 

cache and Translation Lookaside Buffer (TLB) misses. 

The paper concludes that a larger TLB size can reduce 

the cache and TLB miss rates, which in turn will reduce 

the CPI and may improve performance. 
Jens (1996) proposed a different performance 

estimation method for the Linpack benchmark based on 
predicting the runtime using a message-passing 
approach. Our estimation model approach is different in 
a way we analyze different processor architecture 
parameters and developed an empirical formula to 
predict relative performance. 

A significant amount of work has been done 

(Ganesan et al., 2008; Prakash and Peng, 2008) using 

different performance metrics to analyze and optimize 

the performance of different workloads. These research 

papers are highly dependent on microarchitecture 

parameters that are tight to a specific Instruction Set 

Architecture (ISA) which makes it bias to a specific 

architecture. It is used to find performance bottlenecks 

for different benchmarks. 

Khan et al. (2012) presented a novel method for 

cache segmentation replacement technique that works 

independently from Least Recently Used (LRU) 

replacement method. The method is tested with different 

cache sizes for Last Level Cache (LLC) sizes using 

intensive memory subsets of SPEC CPU 2006. This 

shows the importance for cache performance modeling 

for memory intensive subsets of SPEC CPU 2006.  

Issa and Figueira (2010) proposed a performance 

estimation model using Amdahl's Law regression 

method. The method is limited as it requires changing 

one microarchitecture parameter such as core frequency 

or memory frequency while keeping other processor 

parameters fixed. The technique also requires having a 

measured baseline with a minimum of three measured 

data points to enable performance projection using the 

measured baseline. The approach presented in this paper 

allows performance prediction by changing several 

architecture variables simultaneously. 

Hoste and Eeckhout (2007) presented different 

metrics for characterizing benchmarks based on 

microarchitecture-independent characteristics. It is based 

on instrumenting program binaries to describe diverse 

instruction mix, ILP, working set size and branch 

predictability. This is based on the simulation of ISA 

traces to module performance. 

Baghsorkhi et al. (2010) proposed an analytical 

method to predict the performance of the general-

purpose application on a GPU architecture. The 

technique identified how kernel affects different GPU 

microarchitecture parameters. 

Hong and Kim (2009) presented an analytical model 

for GPU architecture with an emphasis on memory-level 

and thread-level parallelism. In our analysis, we 

analyzed the sensitivity of HDxPRT with respect to 

different cache sizes and the number of cores.  

Sensitivity Analysis 

a) SPEC CPU 2006 

SPEC CPU 2006 benchmark includes twenty-six 

different benchmarks executed to stress the processor 

and memory. The output of the benchmark is one 

number, which is referred to as the performance score 

(SPEC rate). It is important to design the right 

experiment so that the performance data can be analyzed 

accordingly. The objective of the performance model 

presented in this paper is to combine all the regression 

measurements into a single empirical formula to predict 

performance for a SPEC CPU 2006. This enables us to 

perform a multivariable regression. It is important to 

mention that all measured data presented contains a 

common configuration, which means that all 

performance data presented is referenced to a normalized 

measured baseline, which is equal to one ‘1’. The 

remaining measured data are referenced to this '1', which 

is known as the normalized measured baseline. The main 

factor contributing to lower processor performance are 

summarized as follows: 

 

 A low number of cores 

 Small cache size 

 Low core Instruction-Per-Cycle (IPC). IPC is 

usually reduced (lower performance) in case of an 

increase in cache misses structural hazards, control 

hazards, or data hazards 

 

There are different memory factors that contribute to 

lower performance such as, lower memory bandwidth, 

smaller cache size and high memory latency. All the 

performance measurements used for sensitivity analysis 

are based on relative performance with respect to the 

Intel Nehalem Xeon processor with 8 cores, 2800 MHz 

core frequency and 400 MHz memory speed. It is 

implemented by taking the measured data for a given 

workload and analyze the sensitivity performance curve 

with respect to one performance parameter (number of 

cores) while keeping all other parameters fixed. 
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When a benchmark score is larger for higher 

performance numbers as shown in Fig. 2, inverting the 

performance parameters, in this case, it’s the number of 

cores along with the score often provides linear lines in a 

plot, as shown in Fig. 3. 
The model output for the relative score with respect 

to the number of cores is calculated using regression as = 
1/(M*(1/# of cores)+B) where M and B are the 
regression slope and intercept. Linear relationships help 
in simplifying the predictive model, but this does not 
always happen. 

Some elements of performance end to be well 
behaved in producing a linear relationship to 
performance using this technique. The lists of 
architecture parameters that work well for SPEC CPU 
2006 benchmark are: 
 

 Frequency vs. Score (Fig. 4) 

 Core count vs. Score 

 Memory Bandwidth vs. Score (Fig. 5) 

 Memory Latency vs. Score 

 IPC improvements vs. Score  
 

 
 

Fig. 2: Score vs. # of cores 
 

 
 

Fig. 3: Linear plot for 1/score vs. 1/cores 
 

 
 

Fig. 4: 1/Score vs. 1/Frequency 
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Fig. 5: 1/Score vs. 1/DIMM speed per thread 
 

 
 

Fig. 6: Cache size vs. performance score 
 

 
 

Fig. 7: LN (Cache Size) vs. LN(Score) 
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Fig. 8: 1/Cache Size vs. 1/Score 

 

 
 

Fig. 9: Performance score vs. different frequency for different cache sizes 

 

 
 

Fig. 10: 1/Score vs. 1/Frequency for different cache sizes 
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benchmarks. Note that in every set, there are duplicates 

from other sets. The total number of experiments is less 

than the number of configurations shown. 

The experiment set of other options is described as 

option 1 and option 2. For option 1, represent a method 

to use the least amount of Multi-thread measurement. 

The frequency and cache scaling experiments are done 

with 1 thread measurement. The output for this option 

provides the least measurement time with the least 

accurate method. 

For option 3, these sets recognize the behavior of a 

module (core pairs) needs to be modeled. It is a 

compromise of Option 1 and Option 2. A Single thread 

set is used for better projections of single-thread 

benchmarks. Note that in every set, there are duplicates 

from other sets. The total number of experiments is less 

than the number of configurations shown in Fig. 11. 

Deriving the relative performance is with respect to the 

Intel Nehalem Xeon processor, configured with eight 

cores, with 2800 MHz core frequency and memory speed 

bus of 400 MHz. First, we take measured data from 

SPEC CPU2006 and analyze the sensitivity performance 

curve with respect to one performance parameter, for this 

case, it’s the number of cores while keeping all other 

architecture parameters fixed. The measured 

performance curve is shown in Fig. 12. Relative 

performance derived is shown in equation (1) as: 

 

8
1 / ,

#

Relative Preformance

Slope Intercept
of cores

  
     

  

  (1) 

 

 
 

Fig. 11: Experiment sets used for single-threaded and multi-threaded benchmarks 

Experiment set Core 

Core 

config Freq1 Freq2 DRAM L3 $/core 
Equiv 

DIMM 

Men 

CH 

Core count 

Memory 

bandwidth 

2 1CL2T 2800 3200 400 1 2x 400 
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8 4CL8T 2800 3200 800 1 2x 3200 
 

8 4CL8T 2000 N/A 400 1 2x 1600 
 

8 4CL8T 2400 N/A 400 1 2x 1600 
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The constant ‘8’ used in Equation (1) is derived from 

a measured baseline using the Intel Xeon processor with 

eight cores. Processor configuration with eight cores is 

used as the normalized baseline and all other 

measurements are relative to this baseline. The slope and 

intercept values are derived using regression. The 

performance in Figure 12 shows a non-linear relation 

between the number of cores and relative performance. 

Taking the inverse will give us a linear relationship, as 

shown in Figure 13. 

We implement the linearity method for memory 

DIMM speed per thread. The relative memory 

performance is derived in Equation (2): 

400
1 / .

Relative Preformance

Slope Intercept
DIMM Speed

  
     

  

  (2) 

 

The slope and intercepts derivations are discussed 

and derived in the results section. The reason we have 

400 in the equation is that for the measured baseline 

we used a memory speed of 400 MHz. We repeat the 

same experiments for DIMM speed versus the 

memory relative performance, also the inverse of 

memory speed versus the inverse of relative 

performance as shown in Fig 14 and 15. 

 

 
 

Fig. 12: Relative performance versus # of cores 
 

 
 

Fig. 13: 1/relative performance vs. 1/# of cores 

 

 
 

Fig. 14: DIMM speed/thread versus memory relative performance 
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Fig. 15: Inverse of memory DIMM speed and relative performance 

 

 
 

Fig. 16: Relative performance Vs. CPU core frequency 

 

 
 

Fig. 17: 1/relative performance versus the 1/core frequency 

 

By repeating the same analysis for the core frequency 

generates a linear relationship between the inverse of the 

relative performance versus the inverse of the core 

frequency, this is shown in Fig. 16 and 17. 

b) HDxPRT 

For HDxPRT, the performance score which consists 

of the three sub-categories (convert videos from 

camcorder, edit photos and video from a digital camera 

and prepare media for portable devices) is derived using 

the GeoMean of the three components as follows: 

100
Tref

score
Trun

 
   

 
  (3) 

 

In our sensitivity analysis, we conclude that there 

is a 40% scaling for the change in the number of 

cores, minimum sensitivity to cache and <3% 

sensitivity to Simultaneous Multi-Threading (SMT), 

as shown in Table 1. 

The core sensitivity for different subcategories are 

shown in Fig. 18. 
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Fig. 18: Sub-category sensitivity analysis for HDxPRT 
 
Table 1: Sensitivity analysis for HDxPRT 

Number of Cores scaling  Cache Sensitivity  SMT ON vs. SMT OFF 

2core vs. 1 core 1.48 1MB vs. 3MB 1.02 2 cores 4 threads vs. 2 cores 2 threads 1.01 

4 cores vs. 2 cores 1.42 3MB vs. 6MB 1.01 4 cores 8 threads vs. 4 cores 4 threads 1.03 

6 cores vs. 4 cores 1.04 6MB vs. 8MB 1.01  cores 612 threads vs. 6 cores 6 threads 1.03 

 
There is an 80% performance improvement for Edit 

and Convert videos from camcorder and 30% 

improvements for Edit photos and videos from the 

camera. For HDxPRT benchmark, the performance for 

projected time is calculated as: 

 

 

 # /

T projected

CPI of instructions Weight freq  
  (4) 

 

and per component HDxPRT score is computed as 

 

 

   /

Score per component

T referenced T projected 
  (5) 

 

The overall score is computed using the GeoMean 

score show in Equation (3). 

Experimental Results 

Using multivariable regression on the linear 

relationships, we can get coefficients for the input 

parameters to predict a score. Additionally, we can 

compute the CPU and memory component times. The 

component times can be modified by the non-linear 

relationship from the L3 measurements. We used four 

different processor architecture variables, which are the 

number of cores, the core frequency, the memory DIMM 

speed, latency and the Instruction-Per-Cycle (IPC). The 

IPC variable depends on the number of branches misses 

cache misses and pipeline and structural hazards. The 

higher the occurrence of these variables, the more cycles 

are consumed, which will result in a lower IPC, which in 

turn will result in lower performance. The IPC value is 

measured for SPEC CPU2006 using a measured reference 

baseline for Nehalem processor. Given the sensitivity 

analysis we discussed, the general formula for the relative 

performance can be derived as in Equation (3): 

 

Re

1

#

lative performance

Corecoefficient Core Frequencycoefficient
Z IPC

of Cores Core Frequency

DIMM speed Coefficient
Memory Latency

DIMM speed


  

    
  
 
  
  

(6) 

 

The value for the core coefficient in Equation (3) is 

derived from the regression coefficient for 1/# of cores. 

The value for Z in the linear line intercepts and core 

frequency coefficient is also calculated from regression 

for 1/(core frequency). The value for the DIMM speed 

coefficient can be derived from the regression coefficient 

for 1/DIMM speed. These coefficients are derived using 

statistical regression analysis for the measured dataset. 

For example, for one of the configuration we want to 

predict performance, the coefficients calculated by the 

regression statistics are as follows: Z = -0.75, number of 

cores coefficient = 6, core frequency coefficient =2100 and 

DIMM speed coefficient = 100. The relative performance 

equation is set to project relative performance with respect 

to the measured baseline. For this experiment, the 

measured baseline is Intel Xeon 8 cores, 2800 MHz core 

frequency, with 400 MHz DIMM speed. The following 

table summarizes the relative performance score for 

different projected processor configurations.  

Sub category sensitivity analysis for HDxPRT 
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Table 2: SPEC CPU2006Regression coefficients for different configurations  

 Core DIMM speed   Core freq. DIMM 
# of Cores frequency (MHz) (MHz) Relative perf. Core time time speed time Z 

1 2800 400 0.16 6 0.75 0.25 -0.75 
8 2800 400 1 0.75 0.75 0.25 -0.75 
10 2800 560 1.28 0.6 0.75 0.17 -0.75 
12 2800 560 1.47 0.5 0.75 0.17 -0.75 
12 3600 600 2 0.5 0.58 0.16 -0.75 

 

 
 

Fig. 19: SPEC CPU2006 Experimental results, Measured vs. Projected Performance 
 

The relative performance shown in Table 2 is 

normalized '1' with respect to Intel Nehalem Xeon using 

eight cores, 2800 MHz core frequency and DIMM speed 

of 400 MHz. This is the normalized baseline and all 

other measured and projected performance is relative to 

this measured baseline. The remaining configurations are 

measured and relative project performance to this 

normalized configuration. The statistical regression tool 

enables us to derive the regression coefficients for the 

number of cores coefficient, core frequency coefficient 

and DIMM speed coefficient and Z.  

The next step is to apply the empirical performance 
relation in Equation (3) to verify the method with respect 
to the measured data baseline. We compare relative 
performance measured with respect to predicted 
relative performance. The error margin between 
estimated and measured relative performance is <10% 
for all test configurations, as shown in Fig. 19. The 
model is used to cross-validate the estimation of SPEC 
CPU 2006 performance for different Xeon processor 
configurations. This enabled performance projection for 
the future processors that we don't have it yet available 
for measurement.  

In Fig. 19, the performance projection model is used 
to estimate the relative performance with respect to the 
Intel Xeon Nehalem baseline. To verify the model, we 
compare the performance score to a measured score 
using the same processor configuration as a baseline. 
The normalized configuration in Fig. 11 is normalized 
relative to '1', which is done by setting the number of 
cores to 8, core frequency to 2800 MHz and DIMM 
speed to 400 MHz. Using the proposed model, if we 
increase the number of cores to 12, core frequency to 
3600 MHz and DIMM speed to 600 MHz, the relative 
performance increases to about 2.1. The actual measured 
relative performance is two which is about 5% error 
margin. Different configurations show an error margin < 
5% between measured and projected data. 

The timing analysis for multi-variable regression is 
derived in Equation (7) as follows: 
 
TotalTime CoreTime

FerequencyTime DIMM Time InterceptTime



  
 (7) 

 
The time contribution for the core computation time 

is the Core_time + Frequency_time + Intercept_Time 
and the DIMM_time is for the memory time only. 
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Table 3: SPEC CPU2006 timing analysis for core and memory 

    Time Contribution % Time Contribution 

    ----------------------------------------- -------------------------------------- 

Cores Freq DIMM Score Core Time Memory Time Core Time Mem. Time 

1 2800 400 0.16 6 0.3 96% 4% 

8 2800 400 1 0.8 0.3 75% 25% 

10 2800 560 1.284 0.6 0.2 77% 23% 

12 2800 560 1.474 0.5 0.2 74% 26% 

12 3600 600 2 0.3 0.2 67% 33% 

 

 
 

Fig. 20: HDxPRT measured Vs. projected performance 

 

In Table 3, we show the timing breakdown for SPEC 

CPU 2006 in terms of core time and memory time. The 

benchmark is more dependent on the core time as 

compared to the memory time for a lower number of 

cores. For one core system, the core time is very 

significant (96%) as compared to the memory time (4%). 

As the number of cores increases and DIMM speed 

increases, the memory time contribution also increases. 

The % core time is derived by taking the ratio of the 

core_time/total_time. Memory % time is derived 

similarly by taking the ratio of the DIMM time and the 

total time. The same method is used to project relative 

performance for HDxPRT, as shown in Fig. 20. 

Concluding Remarks 

In this paper, we proposed a novel performance 

projection method using measured and regression data to 

predict relative performance for SPEC CPU2006 and 

HDxPRT using different processor architecture variables 

that stress the CPU and memory sub-systems. The 

projection model is independent of underlying ISA; it 

utilizes regression with a mathematical approach to 

project relative processor performance. We discovered 

that the relative performance for the cache is logarithmic 

rather than linear, while the relative performance for the 

core frequency, number of cores and memory bandwidth 

is linear. The estimated relative performance average 

error margin < 5% compared to the measured 

performance baseline for Xeon processor configurations. 

The proposed method in this paper enables the modeling 

of different processor architecture parameters to estimate 

relative performance for SPEC CPU 2006 and HDxPRT. 

The model can be modified by establishing a new 

measured baseline known as the normalized baseline 

(normalized to 1) and estimate relative performance from 

that baseline for different processor architecture. This 

method does not require any binary or sampled traces 

used in the simulation for a given benchmark to have an 

instruction mix that represents well the entire 

benchmark's instruction mix. For future work, we can 

implement a sensitivity analysis for different architecture 

parameters such as the TLB misses, which contributes to 

lower IPC (higher CPI). Also, the method can be 

expanded to cover different benchmarks that are used by 

the industry as a reference to evaluate processor 

HDxPRT relative performance (Measured vs. projected) 
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performance and be able to predict performance for 

future architecture. 
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List of Abbreviations 

The following is a list of abbreviation used: 

 

CPI: Cycles per Instruction 

HDxPRT: High Definition Expert 

CPU: Central Processing Unit 

HD: High Definition 

LRU: Least Recently Used 

LLC: Last Level Cache 

DIMM: Dual In-line Memory Module 

SMT: Simultaneous Multi-Threading 

IPC: Instruction per Cycle 

CPU: Central Processing Unit 

SPEC: Standard Performance Evaluation Corporation 

TLB: Translation Lookaside Buffer 

LN: Natural Logarithmic 
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