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Abstract: The lattice theory and group algebra have several applications in 

computing sciences as well as physical sciences. The concept of lattice-

group structure is an interesting hybrid algebraic structure having potential 

applications. In this paper, the algebraic construction of lattice-group 

structure is formulated and associated algebraic properties are established. 

The proposed construction considers Cartesian product spaces. The concept 

of two-dimensional monoid is formulated in Cartesian product spaces of 

real numbers and a related lattice-group structure is established in the space 

having reduced dimension. The different categories of functions are 

employed for dimension reduction while establishing the lattice-group 

structure. The proposed lattice-monoid and lattice-group structures are 

finite in nature. The algebraic properties of lattice-group as well as 

associated structures are formulated. A set of numerical examples are 

presented in the paper to illustrate structural properties. Finally, the 

comparative analysis of the proposed structure with other contemporary 

work is included in the paper.  

 

Keywords: Lattice, Group, Lattice-Group, Partial Order, Monoid, 

Invertibility 

 

Introduction 

Group algebra, especially finite field is the 

fundamental part of Advanced Encryption Standard 

(AES). The construction of variants of the Diffie–

Hellman key agreement protocol become easy by using 

group theory, where the nonAbelian groups can be 

applied in public key cryptography (Vasco and 

Steinwandt, 2015; Tzu-Chun, 2018). Furthermore, group 

theory has applications in physics and particularly in 

condensed matter physics (Mildred et al., 2010). 

Moreover, the properties of partial order relation as 

well as lattice theory are widely applied to various 

domains of computer science and distributed systems 

including programming languages (Vijay, 2015). The 

applications of the lattice theory in distributed 

computing are comprised of vector clocks design and 

global predicate detection (Lamport, 1978). The 

properties of lattice linear predicates enable efficient 

detection of global predicates in distributed systems 

(Chase and Garg, 1995). The lattice agreement in 

asynchronous message passing systems is useful due to 

its applications in atomic snapshot objects and fault-

tolerant replicated state machines (Attiya et al., 1995; 

Xiong et al., 2018). Computational aspects of lattice 

theory are developed to compute slices for temporal 

logic formulas (Sen and Garg, 2003). These algorithms 

are useful in detecting temporal logic formulas in a 

distributed computation (Mauricio et al., 1999). In other 

words, partial-order relation and lattices help in obtaining 

clear, concise and efficient formulations of problems 

requiring the ability to take transitive closures, solve 

circular constraints and perform aggregate operations. 

Lattice theory can be used in the implementation of a 

knowledge representation language. For example, the 

knowledge base system is realized by processing a 

sequence of terminological axioms by using Birkhoff’s 

Representation theorem and finite distributive lattices 

(Seymour and Marc, 2007; Frank, 2000). 

Interestingly, lattice theory plays a role in other 

branches of mathematics such as, probability theory 

and graph theory (George, 2009; Louis, 2016). The 

applications of lattice theory with other results lead to a 

decomposition technique that expresses all the trees of 

a graph in the form of set unions of Cartesian products 

of the sets of subgraphs of the component graphs  

(Wen-Hai et al., 1990). The algebraic relation between 

lattice theory and group is an interesting topic having 

several application possibilities. Thus, the algebraic 

interrelationship between lattice and groups needs 
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attention. The construction of hybrid algebraic structure 

involving lattice theory and group algebra would be an 

interesting topic to investigate. 

The purpose of this paper is inline to such 

motivation of formulating algebraic hybrid structures. 

This paper proposes the construction and algebraic 

analysis of lattice-group structure in two dimensional 

Cartesian product spaces of real numbers. It is 

considered that the lattice-group structure is finite in 

nature. First we introduce the concept of lattice and 

lattice-monoid structures in 2D space. Next, we 

construct the group structure under the influence of 

various types of function mappings. The function 

mappings reduce the dimension while transforming the 

2D lattice into a lattice-group structure. The associated 

algebraic properties of the multidimensional lattices, 

lattice-monoids and lattice-groups are presented in the 

paper. The potential applications of the proposed 

algebraic structure as well as analysis can be made in 

formulation of model of distributed computing. 

The rest of paper is organized as follows. Second 

section presents preliminary concepts. Third section 

presents a set of definitions intended to the constructed 

structures. Fourth section presents a set of analytical 

properties of the algebraic structures and fifth section 

presents a set of illustrative examples. The comparative 

evaluation with the other contemporary works in the 

domain is presented in sixth section. Finally, seventh 

section concludes the paper. 

Preliminaries 

In this section, we introduce basic definitions and 

properties related to lattice theory, posets and group algebra. 

Binary Relation and Poset (Seymour and Marc, 

2007; Thomas, 2004; Dushnik and Miller, 1941; 

Bernd, 2016) 

Let X be a point set and, A ⊂ X and B ⊂ X be such 

that, A∩B = φ. A binary relation R is an ordered pair 

such that, R⊂A×B. For any set A, a subset of the 

Cartesian product set 
n

A  is called an n-ary relation on 

A, where n∈Z
+
. Let ℜ be denoting set of real numbers. 

A partially ordered set or poset is a set P together 

with a binary relation ≤ such that, the following 

conditions are satisfied for all x,y,z∈P: 
 

(a) x ≤ x  (Reflexivity), 

(b) If x ≤ y and y ≤ x, then x = y (Anti symmetry), 

(c) If x ≤ y and y ≤ z, then x ≤ z (Transitivity) 
 
An element x of a poset P is said to be a lower bound 

for the subset S ⊂ P if x ≤ s for every s∈S. The element x 

is a greatest lower bound of set S if x is a lower bound of 

S and y ≤ x for any lower bound y of set S. 

Distributive lattice representation (Seymour and 

Marc, 2007; Birkhoff, 1967; Laszlo, 2015) 

An algebraic lattice ),,( ∧∨L  is a set with two 

binary operations meet and join ),( ∨∧  respectively, 

such that both operations are commutative and 

associative, where absorption law holds, as mentioned 

below (where ∀x,y,z∈X): 
 
(a) ,∧ = ∧ ∨ = ∨x y y x x y y x , 

(b) 
( ) ( ) ,

( ) ( ) ,

∧ ∧ = ∧ ∧

∨ ∨ = ∨ ∨

x y z x y z

x y z x y z
              (1) 

(c) ( ) ( ).= ∧ ∨ = ∨ ∧x x x y x x y  
 
A lattice is a partially ordered set in which for every 

two elements a and b the least upper bound (called join, 

denoted by, (a∨b)) and the greatest lower bound (called 

meet, denoted by, (a∧b)) exist. 

A lattice is distributive if it satisfies distributive law 

given by, ( ) ( ) ( )∧ ∨ = ∧ ∨ ∧x y z x y x z . 

Interestingly, a lattice can be represented 

graphically. The 2D representation of finite partially 

ordered set 
2

X  (with an implied upward orientation) 

is the directed graph whose vertices are the elements 

of 
2

X  and also, there is a directed edge from (xa, xb) 

to (xc, xd) in the Cartesian product space such that, (xa, 

xb) ≤ (xc, xd) in 
2

X .  

The 2D lattice representation is a type of Hasse 

diagram, which represents the elements of lattice in 
2

X . We note that 2D lattice representation of poset 

),( 2
≤X  need not to be connected. 

Binary Operation, Group and Abelian Group (Scott, 

1987; Herstein, 1975; Milne, 2013; Robert, 1969) 

If X ≠ φ and a binary operation * is defined as 

XX →∗
2

:  then the set is called closed under *. A group 

is given by ),( ∗= XG  such that, the following properties 

hold: 

 

(a)  , , , ( ) ( )∀ ∈ ∗ ∗ = ∗ ∗x y z G x y z x y z  

(b)  , :∀ ∈ ∃ ∈ ∗ = ∗ =x G e G e x x e x                            (2) 

(c) 1 1 1
, :

− − −

∀ ∈ ∃ ∈ ∗ = ∗ =x G x G x x x x e  

 

A group G = (X, *) is called Abelian if it satisfies the 

commutative law given by, , ,∀ ∈ ∗ = ∗x y G x y y x . 

Functions and Invertibility (Seymour and Marc, 

2007; William, 2013; Walter, 1976) 

A function :f A B→  is one-to-one if )()( /afaf =  

implies /
aa = . It is said to be an onto function if each 

element of B is in the image of some element of A 
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meaning, f(A) = B. A function BAf →:  is invertible 

if the function both one-to-one and onto. 

Definitions 

In this section, a set of definitions are constructed in 

relation to multidimensional lattices, lattice-monoids and 

lattice-group structures. A few of the proposed 

definitions are direct extension of one-dimensional 

construction into the multidimensional space. 

Relation, Partial Ordering and Quasi Order in 2D  

Let us consider, {(xa, xb), (xc, xd), (xe, xf),… (xr, xq), 

(xn-1, xn)} ⊂ 
2

X  and if it is true that: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

, , ... , ,

,......

−

−

 ≤ ≤ ≤ ≤ ⇒ 

 ≤ ∧ ≤ ≤ ∧ ≤ 

a b c d r q n n

a c b d r n q n

x x x x x x x x

x x x x x x x x

 

 

then ≤ is a relation in 
2

X . 

Remark 

The relation ≤ is a partial order relation on nn

X ℜ⊂  

if it satisfies following standard properties for n = 2: 

 

(a) ( ) ( )2
, , ,∀ ∈ ∈≤

a a a a
x x X x x  

(b) If ( ) ( ){ }, , , ⊂≤
a b c d
x x x x  then 

( ) ( ) ( ) ( ), , , , ≤  ⇔ ¬ ≤    a b c d c d a b
x x x x x x x x  

 

and,                                                                  (3) 

 

(c) If ( ) ( ) ( ){ }, , , , , ⊂≤
a b c d e f
x x x x x x  then: 

 

( ) ( ) ( ) ( )

( ) ( )

, , , ,

, , .

 ≤ ∧ ≤ ⇒ 

 ≤ 

a b c d c d e f

a b e f

x x x x x x x x

x x x x

 

 

We write ),( 2
≤X  to specify the poset in Cartesian 

product space. 

Suppose > is a relation on a set 22
ℜ⊂X  satisfying 

following two properties. 

 

(a) ( ) ( ) ( )2
, , , ,∀ ∈ ¬ <  a b a b a b

x x X x x x x   

(b)  If ( ) ( ) ( ){ }, , , , , ⊂<
a b c d e f
x x x x x x  then                    (4) 

( ) ( ) ( ) ( )

( ) ( )

, , , ,

, , .

 < ∧ < ⇒ 

 < 

a b c d c d e f

a b e f

x x x x x x x x

x x x x

 

 

In this case, the relation < is called quasi-order on X
2
. 

Remark 

Interestingly, there is a close relationship between 

partial orders and quasi orders. For example, if ≤ is a 

partial order on 
2

X , then we can define: 

 

( ) ( ) ( ) ( )

( ) ( )

, , , ,

, , .

 <  ⇔  ≤  ∧   

 ≠  

a b c d a b c d

a b c d

x x x x x x x x

x x x x

 

 

Similarly, if < is quasi order on 
2

X , then we can 

define ( ) ( ), ,≤
a b c d
x x x x  as: 

 

( ) ( ) ( ) ( )

( ) ( )

, , , ,

, , .

 ≤  ⇔  <  ∨   

 =  

a b c d a b c d

a b c d

x x x x x x x x

x x x x

 

 

Suppose, ( ) ( ){ } 2
, , , ⊂x x x x X

α β γ µ . In this case we say 

that, if ( ) ( ), ,≤x x x xα β γ µ  and ( ) ( ), ,≤x x x xγ µ α β  then 

( ),x xα β  and ( ),x x
γ µ

 are comparable. If all elements 

(ordered elements) of 2
X  are comparable, then it said to 

be totally ordered or linearly ordered (Seymour and 

Marc, 2007).  

Lowest Upper Bound and Greatest Lower Bound in 

2D 

Let in the algebraic structure in 2D be {(xa, xb), (xc, 

xd), (xe, xf), (xg, xh) (xl, xm), (xn, xp)} ⊂ 
2

X  and it 

maintains following condition: 

 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,≤ ≤ ≤ ≤ ≤a b c d e f g h l m n px x x x x x x x x x x x . 

 

In this case: 

 

(a) The supremum of 
2

X  is given by: 

  

),,()},(),,(),,sup{( hgfedcba xxxxxxxx =  

 

(b) Accordingly, the infimum of 
2

X  is given by: 

 

),()},(),,(),,inf{( fepnmlhg xxxxxxxx = . 

 

Meet and Join in 2D 

Let ),( 2
≤X  be a poset. If every pair of elements have 

sup and inf, then this partial order is called lattice in 

Cartesian product space and it is denoted by ),,(
2

≤LX . 

The meet and join of ),,( 2
≤LX  is given respectively as, 

( ) ( ), , ,∀ ∈x x x x Lα β γ µ : 
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( ) ( ) ( ) ( ){ }, , inf , , ,x x x x x x x xα β γ µ α β γ µ
 ∧ =   

 

and, 

 

( ) ( ) ( ) ( ){ }, , sup , , ,x x x x x x x x
α β γ µ α β γ µ

 ∨ =  . 

 

Any linearly or totally ordered set is a lattice since: 

 

( ) ( ){ } ( )inf , , , ,x x x x x xα β γ µ α β=  

 

and, 

 

( ) ( ){ } ( )sup , , , ,x x x x x x
α β γ µ γ µ

=  

 

whenever ),(),( µγβα xxxx ≤  in ),,( 2
≤LX . 

Binary Operation in 2D 

Let 2)},(),,{( Xxxxx
dcba
⊂  be such that, 22

ℜ⊂X  

and, 22

2
: XX →∗

 
is an algebraic operation in Cartesian 

product space. If ],),[()],(),[( 2

2
Xxxxxxx

dcba
∈⇒∗ βα

 

where Xxxx
ca
∈∗= )(

α

  and Xxxx
db
∈∗= )(β

 then 

2
∗  is a binary operation on 2

X  having closure property. 

Associativity and Identity in 2D 

Let {(xa, xb), (xc, xd), (xe, xf)}⊂ 2
X  where 2

X  be an 

arbitrary point set in Cartesian product space. The 

associativity and identity on 2
X  is defined as:  

 

(a)  
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

, , ,

, , , ,

a b c d e f

a b c d e f

x x x x x x

x x x x x x

 ∗ ∗ 

=  ∗  ∗ 

                          (5) 

(b) 22
),(,),( XeeXxx

ba
∈∃∈∀ , such that, 

       ),(),(),(),(),(
22 bababa

xxxxeeeexx =∗=∗ .  

 

The M = ( 2
X , *2) is called a monoid in Cartesian 

space. Note that, M = ( 2
X , *2) is not yet fully equipped 

with any lattice structure. Moreover, it is important to 

note that, in our proposed construction, we consider that: 

 

( ) ( )
1 1 1

, , .

a b a b
x x x x

−
− −

≠  (6) 

 

Before proceeding further, we present a proof that M 

= ( 2
X , *2) is indeed a monoid. 

Proposition 1 

M = ( 2
X , *2) is a monoid in 2D. 

Proof 

The associativity and identity preservations in 

algebraic form are given below. 

Proof of associativity and identity: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

, , ,

, , , , .

a b c d e f

a b c d e f ace bdf

x x x x x x

x x x x x x x x

 ∗ ∗ 

=  ∗  ∗ = 

 

 

According to the definition: 

 

( ) ( ) ( ) ( ) ( )2 2
, , , , , .

a b a b a b
x x e e e e x x x e x e∗ = ∗ = ∗ ∗  

 

However, inverses do not exist as: 

 

( ) ( ) ( )
12 1 1

, , , , ,

a b a b a b
x x X x x x x

−
− −

∀ ∈ ≠  

 

thus 

 

( ) ( ) ( )
1

2
, , , .

a b a b
x x x x e e

−

∗ ≠  

 

Hence, M = ( 2
X , *2) is indeed a monoid in 2D.  

Induced Group and Subgroup 

Let M = ( 2
X , *2) be a monoid in Cartesian product 

space. Let a function f: 2
X →X be defined such that, 

∀(xa, xb) ∈
2

X , ∃x
α ∈X  where, f((xa, xb)) = x

α
 then 

),,( fMG f ∗=  is called group, if only if, it satisfies 

standard group axioms under XX →
2

:* .  

Remark 

We prove associativity of group operation and 

existence of identity as well as inverse below considering 

M = ( 2
X , *2) and its transformation under f (.). 

Let (xa, xb), (xc, xd), (xe, xf) ∈M be such that: 

 

(a) 
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

, , ,

, , , ,

a b c d e f

a b c d e f

f x x f x x f x x

f x x f x x f x x

 ∗ ∗ 

 = ∗ ∗
 

  

(b) ( ) ( )( ) ( )( ) ( )( ) ( )( ), , , , , , ,

a b a b
e e M f e e f x x f x x f e e∃ ∈ ∗ = ∗  

(c) )),((,),(
baba

xxfMxx
−−

∃∈∀  such that, 

       )),(())(())((
,,

eefxxfxxf
baba

=∗
−−

. 

 

Thus, the algebraic structure Gf = (M,*,f) is a group 

under the influence of f (.), where XX →
2

:* . If Hf  ⊂ Gf 

is a nonempty subset of a group Gf = (M, *, f) then, the 

structure Hf = (E, *H, f) is a subgroup of Gf iff Hf = (E, *H, 

f) maintains all group axioms as mentioned earlier, where 

)( 22
XYE ⊂= , YYf →2:  and 

H
∗=∗ . 
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Surjective – Homeomorphic Function 

Let Hf be a subgroup of Gf, such that Hf < Gf. The 

function f (.) is called as surjective and homeomorphic 

(SH) if it satisfies following condition: 
 

( ) ( ) 2 2
, , , ,

a b c d
y y y y Y X y Y

α
∀ ∈ ⊂ ∃ ∈  

 
such that, 
 

( ) ( )( ) ( )( ) ( )( )

[ ]

2

2

, , , ,

,

a b c d a b c d
f y y y y f y y f y y

y y y Y
α α α

 ∗ = ∗ 

= ∗ = ∈
 

 

where, yα = f((ya, yb)) = f((yc, yd)).  

Partial Order Monoid in 2D  

Let ( 2
X ,≤) be a poset and, M = ( 2

X ,*2) be a monoid. 

The structure ),,(
2

2
≤∗X  is called a partial-order-

monoid (p-Monoid) if it satisfies following property, 
 

( ) ( ) ( ){ }
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

2 2

, , , , , ,

, ,

, , , ,

, , , ,

a b c d e f

a b c d

a b e f c d e f

e f a b e f c d

x x x x x x X

x x x x

x x x x x x x x

x x x x x x x x

∀ ⊂

 ≤  ⇒ 

 ∗ ≤ ∗ ∧ 

 ∗ ≤ ∗ 

 (7) 

 

Lattice Monoid in 2D 

A p-Monoid ),,(
2

2
≤∗X  is called a lattice-monoid (l-

Monoid) if and only if it satisfies following conditions: 
 

(a) ( 2
X , ≤) is a lattice having meet and join, 

(b) 2{( , ),( , ),( , )} , { , },a b c d e fx x x x x x X∀ ⊂ ∇∈ ∧ ∨  

(b.1) 
2

2 2

( , ) [( , ) ( , )]

[( , ) ( , )] [( , ) ( , )],

a b c d e f

a b c d a b e f

x x x x x x

x x x x x x x x

∗ ∇ =

∗ ∇ ∗
 and, 

(b.2) 
2

2 2

[( , ) ( , )] ( , )

[( , ) ( , )] [( , ) ( , )].

c d e f a b

c d a b e f a b

x x x x x x

x x x x x x x x

∇ ∗ =

∗ ∇ ∗
  

 

The l-Monoid structure is represented by ( 2
X , L, *2, ≤). 

Lattice-Group 

Let ),,( fMG f ∗=  be a group under the influence of f: 

2
X →X. If ∀xα, xβ ∈ f(

2
X ), xα ∧ xβ = xα and xα ∨ xβ = xβ  

then, LGf = (L, Gf, f, *, ≤) is a lattice- group, where L is a 

lattice on X. 

Analytical Properties 

In this section, a set of algebraic properties are 

presented in order to gain insight to the lattice-group and 

associated structures. First, we consider the strictly 

positive discrete variety in real ℜ
n
, (n = 1,2) and 

investigate whether the group structure can be formed 

from the monoid in Cartesian product space successfully 

in the presence of dimension reducing functional map. 

Accordingly, the set of natural numbers are considered 

as the domain and codomain of the mapping function, 

where the domain is a monoid. The resulting behaviour 

is presented in next theorem.  

Theorem 1 

If Gf = (M ⊆ N
2
,⋅, f)  then Gf is not a multiplicative 

group under surjection f: ( 2
X ⊂ N

2
) → (X⊂N), where, 

f((xa, xb)) = xa + xb ∈N. 

Proof 

Let Gf = (M ⊆ N
2
,⋅, f), where M = ( 2

X  ⊆ N
2
,⋅2) be a 

monoid in the Cartesian product space under multiplication, 

⋅2: 
2

X  → 2
X . Let f:( 2

X ⊂N
2
) → (X⊂N) be a surjection 

where f((xa, xb)) = xa + xb ∈N. First, we prove that 

associativity law holds and identity element exists in such 

settings. 

If {xα, xa, xb, xβ, xc, xd, xγ, xe, xf} ⊂N  such that, xα = 

f((xa, xb)), xβ = f((xc, xd)), xγ = f((xe, xf))   then xα .(xβ . 

xγ) = (xα . xβ) ⋅ xγ. 

If f(.) is surjection such that, xα = xβ then 
2 2
. .x x x x

α γ γ α
= , where 

2
. 0x x

α γ
≥ . 

In this case, the identity element is {1}⊂N because, 

xα .1 = 1 . xα = xα. 

However, 
1

, ,

i i
x N x N

−

∀ ∈ ∉  and hence, Gf does not 

have inverse. Thus, ),,(
2 fNMG f ⋅⊆=  is not a 

multiplicative group. It indicates that, the dimension 

reducing additive surjection of discrete variety with 

natural number domain cannot transform a monoid in 

Cartesian product space into a multiplicative group. 

However, if the function is not strictly surjective in 

integer domain, then it can successfully transform a 

multiplicative group as presented in following example. 

Example: Multiplicative Group under Exponential 

Map 

Let there be a real valued function 

( )( ),

a b
x x

a b
f x x e +

=  where ⋅≡∗  (multiplication). It is 

not considered that f(.) is surjective.  

 

(a) Associativity: 

( ) ( )e f e fa b c d a b c d
x x x xx x x x x x x x

e e e e e e
+ ++ + + +

⋅ ⋅ = ⋅ ⋅  

(b) The existence of identity element: 
0 0a b a b a bx x x x x x

e e e e e
+ + +

⋅ = ⋅ =  

(c) The existence of inverse:  
( ) ( ) 0a b a ba b a b
x x x xx x x x

e e e e e
− + − ++ +

⋅ = ⋅ =  
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In this case Gf = (M,⋅,f) is a multiplicative group 

irrespective of surjectivity of f(.). On the other hand, if 

the function mapping is surjective in real line, then a 

centre of Abelian group can be found as illustrated in 

next theorem. Interestingly, the center has shifting 

property depending on group operation. 

Theorem 2 

If Gf = (
2

X
 
⊆ ℜ

2
, *, f) is an Abelian group under the 

surjection f: ℜ
2
→ℜ in Cartesian product space, then 

there exists a relation-center (R-center) in ℜ if Gf  = 

( 2
X ⊆ ℜ

2
, +, f) and, in ℜ

+
 if Gf  = (

2
X

 
⊆ ℜ

2
,⋅, f). 

Proof 

Let Gf = (
2

X  ⊆ℜ
2
, *, f) be an algebraic structure in 

Cartesian product space and f: ( 2
X  ⊆ℜ

2
) → (X ⊆ ℜ) be 

a surjection, where ℜ∈∗=
baba
xxxxf )),(( . First, we 

need to prove that Gf = (
2

X
 
⊆ ℜ

2
, *, f) is an Abelian 

group under the generalized group operation 

XX →∗
2

: . Let 2)},(),,(),,{( Xxxxxxx fedcba ⊂  and be 

∃xα, xβ, xγ ∈X such that  xα = f((xa, xb)), xβ = f((xc, xd)), 

xγ = f((xe, xf)). However, according to associativity law, 

αααααα
xxxxxx ∗∗=∗∗ )()(  as f(.) is a surjection 

indicating xα = xβ = xγ.  

However, if +=∗  then ∃0∈X such that, 

ααα
xxx ∗==∗ 00 . In this case, XxXx ∈−∃∈∀ )(,

αα

  such 

that, 0)()( =∗−=−∗
αααα
xxxx . Moreover, following the 

commutativity law: 

 

, , .x x X x x x x
α β α β β α

∀ ∈ ∗ = ∗  

 
Hence, Gf  = (

2
X ⊆ ℜ

2
, +, f) is an Abelian additive 

group under surjection f: ℜ
2
→ℜ in Cartesian product space. 

Similarly, if ⋅=∗ , then Gf = (
2

X
 
⊆ ℜ

2
,⋅, f) is also an 

Abelian multiplicative group under surjection f: ℜ
2
→ℜ 

in Cartesian product space, where identity element is 1. 
Thus, the algebraic structure Gf = (

2
X

 
⊆ ℜ

2
,*, f) is an 

Abelian group. We will prove the remaining part of the 
theorem in two parts considering two different group 
operations as given below. 

Case 1: 
2

+≡∗  (Additive Group) 

Let M = (X
2 
⊆ ℜ

2
, +2) be a monoid in Cartesian product 

space where ),(),(),(
2 dbcadcba

xxxxxxxx ++=+ . Let, Gf 

= (M, +, f) be a group and Hf  = (E⊂
2

X , +, f) be a subgroup 

Hf < Gf where f: E → (Y⊂X) is a surjection. If a relation 

R⊂ 2
X , then 1

),(,),(
−

∈∃∈∀ RxxRxx
abba

 such that, 

baabba
xxxxfxxf +== )),(()),(( .  

Let )()},(),,{( 1−
∪⊂ RRxxxx

abba
 be such that, xα ∈Hf  

where f((xa, xb)) = f((xb, xa)) = xα. 

As Hf <Gf, hence )()},(),,{(
1−

∪⊂−−−−∃ RRxxxx
abba

 

such that, 
fHx ∈−

α
 where )),(()),((

baba
xxfxxf −=−− . 

Thus, 0))0,0(()),(()),(( ==+−− fxxfxxf
baba

 and 

{0}⊂Hf, where )()}0,0{( 1−
∩⊂ RR . Hence, 

ℜ⊂−−= ))},(()),0,0(()),,(({ babaf xxffxxfH  is a 

R-center of Gf, under the influence of surjective f(.). 

Case 2: ⋅≡∗  (Multiplicative Group) 

If we replace the group operation with ⋅≡∗  

indicating multiplicative group, Gf = (M,⋅,f) under the 

surjection f((xa, xb)) = f((xb, xa)) = xa⋅xb, then 

)()}1,1{( 1−
∩⊂∃ RR  and, f((1,1))∈Hf where Hf < Gf. 

However, if )( 1−
∪⊂ RRA  indicating, A⊂ℜ

+
×ℜ

+
 then 

+−−

ℜ⊂= ))},(()),1,1(()),,(({
11

babaf xxffxxfH  is a R-

center of Gf =(M,⋅,f), where ( )( ) ( )
11 1

,

a b a b
f x x x x

−
− − +

= ⋅ ∈ℜ  

(considering xa > 0, xb > 0). 

It indicates that Hf  < Gf is a relation center (R-center) 

and it can be shifted on real line based on the nature of 

group operations. 

Examples 

We will present two examples of R-centers of a 
group based on the nature of group operations. 

Example 1 

R-center of additive group. 

Let X ⊆ ℜ and, 2)}4,5(),4,5{( XR ⊂⊂−− . As Hf < 

Gf, so 
21)}5,4(),5,4{( XR ⊂⊂−−∃

− . According to 

surjectivity, f((5,4)) = f((4,5)) = 9 and 

9))5,4(())4,5(( −=−−=−− ff . However, f((5,4)) + f((-5, 

-4)) = f((0,0)) = 0 and thus {9, 0, -9} = Hf, which is a R-

center of group Gf = (M, +, f). 

Example 2 

R-center of multiplicative group. 

Let 211 )}3,2(),3,2{( ℜ⊂⊂−−
−−

R . As Hf < Gf, 

hence 2111 )}2,3(),2,3{( ℜ⊂⊂−−∃
−−−

R . 

Following the surjectivity, f((2,3)) = f((3,2)) = 6∈ℜ
+
 

and +−−−−−

ℜ∈=−−=−−
11111 6))2,3(())3,2(( ff . So, it 

is true that, ))1,1(())3,2(())3,2(( 11 fff =−−⋅
−− . Thus, 

+−

ℜ⊂= }6,0,6{ 1

fH  is a R-center in positive real of 

Abelian group, Gf = (M,⋅,f). 

However, if the function f(.) is surjective and 

homeomorphic (SH variety), then a cyclic subgroup can 

be constructed considering a group Gf = (
2

X ,*,f) under 

the abstract algebraic operation having closure in point 

set X. The cyclic subgroup generation requires subset of 

integer set spanning negative as well as positive ranges 
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symmetrically. However, the identity in 2D should also 

be mapped through the surjective and homeomorphic 

function. This property is presented in next theorem. 

Theorem 3 

If f(.) is surjective and homeomorphic to the 

abstract point set X, then Hf = (E⊂
2

X ,*,f) is a cyclic 

group, where Hf <Gf = (M,*,f) under abstract algebraic 

operation, XX →∗
2

: . 

Proof 

Let X be a point set and Gf = (M,*,f) be a group under 

abstract algebraic operation XX →∗
2

:  and Hf = 

(E⊂ 2
X ,*,f) be a subgroup Hf <Gf. Let ∃A⊂E and ∃B⊂X. 

If {(ya,yb), (yc,yd), (ye,yf)}⊂A and f: A→B is surjective 

and homeomorphic then: 
 

( ) ( )( ) ( ) ( )( )2
, , , , ,

a b c d a c b d ac bd
f y y y y f y y y y f y y∗ = ∗ ∗ =  

 
and,  
 

( )( ) ( )( ) ( )( )

2

, , ,

.

ac bd a b c d
f y y f y y f y y

y y y X
α α α

= ∗

= ∗ = ∈

                  (8) 

 
It is clear that, according to the surjectivity one can 

consider,  
 

( )( ) ( )( ) ( )( ), , ,

.

a b c d e ff y y f y y f y y

y X
α

= =

= ∈
 

 
However, 

 

( ) ( )( ) ( )( )
( )( ) ( )( )

2
, , ,

, ,

c d e f c e d f

c d c d

f y y y y f y y y y

f y y f y y

∗ = ∗ ∗

= ∗

 

 
in the algebraic structure under consideration. This 

indicates, 
 

( )( ) 2
, ,

ce df
f y y y y y X

α α α
= ∗ = ∈  

 
where,  

ce c e
y y y= ∗  and df d f

y y y= ∗ . 

Moreover,  
 

( )( ) ( )( )
2 2 4

, ,

.

ac bd ce dff y y f y y

y y y X
α α α

∗

= ∗ = ∈

 

 
Following the property of associativity, 

 

( ) ( )( ) ( )( )

( ) ( )( )

( )( ) ( )( )

2 2

2

2 3

, , ,

, ,

, , .

a b c d e f

a c b d e f

ac bd e f

f y y y y y y

f y y y y y y

f y y f y y y y y X
α α α

∗ ∗

= ∗ ∗ ∗

= ∗ = ∗ = ∈

 (9) 

However, let ∃{a1, a2, a3…, an}⊂
2

X , be such that 

(y1, y2) = a1, (y3, y4) = a2,…. (yn-1, yn) = an, then: 

 

( ) ( ) ( )1 2 2 2 3 2 1 2 2 3 2 2
.... .... .

n n
f a a a a f a a f a a∗ ∗ ∗ = ∗ ∗ ∗ ∗  

 
However, 

 

( ) ( ) ( )3 2 4 2 3 2 4 5 2 2
.... .... .

n n
f a a a f a a f a a∗ ∗ = ∗ ∗ ∗ ∗  

 

It indicates, 

 

( )1 2 2 2 3 2
....

n n
f a a a a y Xβ∗ ∗ ∗ = ∈  

 

where, n∈N and, 
βyaaf

ii
=∗

+
)(

12
. However, as Gf = 

(M,*,f) is a group, hence 

( ) ( ) ( ){ }/ / / / / / 2

1 2 3 4 1
, , , ,... ,

n n
y y y y y y X

−

∃ ⊂  such that, 

 

( )( ) ( )( )/ / / /

1 2 3 4

1
, , ... .f y y f y y X

yβ

 
= = = ∈  

 
 (10) 

 

It indicates that, 

 

( ) ( ) ( )( / / / / / /

1 2 2 3 4 2 1

1
, , ... , .

n n

n

f y y y y y y X
y β

−

 
∗ ∗ = ∈  

 
 

 

Let ∃(e,e)∈ 2
X , be such that f((e,e)) = e∈X and, 

1

n n
y y eβ β

−

∗ = . Hence, Hf < Gf is a cyclic group if Hf = 

(E⊂ 2
X ,*,f) and f(E\{(e,e)}) = {(ynβ)

i
: n∈V⊂Z, i∈{1,-

1}}, where the identity is, (e,e)∈E. 

The nature of function mapping affects the resulting 

group structure. For example, an arbitrary function map 

may not produce a valid group structure. This property is 

presented in next theorem. It is important to note that, we 

have not used any specific definition of function and, we 

have used generalized classification of two function 

varieties while constructing the theorem. 

Theorem 4 

If fe: 
2

X →X is an even function and fo: 
2

X →X is an 

odd function then, algebraic structure Gfe = (M,+,fe) is an 

additive group and Gfo = (M,+,fo) is not a group in 

Cartesian product space, where M = ( 2
X ⊂ℜ

2
,+2). 

Proof 

Let M = ( 2
X ⊂ℜ

2
,+2) be a monoid and Gf = (M,+,f) 

be an algebraic structure in Cartesian product space. 

Let ∃A⊂X such that },,2{ ZnZinxA
iii
∈∈==

+

α

 where 

fe: 
2

X →A is an even function. Let ∃B⊂X be such that 

fo: 
2

X →B is an odd function where B = {xβi = 2ni +1, 

i∈Z
+
, ni∈Z}.  
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Evidently, fe(
2

X )∩ fo(
2

X ) = φ, fe(
2

X )∪ fo(
2

X )⊆X.  

Let the algebraic structures generated by fe(.) and fo(.) 

be given by, ( ), ,fe eG M f= +  and ( ), ,fo oG M f= +  

respectively. If 2 ,2 ,
i j
n n A∈  then ( )2 .

i j
n n A+ ∈  Let 

2
k
n A∈  and by the property of associativity: 

 

( ) ( )2 2 2 2 2 2 .i j k i j kn n n n n n+ + = + +  

 

Moreover, ∃f((0,0)) = 0∈A, such that 2ni +0 = 0 + 

2ni, 2ni∈A.  

Given, ( )2 , 2 ,
i i
n A n A∈ ∃ − ∈  such that, 2ni + (-2ni) = 

(-2ni) + 2ni = 0∈A.  

Hence, ( ), ,fe eG M f= +  is an additive and 

commutative group under the influence of (.)
e
f . 

Again, let 2 1,2 1
i j
n n B+ + ∈  and hence 

( ) ( ) ( )2 1 2 1 2 1 .
i j i j
n n n n B+ + + = + + ∉  It indicates that fo(.) 

is not closed under addition in foG . Hence, foG  is not a 

group under the influence of fo(.). Interestingly, the 

combined varieties of function maps considering 

surjective-homeomorphic as well as odd and even 

classifications influence the construction of group 

structure from the monoid in Cartesian product space. 

We show that, none of the hybrid varieties of functions 

successfully constructs a multiplicative group from the 

monoid structure in Cartesian product space.  

Theorem 5 

If fo(.) and fe(.) are surjective-homeomorphic, then 

algebraic structures Gfe = (M,⋅,fe) and Gfo = (M,⋅,fo) can not 

be groups under multiplication, where 2
:

e
f X X→  is even 

function and 2
:

o
f X X→  is odd function and .X ⊂ ℜ  

Proof 

Let 2
:

e
f X X→  be even function such that 

∀(ya,yb)∈X
2
, ( )( ), 2

e a b i
f y y n X= ∈ ⊂ ℜ  where ni∈Z. Let 

fo:
2

X →X be odd function and ∀(ya,yb)∈
2

X , 

(( , )) 2 1 ,
o a b i
f y y n X= + ∈ ⊂ ℜ  where 

i
n Z∈ .  

Let two algebraic structures be, Gfe = (M,⋅,fe) and Gfo 

= (M,⋅,fo), where the monoid in Cartesian product space 

is given by, ( )2 2

2
,M X= ⊂ ℜ ⋅ . 

Let in the algebraic structure {(ya, yb), (yc, yd), (ye, yf)} 

⊂ 2
X  and fe(.) be a SH variety such that 

2
( , ) ( , ) ( , )

a b c d a c b d
x x x x x x x x⋅ = ⋅ ⋅  in 2 2

2
( , ).M X= ⊂ℜ ⋅  This 

indicates, 2

2
(( , ) ( , )) (( , )) 4 ,

e a b c d e ac bd i
f y y y y f y y n X⋅ = = ∈  

where 
ac a c
y y y= ⋅  and 

bd b d
y y y= ⋅ . 

Following the property of associativity under 

surjective-homeomorphic (.)
e
f , 

 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

2 2

3

, , ,

, , 2 .

e a b c d e f

e ac bd e e f i

f y y y y y y

f y y f y y n X

⋅ ⋅

= ⋅ = ∈ ⊂ℜ

 (11)  

 

As 2

2
( , )M X= ⋅  is a monoid, hence, 

2
(1,1) X∃ ∈  in 

2

2
( , ).M X= ⋅  If Gf is a group then, ((1,1)) 1

e
f X= ∈  

such that the following condition is maintained within 

the structure: 
 

( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

2
, , , 1,1 ,

1,1 ,

a b e a b e e a b

e e a b

y y X f y y f f y y

f f y y

∀ ∈ ⋅ =

= ⋅

 

 
indicating the existence of identity in 2D. 

However, this leads to a contradiction because 

((1,1)) 1
e
f ≠ . Thus, it is true that, 2( , ) ,

a b
y y X∀ ∈  

(( , )) ((1,1)) (( , )).
e a b e e a b
f y y f f y y⋅ ≠  

Hence, ( ), ,fe eG M f= ⋅  is not a group. 

On the other hand, if (.)
o
f  is a surjective and 

homeomorphic function then: 
 

2
(( , ) ( , )) (( , )),

o a b c d o ac bd
f y y y y f y y⋅ =  

 
and furthermore: 
 

( )( ) ( )( ) ( )( )

( )2

, , ,

2 2 2 1,

o ac bd o a b o c d

i i

f y y f y y f y y

n n

= ⋅

= + +

 

 

where 
ac a c
y y y= ⋅  and 

bd b d
y y y= ⋅ .  

Following the property of associativity under 

surjective-homeomorphic function (.)
o
f : 

 

( ) ( )( ) ( )( )

( )( ) ( )( )

( )

2 2

3 2

, , ,

, ,

2 4 6 3 1 .

o a b c d e f

o ac bd o e f

i i i

f y y y y y y

f y y f y y

n n n X

⋅ ⋅

= ⋅

= + + + ∈ ⊂ ℜ

 (12) 

 

As 
2

2
( , )M X= ⋅  is a monoid, so 

2(1,1) X∃ ∈  in 

2

2
( , )M X= ⋅  and, 

2( , )
a b
y y X∀ ∈ :  

 

( )( ) ( )( )

( )( ) ( )( ) ( )( )

, 1,1

1,1 , , .

o a b o

o o a b o a b

f y y f

f f y y f y y

⋅

= ⋅ =

 (13) 

 

Hence, ((1,1)) 1
o
f X= ∈ , which satisfies the required 

condition for odd function. Furthermore, if fo
G  is a 

group, then given: 
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( )( ) ( )

( )( ) ( )
1/ /

, 2 1 ,

, 2 1 ,

o a b i

o a b i

f y y n X

f y y n X
−

= + ∈ ⊂ ℜ

∃ = + ∈ ⊂ ℜ

 

 

 where ( )/ / 2
,

a b
y y X∈  such that,  

 

( )( ) ( )( )

( )( ) ( )( ) ( )( )

/ /

/ /

, ,

, , 1,1 .

o a b o a b

o a b o a b o

f y y f y y

f y y f y y f

⋅

= ⋅ =

 (14) 

 

However, as, (.)
o
f  is odd function, hence 

( )( ) ( )
1/ /

, 2 1 .
o a b i
f y y n

−

≠ +   

 

( ) ( )

( )( ) ( )( ) ( )( )

/ / 2

/ /

Thus, , , , ,

, , 1,1 .

a b a b

o a b o a b o

y y y y X

f y y f y y f

∀ ∈

⋅ ≠
 (15) 

 

Hence, ( ), ,fo oG M f= ⋅  is not a group. 

The algebraic structure can be further enriched by 

incorporating the partial ordering relation in the 

Cartesian product space. We introduce the lattice 

structure into the partially ordered monoid to form a 

hybrid lattice-monoid structure in 2D. In the next 

theorem we illustrate that the 2-dimensional lattice-

monoid is easy to formulate considering whole real line 

ℜ generating combinatorial forms of ordered pairs in 

Cartesian product space. 

Theorem 6 

Let ( 2
X ,*2, ≤) be a partial order monoid. If +≡∗ , 

then, there exists lattice-monoid ( )2

2
, , ,X L + ≤  in 

Cartesian product space, where 2 2

2
: X X+ →  and 

2
: .X X+ →  

Proof 

Let 2

2
( , , )X ∗ ≤  be a partial order monoid in Cartesian 

product space, where ≤ is a partially ordered relation in 

2D. First, we will consider the case where elements are 

negative reals as, +

ℜℜ⊂ \},{
ba
xx  and {(xc, xd), (xe, xf)} 

⊂(ℜ
+
)
2
. If 

2
+=∗  then by following the definition of 

lattice-monoid, one can derive as follows: 

 

( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2

2

, , , , , ( , , ),

, , , , , ,

, , ,

a b c d e f

a b c d e f a b e f

a b e f a e b f

x x x x x x X L

x x x x x x x x x x

x x x x x x x x

⊂ ≤

 + ∨ = + 

+ = + +

 (16) 

 

Furthermore, in ),,(
2

≤LX  the following equality 

holds: 

( ) ( ) ( ) ( )

( ) ( )

( )

2 2
, , , ,

, ,

,

a b c d a b e f

a c b d a e b f

a e b f

x x x x x x x x

x x x x x x x x

x x x x

  +  ∨ +   

 =  + +  ∨ + +   

 = + + 

 (17) 

 

Thus, the equations (16) and (17) lead to: 

 

( ) ( ) ( )

( ) ( )

2
, , ,

, , .

a b c d e f

a c b d a e b f

x x x x x x

x x x x x x x x

 + ∨ 

 =  + +  ∨ + +   

 

 

Again, in another case let us consider that (xa, xb)∈ 
2

X   such that \
a
x

+

∈ℜ ℜ  and b
x

+

∈ℜ  and {(xc, xd), 

(xe, xf)} ⊂ (ℜ
+
)
2
. By following the lattice-monoid 

definition one can conclude that: 

 

( ) ( ) ( ) ( )2
, , , ,

a b c d e f a e b f
x x x x x x x x x x + ∨ = + +   

 
and, 
 

( ) ( ) ( ) ( )

( )

2 2
, , , ,

,

a b c d a b e f

a e b f

x x x x x x x x

x x x x

  +  ∨ +   

= + +
 (18)  

 
Hence, 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

, , ,

, , , ,

a b c d e f

a b c d a b e f

x x x x x x

x x x x x x x x

 + ∨ 

 =  +  ∨ +   

 

 

if \ ,
a
x

+

∈ℜ ℜ  b
x

+

∈ℜ  and 
2{( , ),( , )} ( )

c d e f
x x x x

+

⊂ ℜ . 

Likewise, if ,

a
x

+

∈ℜ  \
b
x

+

∈ℜ ℜ  and {(xc, xd), (xe, 

xf)}⊂(ℜ
+
)
2
 then also the lattice-monoid structural 

property is maintained. Hence, there exists lattice-

monoid 
2

2
( , , , )X L + ≤  in Cartesian product space in all 

cases. However, if the lattice-monoid is a multiplicative 

variety and the partially ordered elements are not strictly 

in positive real plane, then the lattice-monoid structure 

fails to exist. The observation is presented in next lemma. 

Lemma 6.1 

In ),,(
2

2
≤⋅X  partially ordered monoid, if  

2 2 2{( , ),( , ),( , )} , ( , ) \ ( ) ,
a b c d e f a b
x x x x x x X x x

+

⊂ ∃ ∈ℜ ℜ then 

2

2
( , , , )X L ⋅ ≤  does not exist in Cartesian product space. 

Proof 

Let 
2

2
( , , )X ⋅ ≤  be a partially order monoid in 2D, 

where 2 2
X ⊂ ℜ  and 2 2

2
: X X⋅ →  be such that 

2
( , ) ( , ) ( , ).

a b c d a c b d
x x x x x x x x⋅ = ⋅ ⋅  Let ≤  be a partial order 
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relation in 2D. Let { , } \
a b
x x

+

⊂ℜ ℜ  and, let 
2{( , ),( , )} ( )c d e fx x x x

+

⊂ ℜ . 

According to the definition of lattice-monoid, the 

following relation is established considering 

( , ) ( , )
c d e f
x x x x≤ : 

 

( ) ( ) ( ) ( )2
, , , ,

a b c d e f ae bf
x x x x x x x x ⋅ ∨ =   (19) 

 
Moreover, the following algebraic relation can be 

established: 

 

( ) ( ) ( ) ( ) ( )2 2
, , , , ,

a b c d a b e f ac bd
x x x x x x x x x x  ⋅  ∨ ⋅ =     (20) 

 

where, , ,

ac a c ae a e bd b d
x x x x x x x x x= ⋅ = ⋅ = ⋅  and bf b f

x x x= ⋅ . 

Hence, in Cartesian product space:  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

, , ,

, , , , .

a b c d e f

a b c d a b e f

x x x x x x

x x x x x x x x

 ⋅ ∨ 

 ≠  ⋅  ∨ ⋅   

 

 

However, let 2( , )
a b
x x X∈  be such that \ ,

a
x

+

∈ℜ ℜ  

b
x

+

∈ℜ  and 2{( , ),( , )} ( )c d e fx x x x
+

⊂ ℜ . According to the 

definition of lattice-monoid as mentioned earlier: 

 

( ) ( ) ( ) ( )2
, , , ,

a b c d e f ae bf
x x x x x x x x ⋅ ∨ =   (21) 

 

Again, it can be verified that, 

 

( ) ( ) ( ) ( )

( ) ( )

2 2
, , , ,

, ,

a b c d a b e f

ac bd ae bf

x x x x x x x x

x x x x

  ⋅  ∨ ⋅   

 = ∨ 

 (22) 

 

However, [(xac, xbd) ∨ (xae, xbf)] ≠ (xae, xbf) since 

⊄≤)},(),,{( bfaebdac xxxx . Furthermore, let ,

a
x

+

∈ℜ  

\bx
+

∈ℜ ℜ  be in X. According to the lattice–monoid 

definition, 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2 2

, , , , and,

, , , ,

, ,

a b c d e f ae bf

a b c d a b e f

ac bd ae bf

x x x x x x x x

x x x x x x x x

x x x x

 ⋅ ∨ = 

  ⋅  ∨ ⋅   

 = ∨ 

 (23) 

 

Similarly, in this case also, [( , ) ( , )]
ac bd ae bf
x x x x∨  

( , )
ae bf
x x≠ . Hence, 2

2
( , , )X ⋅ ≤  is not a lattice-monoid in 

Cartesian product space under multiplication operation 

except the case, where 2( , ) ( )
a b
x x

+

∈ ℜ  and, 
2{( , ),( , )} ( )c d e fx x x x

+

⊂ ℜ . The interesting question is 

whether the lattice-monoid can retain the distributive 

property and, if so then what the required condition is. 

This property is analyzed in next theorem. We show that, 

every lattice-monoid is distributive in nature, if exists.  

Theorem 7 

Every lattice-monoid 2
( , , , )X L ∗ ≤  is distributive in 

Cartesian product space, if exists. 

Proof 

Let X be a point set and 2

2
( , , , )X L ∗ ≤  be a lattice-

monoid in Cartesian product space, where 2 2

2
: X X∗ →  

and 2
: X X∗ →  are abstract algebraic operations and ≤  

is a partial order relation in 2D. 

Let us consider the elements as, {( , ),( , ),( , )}
a b c d e f
x x x x x x  

2
.X⊂  As 2

2
( , , , )X L ∗ ≤  is a lattice-monoid, hence 

2( , ), ( , )
a b c d
x x x x X∀ ∈ , there exists join and meet in 2D. 

However, as, ≤ is a relation in 2D, hence: 

 

( ) ( ) ( ) ( ), , .

a b c d a c b d
x x x x x x x x ≤  ⇒  ≤ ∧ ≤      

 

Moreover, following the distributive law it can be 

derived as: 

 

( ) ( ) ( ) ( ), , , ,

a b c d e f a b
x x x x x x x x ∧ ∨ =   (24) 

 
Furthermore, the following equation is maintained in 

the lattice-monoid under partial order, 

 

( ) ( ) ( ) ( ) ( ), , , , ,

a b c d a b e f a b
x x x x x x x x x x  ∧  ∨ ∧ =     (25)  

 

Hence, it is verified that: 

 

( ) ( ) ( ) ( ), , , , .

a b c d e f a b
x x x x x x x x ∧ ∨ =   

 

However, one can verify that distributive property 

holds under lattice join operation as given below:  

 

( ) ( ) ( ) ( ), , , , ,

a b c d e f c d
x x x x x x x x ∨ ∧ =   

 

and, 

 

( ) ( ) ( ) ( ) ( ), , , , , .

a b c d a b e f c d
x x x x x x x x x x  ∨  ∧ ∨ =     

 

Hence, every lattice-monoid 2

2
( , , , )X L ∗ ≤  is 

distributive in Cartesian product space. 

There is an interplay between lattice-group, arbitrary 

function mapping and distributive property. It is possible 



Davronbek Malikov and Susmit Bagchi / Journal of Computer Science 2020, 16 (4): 402.421 
DOI: 10.3844/jcssp.2020.402.421 

 

412 

to construct a lattice-subgroup considering an arbitrary 

function mapping having domain in 2D. We illustrate the 

interaction between lattice-group and an arbitrary 

function in the next theorem. 

Theorem 8 

In ( , , )
f

G M f= ∗  if 2
: ( ) ( )f Y X Y X⊂ → ⊂  is any 

arbitrary function, then ( , , , )
f f

LH L H f= ∗  is a 

distributive lattice-subgroup, where f f
H G< . 

Proof 

We will prove this theorem in three parts considering 

variations of mapping such as surjective, injective and 

bijective f(.). 

Let ( , , )
f

G M f= ∗  be a group under the influence of 

(.)f . Let ( , , )
f

H E f= ∗  be a subgroup ( f f
H G< ) where, 

2 2
E Y X= ⊂  and 2

: ( ) ( )f Y X Y X⊂ → ⊂  be any arbitrary 

function. 

Case 1: f(.) is Surjective 

As, ( , , )
f

G M f= ∗  is a group, hence it is true that, 

2( , ), ( , ),( , ) , ,a b c d e fy y y y y y Y Y X∀ ∈ ⊂ , , ,y y y Y
α β γ

∃ ∈  where 

(( , )) , (( , )) , (( , ))
a b c d e f

f y y y f y y y f y y y
α β γ

= = =  and 

{ , , }y y y
α β γ  is a subset of Gf.  

However, if 2
: ( ) ( )f Y X Y X⊂ → ⊂  is surjective then: 

 

( )( ) ( )( ) ( )( ), , , .

a b c d e f
f y y f y y f y y y

α
= = =  

 

Thus, by following the group axioms it can be 

concluded that: 

 

( ) ( ) .y y y y y y
α α α α α α
∗ ∗ = ∗ ∗  

 

However, as M is a monoid so, 2
( , ) , ,e e Y e X∃ ∈ ∃ ∈  

such that (( , ))f e e e=  and: 

 

.y e e y y
α α α
∗ = ∗ =  

 

Hence, f f
H G<  if { }

f
e H⊂  and 

1 2
(( , )) ,f y y Y∀ ∈  

/ /

1 2
(( , ))f y y Y∃ ∈  such that, 

1 2
(( , ))f y y ∗

/ /

1 2
(( , ))f y y  

(( , ))f e e= . Moreover, if 
1 2

(( , ))f y y  is in Hf then it 

indicates that / /

1 2
(( , ))f y y  is also in Hf. 

This is to note that, we are not enforcing any surjectivity 

under relational symmetry 
1 2 2 1

(( , )) (( , ))f y y f y y=  

maintaining generality. 

Hence, ( , , )
f

H E f= ∗  is a subgroup of ( , , )
f

G M f= ∗  

under the influence of surjective map without the 

requirement of symmetric relation. Moreover, according 

to the distributive law: 

 

( ) ( ) ( ).y y y y y y y
α α α α α α α
∧ ∨ = ∧ ∨ ∧  

 

Similarly for , (.)y y f
β γ

∈  the distributive law holds. 

It indicates that ( , , , )
f f

LH L H f= ∗  is a distributive 

lattice-subgroup where f(.) is surjective. 

Case 2: f(.) is Injective 

Let 2
: ( ) ( )f Y X Y X⊂ → ⊂  be injective such that 

2{ , , } ( )y y y f Yα β γ ⊂
 and, y y y

α β γ
≠ ≠  where, { , , }y y y

α β γ  

is a subset of Gf. According to the associativity property 

of groups with respect to algebraic operation 2
: X X∗ → : 

 

( ) ( ) .y y y y y y
α β γ α β γ
∗ ∗ = ∗ ∗  

 

In the monoid in Cartesian product space, 
2 2

2
( , ), ( , )M X e e X= ∗ ∃ ∈  such that: 

 

( )( ) ( )( ) ( )( )

( )( ) ( )( )
1 2 1 2

1 2

, , ,

, ,

f y y f e e f y y

f y y f e e

= ∗

= ∗

 

 

and, 

 

( )( ) ( )( )/ /

1 2 1 2
, , ,f y y Y f y y Y∀ ∈ ∃ ∈  

 

such that, 

 

( )( ) ( )( ) ( )( )/ /

1 2 1 2
, , ,f y y f y y f e e∗ =  

 

indicating Gf is a group under f (.). 

Hence, if / /

1 2
(( , ))f y y  is in Gf then, 

/ /

1 2 1 2
(( , )) (( , ))f y y f y y≠  maintaining injectivity of f (.). 

Hence, if ( , , )
f

H E Y f= ⊂ ∗  where, the algebraic 

operation * is closed in E and Hf maintains other group 

axioms including (( , )) ,f e e E∈  then ( , , )
f

H E f= ∗  is a 

subgroup of ( , , )
f

G M f= ∗ . Furthermore, according to 

the distributive law, ( ) ( ) ( )y y y y y y y
α β γ α β α γ
∧ ∨ = ∧ ∨ ∧  

because y y y
α β γ
≤ ≤ .  

Thus, ( , , , )
f f

LH L H f= ∗  is a distributive lattice-

subgroup where (.)f  is injective. 

Case 3: f(.) is Bijective 

Let 2
: ( ) ( )f Y X Y X⊂ → ⊂  be a bijective map and, 

( , , )
f

G M f= ∗  be a group. If E Y⊂  such that, 
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1 2
(( , )) ,f y y E∀ ∈  (( , ))f e e E∃ ∈  where, 

1 2
(( , )) (( , ))f y y f e e∗  

1 2
(( , ))f y y=  then, ( , )E ∗  is a monoid in 1D. Moreover, 

1 2
(( , )) ,f y y E∀ ∈  / /

1 2
(( , ))f y y E∃ ∈  such that: 

 

( )( ) ( )( )

( )( ) ( )( ) ( )( )

/ /

1 2 1 2

/ /

1 2 1 2

, ,

, , ,

f y y f y y

f y y f y y f e e

∗

= ∗ =

 

 

and, f f
H G<  

 

where, ( , , )
f

H E f= ∗  considering * is closed in E. Again, as 

f (.) is bijective, hence, , ,y y E
α β

∀ ∈  .y y
α β
≠  Furthermore, 

by following the distributive lattice property if y y y
α β γ
≤ ≤  

then, ( ) ( ) ( )y y y y y y y
α β γ α β α γ
∧ ∨ = ∧ ∨ ∧ . 

Hence, Hf < Gf and LHf is a distributive lattice-

subgroup. Thus, ),,,( ∗= fHLLH ff
 is a distributive 

lattice-subgroup independent of the nature of function 

mapping. This indicates that, formation of distributive 

lattice-subgroup structure is possible irrespective of 

invertibility of the mapping from Cartesian product 

space to 1D. However, the characteristics of such 

mapping are important to maintain the resulting 

lattice-group structure, ( , , , )
f f

LG L G f= ∗ .  

The monotonicity of the function plays an important 

role in establishing the lattice-group structure as 

indicated in next theorem.  

Theorem 9 

If f(.) is monotonically decreasing function in group 

( , , )
f

G M f= ∗ , then ( , , , , )
f f

LG L G f= ∗ ≤  is not a lattice-

group. 

Proof 

Let X be a point set and Gf = (M,*,f) be a group, 

where XX →∗
2

:  is an abstract algebraic operation 

and ≤ is a partial order relation in Cartesian product 

space. Let f:
2

X →X be a monotonically decreasing 

function such that:  

 

( ) ( ) ( ){ }

( )( ) ( )( ) ( )( )

2
, , , , , ,

, , ,

a b c d e f

a b c d e f

x x x x x x X

f x x f x x f x x

∀ ⊂

≥ ≥

 (26) 

 

where, ( , ) ( , ) ( , ).
a b c d e f
x x x x x x≤ ≤   

 

However, according to the lattice-group definition, 
2, ( ),x x f Xα β∀ ∈  x x x

α β α
∧ =  and ,x x x

α β β
∨ =  where 

(( , ))
a b

f x x x
α

=  and, (( , ))
c d

f x x x
β

= . In this case, as 

x x x
α β γ
≥ ≥  due to monotonically decreasing function, 

hence x x x
α β α
∧ ≠  and x x x

α β β
∨ ≠ .  

Thus, it indicates that ( , , , , )
f f

LG L G f= ∗ ≤  is not a 

lattice-group under the influence of f(.), where f(.) is 

monotonically decreasing. 

The determination of homeomorphism in between 

two lattice-groups is important in order to determine 

similarities in structures. However, the lattice property 

inherent to the lattice-groups and the multilevel 

mappings between spaces having different dimensions 

lead to difficulty in determining homeomorphism 

between lattice-groups. The next theorem illustrates 

that, the pair of mappings in two different dimensions 

helps in determining the homeomorphism between two 

lattice-groups. 

Theorem 10 

Let 
1 1 1 1

( , , , , )
f f

LG L G f= ∗ ≤  and 
2 2 2 2

( , , , , )
f f

LG L G f= ◊ ≤  

be two lattice-groups. If 
1 2

:
f f

g LG LG→  is a bijection 

and 2 2

1 2
: ( ) ( )h f X f X→ , then the pair of mappings 

,g h< >  is a homeomorphism between 
1f

LG  and 
2f

LG  

iff (.)h  is a bijection and group homeomorphism. 

Proof 

Let X be a point set and 
1 1 1 1

( , , , , )
f f

LG L G f= ∗ ≤  and 

2 2 2 2
( , , , , )

f f
LG L G f= ◊ ≤  be two lattice-groups, where 

2
: X X∗ →  and 2

: X X◊ →  are abstract algebraic 

operations and ≤ is a partial order relation in Cartesian 

product space.  

Let in the algebraic structure be, {( , ),
a b
x x∀  

2( , )} ,
c d
x x X⊂ , , ,x x x x X

α β η θ
∃ ∈  such that: 

 

 
( )( ) ( )( )

( )( ) ( )( )
1 1

2 2

, , , ,

, , , .

a b c d

a b c d

f x x x f x x x

f x x x f x x x

α β

η θ

= =

= =

 (27) 

 

 As 
1f

G and 
2f

G  are groups in 1D, hence if 

2 2

1 2
: ( ) ( )h f X f X→  is a bijection and group 

homeomorphism such that, φ=∩ )()(
2

2

2

1
XfXf  then in 

this case, ( ) ( ) ( ).h x x h x h x
α β α β
∗ = ◊  It indicates that: 

 

( )( ) ( )( )( )

( )( )( ) ( )( )( )

1 1

1 1

, ,

, , .

a b c d

a b c d

h f x x f x x

h f x x h f x x

∗

= ◊

 (28) 

 

Moreover, let 
1 2

:
f f

g LG LG→  be a bijection such that: 

 

( ) ( )( ) ( ) ( )( )2 2
, , , ,

a b c d
f g x x x f g x x xη θ= =� �  
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where, ° is the composition operation.  

As 2 2

1 2
: ( ) ( )h f X f X→  is a bijection hence, 1

h
−

∃  

such that, 1 1 1( ) ( ) ( ).h x x h x h xη θ η θ

− − −

◊ = ∗   

Moreover, if ( , ) ( , )
a b c d
x x x x≤  then 

1
(( , ))

a b
f x x  

1
(( , ))

c d
f x x≤  and, (( , )) (( , )).

a b c d
g x x g x x≤  Furthermore, 

2 2
( )(( , )) ( )(( , ))

a b c d
f g x x f g x x≤� �  maintaining lattice-

group properties of both 
1f

LG  and 
2f

LG . Hence, 

according to the lattice-group definition, 
2, ( ), ,x x g X x x x x x xη θ η θ η η θ θ∀ ∈ ∧ = ∨ =  because, both 

1f
LG  and 

2f
LG  are lattice-groups. 

Thus, if we denote ,g h< >  as a pair of mappings 

between the structures, 
1f

LG  and 
2f

LG  satisfying all the 

above mentioned properties in the structures, then 

,g h< >  represents the homeomorphism between two 

lattice-groups in Cartesian product space.  

Remark 

We show that, the homeomorphism ,g h< >  

between two lattice-groups can also be formulated in a 

more uniform expression without involving 1
h
−

∃  

between the two spaces. However, we derive such 

expression assuming a conditional homeomorphic 

mapping between two spaces. 

Let 
1 1 1 1

( , , , , )
f f

LG L G f= ∗ ≤  and 
2 2 2 2

( , , , , )
f f

LG L G f= ◊ ≤  

be two lattice-groups and 2
: X X∗ →  and 2

: X X◊ →  are 

abstract algebraic operations and ≤ is a partial order 

relation in Cartesian product space. Let 
1 2 3 4
, , ,x x x x X∈  

be such that: 
 

( ) ( ){ }

( )( ) ( )( )

( )( ) ( )( )

2

1 1 1 2

2 3 2 4

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

x x x x X

f x x x f x x x

f x x x f x x x

∀ ⊂

= =

= =

 (29) 

 

If 2 2

1 2
: ( ) ( )h f X f X→  is a bijection and group 

homeomorphism such that, φ=∩ )()(
2

2

2

1
XfXf  then 

1 2 1 2
( ) ( ) ( )h x x h x h x∗ = ◊  because 

1f
G  and 

2f
G  are groups 

in 1D. Furthermore, let 
1 2

:
f f

g LG LG→  be a bijection 

such that: 
 

( ) ( )( ) ( ) ( )( )2 3 2 4
, , , .

a b c d
f g x x x f g x x x= =� �  

 

If 2

2
( )x f X

∂
∃ ∈  such that: 

 

( ) ( )( ) ( ) ( )( )2 2
, ,

a b c d
f g x x f g x x x

∂
◊ =� �  

 
then: 
 

( ) ( ) ( )( ) ( ) ( )( )1 2 2 2
, ,

a b c d
h x x f g x x f g x x∗ = ◊� �  

iff 
1 2

( )h x x x
∂

∗ =  indicating 
3 4
x x x

∂
◊ =  in the lattice-

group structure 
2f

LG , where 
1 3

( )h x x=  and, 
2 4

( ) .h x x=   

This leads to the following conclusion: 

 

( )( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

1 1

2 2

, ,

, , .

a b c d

a b c d

h f x x f x x

f g x x f g x x

∗

= ◊� �

 (30) 

 

Moreover, as ≤ is a partial order relation maintaining 

lattice-group properties of both LGf1 and LGf2, hence 
2

3 4
, ( ),x x g X∀ ∈  it satisfies lattice-groups properties, 

3 4 3 3 4 4
, .x x x x x x∧ = ∨ =  Thus, in this case <g, h> is a 

homeomorphism between two lattice-groups in Cartesian 

product space.  

Numerical Examples 

In this section, a set of numerical examples are given 

to illustrate the construction of lattices and their 

orientations in spaces. Moreover, the formations of 

lattice-monoid and lattice-group structures are presented 

through numerical computational examples as well as 

associated graph representations following the proposed 

algebraic structures. 

Oriented Lattice in (ℜ
+
)
2
  

Let ,}(5,12)(3,9),(3,6),(3,4),(2,3),(1,2),{
2

X⊂  where 
2 2

( )X
+

⊂ ℜ . The structure of oriented lattice in positive 

real Cartesian product space is given in Fig. 1.  

It is evident in Fig. 1 that, the lower bound (LB) = 

{(1,2),(2,3),(3,4)} and upper bound (UB) = 

{(3,6),(3,9),(5,12)}. Moreover, in the lattice structure, 

inf( 2
X ) = (3,4) and sup( 2

X ) = (3,6). 

It can be observed from the oriented lattice structure 

that, it is monotonically increasing in (ℜ
+
)
2
 space. 

Oriented Non-Lattice in (ℜ
+
)
2
 

In this section, we present an example of non-

lattice in positive real Cartesian product space. Let 
2 (4,4)(6,4),(4,3),{(2,4), X⊂}  be the set of points in 

(ℜ
+
)

2
. The oriented but non-lattice structure is 

presented in Fig. 2. It is clear from Fig. 2 that, it is 

following the definition of the partial order relation ≤ 
because, every pair of lattice elements satisfies 

following required condition: 

 

( ) ( ) ( ), ( , ) .
a b c d a c b d
x x x x x x x x ≤  ⇒  ≤ ∧ ≤      (31) 

 

However, in this case, it is not a lattice in 2D, since 

the first pair of elements does not satisfy relation ≤ as: 

 

[ ] [ ](4,3) (2,4) (4 2) (3 4) .≤ ⇒ ¬ ≤ ∧ ≤  



Davronbek Malikov and Susmit Bagchi / Journal of Computer Science 2020, 16 (4): 402.421 
DOI: 10.3844/jcssp.2020.402.421 

 

415 

 2

 4

 6

 8

 10

 12

 1  1.5  2  2.5  3  3.5  4  4.5  5

P
o

in
ts

 o
n

 y
-a

x
is

Points on x-axis

A lattice in Cartesian product space (positive reals)

'c:\x.dat'

 
 

Fig. 1: An oriented lattice representation in real Cartesian product space (strictly positive) 
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Fig. 2: Example of non-lattice representation in real Cartesian product space (strictly positive) 

 

Oriented Partially Ordered Monoid in ℜ
2
 

In this section, we present an example of partially 

ordered monoid in real Cartesian product space.  

Let {( 9, 5),( 4, 3),( 2,4),(0,0)}− − − − −  be the basis set 

in Cartesian product space (a subset of ℜ
2
) having 

partial ordering relation, where the monoid operation 

is * = +. Evidently, it satisfies the following lattice-

monoid property as: 
 

[ ] [

]

2

2

( 9, 5) ( 4, 3) ( 9, 5) ( 2,4)

( 4, 3) ( 2,4) .

− − ≤ − − ⇒ − − + −

≤ − − + −

 (32) 
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Fig. 3: A partially ordered monoid in Cartesian product space (additive) 
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Fig. 4: Partially ordered monoid representation in Cartesian product space (multiplicative) 

 

The representation of resulting partially ordered 

monoid is given in Fig. 3.  
Again, if we select the basis set as {(-9, -5), (-4, -3), 

(-2, 4), (6,8), (8,12), (1,1)} and we change the algebraic 
operation as ⋅≡∗  (multiplicative), then the resulting 
partially ordered monoid is presented in Fig. 4. 

Not a Partially Ordered Monoid in ℜ
2
 

The representation of not a partially ordered monoid 

in 2D is given in Fig. 5, where {(2,3), (4,5), (6,12), 

9,12)}⊂N
2
⊂ℜ

2
 and ⋅≡∗  (multiplicative). We have 

considered ≤ as the poset relation. 
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Fig. 5: Not a partially ordered monoid in real Cartesian product space 
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Fig. 6: A lattice-monoid representation in real Cartesian product space (strictly positive) 
 
Following the definition of partially ordered monoid, 

2 2
(2,3),(4,5) N∈ ⊂ ℜ  and, 2 2

(-1,-2) X .∈ ⊂ ℜ  The following 

computation illustrates the reasoning: 

))].2,1((4,5)())2,1([((2,3)(4,5)][(2,3)
22

−−⋅≤−−⋅¬≡≤

 Hence, one can conclude that, 

)]10,4(6),2([(4,5)][(2,3) −−≤−−¬≠≤ . Thus, the set given 

by, {(2,3), (4,5), (6,12), (9,12)}⊂N
2
⊂ℜ

2 
does not satisfy 

the definition of partially ordered monoid. 

A Lattice-Monoid in 2D 

In this section, we present an example of lattice-monoid 

structure in 2D. Let {(1,1),(2,3),(2,7),(5,7)}  be the basis set 

in Cartesian product space, where ⋅≡∗  (multiplicative). 

Evidently, the following lattice property is satisfied by it: 

 

2 2

2 2

2 2

2 2

(1,1) [(2,3) (2,7)] [(1,1) (2,3)]

[(1,1) (2,7)],(1,1) (2,3) (2,3), and,

(1,1) [(2,3) (2,7)] [(1,1) (2,3)]

[(1,1) (2,7)],(1,1) (2,7) (2,7).

⋅ ∧ = ⋅ ∧

⋅ ⋅ =

⋅ ∨ = ⋅

∨ ⋅ ⋅ =

 (33) 

 

Figure 6 presents the lattice-monoid in real Cartesian 

product space under multiplication. 

It can be observed in Fig. 6 that, the lattice-monoid 

structure in 2-dimensional positive real surface is 
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oriented in nature. Moreover, the oriented structure is not 

a monotonic increase or decrease as a chain on the 

positive real surface. 

Not a Lattice-Monoid in 2D 

In this section, we present a counter example 

illustrating a non-lattice-monoid in 2D space. 

Let 2
{(1,1),(1,2),(2,4),(3,9),(4,5)} X⊂  be in Cartesian 

product space. Figure 7 represents the example of non-

lattice-monoid structure. The reason is that, in 2D, 

{(3,9),(4,5)} .⊄≤  

Lattice-Group in Cartesian Product Space 

In this section, we present an example illustrating 

lattice-group in Cartesian product space. We start with 

a simple coset of elements to illustrate the basic 

structure of lattice-group. We consider that 

( , , , , )
f f

LG L G f= + ≤  is a lattice- group, where L is a 

lattice and ( , , )
f

G M f= +  is an additive group in X. 

Moreover, we consider surjective function defined as, 

(( , )) .f a b a b= +  
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Fig. 7: A non-lattice-monoid representation in real Cartesian product space (strictly positive) 
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Fig. 8: An additive lattice-group representation in Cartesian product space 
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Let 2
{( 1, 2),(0,0),(1,2)}− − ⊂ ℜ  be in 2D reals, where 

∗ ≡ +  and, (( 1, 2)) 3, ((0,0)) 0, ((1,2)) 3f f f− − = − = =  and, 

according to the lattice-group definition, 

3 0 3, 3 0 0.− ∧ = − − ∨ =  

Figure 8 illustrates the example of additive lattice-

group structure. Furthermore, in a more generalized 

form, if X ⊆ Z then there exists at least one surjective f: 

X
2
 → X such that, LGf = (Z, Gf, f, +, ≤) is a lattice- group, 

where Z is a lattice-chain (integers) and Gf = (X 
2
,+,f) is 

an additive group in X. 

Comparative Evaluation 

In this section, we have presented the comparative 

analysis of properties of lattice-group structure with the 

other contemporary groups in the domain. The 

comparative analysis is based on a set of parameters such 

as, finiteness, compactness, commutativity, symmetry, 

cyclicness, convexity, direction and orientation. First, we 

present a set of properties of various group structures, 

which is summarized in Table 1. 

The lateral completion of an arbitrary lattice group 

incorporates finite and Abelian as well as symmetry 

properties employing function (Bernau, 1975). 

Moreover, it can be cyclic depending on the function 

where it considers orientation and convexity. The 

partially ordered group is finite and Abelian where it 

is symmetric and it can be convex and directed in 

nature (Shirshova, 2015). The dihedral group (Dn) 

considers symmetry group structure, which is finite in 

nature. The Abelian and cyclic properties of dihedral 

group is dependent on group order. A dihedral group is 

Abelian as well as cyclic if the group order is in {1,2} 

(Bilal et al., 2013). Interestingly, if the group order 

n≥3, then (Dn) becomes a non-Abelian acyclic group. 

However, the Abelian and cyclic property of proposed 

lattice-group in this paper independent of group order. 

In the lattice-group, the group order is determined by 

the type of function mapping between spaces having 

different dimensions. There are different varieties of 

groups considering lattice structures. For example, the 

wallpaper group is a lattice based structure, which is 

finite and symmetric (Schattschneider, 1978). The 

finiteness and symmetry of wallpaper group are 

maintained based on two dimensional repetitive 

patterns preserving symmetries. Moreover, the 

wallpaper group is Abelian and cyclic in nature 

(Schattschneider, 1978). On the other hand, the 

proposed lattice-group constructs an Abelian structure 

under any arbitrary function (i.e., surjective, injective 

and bijective). The proposed lattice-group can be 

constructed as a cyclic group if and only if the function 

is surjective and homeomorphic. The alternating group 

(An) is a group variety based on even permutations and 

preserves finite and symmetry properties (Donold, 

1968). An alternating group can be Abelian if and only 

if the group order is n≤3. The Z3 type of alternating 

group is cyclic in nature (Donold, 1968). However, the 

proposed lattice-group is a cyclic group under the 

influence of surjective functions. The simple Lie group 

is a non-Abelian group structure and it is finite as well 

as symmetric (Milne, 2013). The embedding of 

topological lattice-ordered group are locally compact, 

where the group is Abelian (Robert, 1969). In this 

group, the cyclicness and symmetry depend of function 

mapping between spaces. If the function is surjective 

then there exists a relation-center in the lattice-group. 

However, if the function is odd then the lattice-group 

does not exist under addition in Cartesian product 

space. Furthermore, if the odd function and even 

function are surjective as well as homeomorphic under 

multiplication then the lattice-group cannot be 

constructed. Interestingly, if the monotonically 

decreasing function mapping between spaces is applied, 

then the lattice-group cannot exist in the Cartesian 

product space. The proposed lattice-group under the 

influence of function proposed in this paper is finite. 

Finally, the lattice-groups exhibit the group 

homeomorphism under the influence of a pair of 

mappings between spaces having varying dimensions.  

 
Table 1: Comparison of various properties of different group structures (n is group order) 

 Finiteness/ 

Group types compactness Commutativity Symmetry Cyclicness Convexity Direction/orientation 

The lateral completion of Finite Abelian Depends on Depends on Convexity Oriented 

an arbitrary lattice group   function function 

Partially ordered group Finite Abelian Yes No Convexity Directed 

Dihedral group Finite Abelian (if n = 1,2) Yes Yes (if n = 1,2) Convexity Oriented in the three 

      dimensional case 

Wallpaper group Finite Abelian Yes Yes Convexity Directed 

Alternating group Finite Abelian (if n ≤ 3) Yes Yes (if only  Convexity Directed/oriented 

    Z3 type) 

Simple lie group Finite Non-Abelian Yes No Convexity Oriented 

Embeddings of topological Locally  Abelian Depends on Depends on  Convexity Oriented 

lattice-ordered group compact  function function 

Littice-group Finite Abelian Depends on Depends on  Convexity Oriented 

   function function  
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Conclusion 

In this paper, we have constructed the algebraic 

structures hybridizing lattice, monoid and group 

employing various mappings under certain conditions. 

First, we prepare the monoid structure in Cartesian 

product space by using an arbitrary algebraic operation 

in space having closure property. In order to generalize 

the concept, the inverses of points in Cartesian product 

space are not considered to be same as the ordered pairs 

of respective individual inverses in the space. We 

illustrate that, the monoid in Cartesian product space can 

retain the poset relation successfully generating the 

partially ordered monoid. Before proceeding to the 

lattice-group, the generalized 2D lattice structure is 

prepared and hybridized with the monoid to establish the 

lattice-monoid in Cartesian product space. This paper 

illustrates that there exists lattice-group structure under 

the influence of surjective functions. Moreover, the 

extension of surjective function into surjective-

homeomorphic function generates cyclic group. 

Furthermore, the distributive lattice-subgroup can exist 

under specific condition and, in such case the mapping 

function can be arbitrary in nature. Interestingly, the 

monotonically decreasing function does not support 

existence of a lattice-group. If the group is Abelian and 

is prepared employing surjective function, then a relation 

center exists in the lattice-group. The relation center is 

formulated by applying constructs of relational algebra 

including inverse relations. Interestingly, the relation 

centers exist in both additive and multiplicative lattice-

groups. The construction and analysis of group 

homeomorphisms have resulted in the formulation of a 

function pair to establish the homeomorphism between 

two lattice-groups. The presented numerical examples 

illustrate geometric representations of various structures. 

A set of counter examples are also presented in 

numerical forms. The comparative analysis explains a set 

of distinctive characteristics of the proposed lattice-

group in the family of other group varieties. 

Acknowledgement 

Authors would like to thank Editors and anonymous 
reviewers for valuable comments. 

Funding Information 

This work is partly funded by Gyeongsang National 
University, Jinju, ROK. 

Author’s Contributions 

First author (D. Malikov) proposed the concept, 
proposed theorems, proofs and drafted the paper. Second 
and corresponding author (S. Bagchi) refined the 
concept, refined theorems and, corrected the draft. 

Ethics 

Authors declare that there are no ethical issues in the 

paper. 

References 

Attiya, H., M. Herlihy and O. Rachman, 1995. Atomic 

snapshots using lattice agreement. Distributed 

Comput., 8: 121-132. 

Bilal, N.A., A.A. Othman and S.A. Mousa, 2013. 

Dihedral groups of order 2
m+1
. Int. J. Applied Math., 

26: 1-7. 

Birkhoff, G., 1967. Lattice theory. American 

mathematical society. 

Bernd, S., 2016. Ordered Sets: An Introduction with 

Connections from Combinatorics to Topology. 

2rd Edn., Birkhauser, Basel, 

 ISBN-10: 3319297880, pp: 420. 

Bernau, S.J., 1975. The lateral completion of an 

arbitrary lattice group. J. Australian Math. 

Society, 19: 263-289. 

Chase, C.M. and V.K. Garg, 1995. Efficient detection of 

restricted classes of predicates. Proceedings of the 

International Workshop on Distributed Algorithms, 

(WDA’ 95), France, Springer, pp: 303-317. 

 DOI: 10.1007/BFb0022155 

Dushnik, B. and E.W. Miller, 1941. Partially ordered 

sets. Am. J. Math., 63: 600-610. 

Donold, S.P., 1968. Permutation Groups. 1st Edn., 

Benjamin Company, New York, 

 ISBN-13: 9780486485928. 

Frank, J.O., 2000. An application of lattice theory to 

knowledge representation. Theoretical Comput. Sci., 

249: 163-196. DOI: 10.1016/S0304-3975(00)00058-X 

George, G., 2009. Lattice Theory: First Concepts and 

Distributive Lattices. 1st Edn., Dover Publications, 

USA, ISBN-10: 048647173X, pp: 240. 

Herstein, I.N., 1975. Topics in Algebra. 1st Edn., John 

Wiley Sons, USA, ISBN-10: 0471010901, pp: 388. 

Lamport, L., 1978. Time, clocks and the ordering of 

events in a distributed system. Commun. ACM, 21: 

558-565. 

Louis, N., 2016. An Introduction to Lattice based 

probability theories. J. Math. Psychol., 74: 66-81. 

DOI: 10.1016/j.jmp.2016.04.013 

Laszlo, F., 2015. Abelian Groups. 1st Edn., Springer, 

Cham, ISBN-10: 3319194224, pp: 747. 

Milne, J.S., 2013. Lie Algebras. Algebraic Groups and 

Lie Groups Version 2.00.  

Vasco, M.I.G. and R. Steinwandt, 2015. Group Theoretic 

Cryptography. 1st Edn., Chapman Hall/CRC, Boca 

Raton, ISBN-10: 1584888377, pp: 244. 

Mildred, S.D., D. Gene and J. Ado, 2010. Group theory 

Applications of Physics of Condensed Matter. 

Springer, Berlin, ISBN-10: 3642069452, pp: 582. 



Davronbek Malikov and Susmit Bagchi / Journal of Computer Science 2020, 16 (4): 402.421 
DOI: 10.3844/jcssp.2020.402.421 

 

421 

Mauricio, O., J. Bharat and A.P. David, 1999. Theory of 

partial-order programming. Sci. Comput. 

Programm., 34: 207-238. 

Robert, L.M., 1969. Embeddings of topological lattice-

ordered groups. Trans. Am. Math. Society, 146: 

447-455. DOI: 10.2307/1995184 

Seymour, L. and L. Marc, 2007. Schaum's Outline of 

Discrete Mathematics. 3rd Edn., The McGraw-Hill 

Companies, ISBN-10: 0071511016, pp: 474. 

Scott, W.R., 1987. Group Theory. 1st Edn., Dover 

Publications INC, ISBN-10: 0486653773. 

Shirshova, E.E., 2015. On values of elements in partially 

ordered group. J. Math. Sci., 206: 597-607. 

Sen, A. and V.K. Garg, 2003. Partial Order Trace 

Analyzer (POTA) for distributed programs. 

Electronic Notes Theoretical Comput. Sci., 89: 22-43. 

DOI: 10.1016/S1571-0661(04)81041-7 

Schattschneider, D., 1978. The plane symmetry groups. 

Am. Math. Monthly, 85: 439-450. 

Thomas, D., 2004. Lattice Theory. 1st Edn., Elsevier, 

London, ISBN-10: 1483147495, pp: 296. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tzu-Chun, L., 2018. A study of non-abelian public key 

cryptography. Int. J. Netw. Security, 20: 278-290. 

Vijay, K.G., 2015. Introduction to Lattice Theory with 

Computer Science Applications. 1st Edn., Wiley, 

New Jersey, ISBN-10: 1118914376, pp: 272. 

Wen-Hai, L., W.K. Liang and G. Shun-Quan, 1990. 

Applications of lattice theory to graph 

decomposition. Circuits Syst. Signal Process., 9: 

181-195. 

William, F.T., 2013. Introduction to Real Analysis. 1st 

Edn., Pearson Education, ISBN-10: 0130457868, 

pp: 574. 

Walter, R., 1976. Principles of Mathematical Analysis. 

3rd Edn., McGraw-Hill, Singapore, 

 ISBN-10: 0070856133, pp: 342. 

Xiong, Z., H. Changyong and K.G. Vijay, 2018. Lattice 

agreement in message passing systems. Proceedings 

of the 32nd International Symposium on Distributed 

Computing, (SDC’ 18), Leibniz International 

Proceedings in Informatics, Germany. 


