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Abstract: Context The source code of a mobile application has several 

components (i.e., code units) and they have a cost (e.g., test creation and 

execution) and benefit (e.g., find bug) value for performing unit testing. 

Problem Choosing in which components unit tests should be done, in order 

to increase the benefit (effectiveness) and decrease the cost of this activity. 

Proposal This study presents an approach that supports the selection of 

components for unit test creation in Android mobile applications. The 

SCUTMA approach allows the selection of components with respect to the 

following criteria, which can be combined: Cost of future maintenance, 

propensity to defects, frequency of call, risk of failure, market 

vulnerability and business value. Results Two empirical studies were 

performed to evaluate SCUTMA. The first study aimed at analyzing the 

correlation between the metrics that represent the criteria described 

above, where the result showed the possibility of using the metrics Cost 

of Future Maintenance (CFM), Code Smell (CS), Frequency of Calls 

(FC), Fault Risk (FR), Market Vulnerability (MV) and Business Value 

(BV) combined in a solution for component selection. The second study 

aimed to evaluate the effectiveness of using the SCUTMA approach. The 

result indicates that SCUTMA selected more components with error 

(58.33%) than the selection performed by specialists (40%). Conclusions 

The SCUTMA approach is effective in selecting components for creating 

unit tests in Android mobile applications. 

 

Keywords: Mobile Application Testing, Automated Testing, Unit Test, 

Component Selection, Metric Correlation 

 

Introduction 

Mobile applications (or simply, mobile apps) are 

increasingly present in our daily lives. They are 

perceived in many areas, such as social networking, 

entertainment and e-commerce (Rubinov and Baresi, 

2018). Therefore, guaranteeing mobile app quality is 

essential and one way to evaluate their quality is 

designing, conducting and executing software testing. 

Software testing can be applied in several levels. One of 

these levels is unit testing, in which individual 

components1 of the source code are tested (Jorgensen, 

2018). Testing at the unit level brings some benefits, 

                                                           
1In this study, a component refers to a method of a class in an object 

oriented language. 

such as reducing flaws in existing resources, improving 

code structure, decreasing side effects and reducing fear 

of code change (Burke and Coyner, 2017). 

Despite the importance of testing a mobile app, 

testing all its components is often impractical due to its 

high effort in a software project. Thus, selecting which 

components to test is a challenge, seeking an ideal 

subset of components is most likely to contain defects 

and that brings less testing effort to the project (de 

Andrade Freitas et al., 2016). The existing technical 

literature has a limited set of studies that help developers 

in choosing components for performing unit testing in 

mobile apps (de Andrade Freitas et al., 2016). Thus, 

developers need to choose, based on their experience, 

which mobile app components have the best value (i.e., 
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cost versus benefit) for unit testing. However, developers 

with little experience in this task will face barriers when 

selecting components. 

The selection of components for unit testing can be 

modeled as a multiobjective optimization problem within 

the Search-Based Software Testing (SBST) area, which 

has attracted much attention in recent years (He et al., 

2017). Within this research line is the pre-test effort, in 

which the test code is selected in order to guide the test 

construction to attain the maximum coverage based on 

several metrics. Some metrics that can be used are: Long 

components in code (Liu et al., 2015), components with 

fault risk based on failure history (de Andrade Freitas et al., 

2016), components that centralize the accountability of a 

class (Vidal et al., 2016), components that call many 

other components of other classes (Hecht et al., 2016), 

among other possibilities. 

In this context, this work proposes an approach based 

on Genetic Algorithm (GA) to help developers in 

selecting components that have a greater value in 

relation to the cost-benefit of unit testing of Android 

mobile applications (because Android is the most 

popular and open mobile platform). We implemented the 

approach as a plugin called Selecting Components for 

Unit Testing in Mobile Applications (SCUTMA) that 

was added as an extension at Android Studio IDE. To 

measure the cost and benefit value of the components 

against the selection criteria, the following metrics were 

chosen based on a technical literature review performed 

by the authors: Halstead Effort (HE), Cost of Future 

Maintenance (CFM), Code Smell (CS), Frequency of 

Calls (FC), Fault Risk (FR), Market Vulnerability (MV) 

and Business Value (BV). The developed plugin extracts 

these metrics and then runs the NSGA-II multiobjective 

genetic algorithm to select the components to be tested. 

In order to evaluate the proposed approach, two 

empirical studies were carried out. In the first study, we 

present a controlled experiment aiming to analyze 

whether there is a correlation among the selected metrics 

(CFM, CS, FC, FR, MV and BV), because a strong 

correlation of a pair of metrics indicates that they should 

not be used together. For the experiment, two Android 

open source mobile apps belonging to two different 

categories were selected. These mobile apps have test 

scripts2 of system (a pre-condition of the proposed 

approach to use one of the criteria for the selection of 

unit tests). We selected 13 devices for the execution of 

these test scripts. Results indicate that the CFM, CS, FC, 

FR, MV and BV metrics can be used together. However, 

in case the test scripts are incompatible with different 

devices, we recommend the use of FR or MV. 

In the second study, the goal was to analyze the 

effectiveness of the SCUTMA approach in selecting 

                                                           
2Step-by-step instructions that allow one to perform a test 

(Dwarakanath et al., 2018). 

components with error3 compared to manual selection 

performed by unit test specialists4 in Android mobile apps. 

For the experiment, we used two Android mobile apps 

that had test scripts, which were also run on 13 mobile 

devices. For the comparison between the specialists and 

SCUTMA, 63 usage scenarios were constructed. The 

result showed the feasibility of the proposed approach to 

assist developers in the selection of components for unit 

testing, since the SCUTMA plugin selected more 

components with error (58.33%) than the specialists 

(40%). The main contributions of this work are: 

 

 The correlation analysis between the metrics CFM, 

FC, FR, MV, CS and BV 

 Definition of an approach for component selection 

in mobile apps on the Android platform using an 

evolutionary algorithm based on static, dynamic, 

market and business metrics 

 Analysis of an automated component selection using 

the SCUTMA plugin in relation to a manual 

selection performed by unit testing specialists in 

Android mobile apps 

 

This paper is organized as follows: Section two 

presents the theoretical foundation, section three 

discusses related works, section four presents the 

approach and SCUTMA plugin, sections five and six 

present the planning, execution and analysis of the 

results and discussions of the studies. Finally, Section 

seven presents the conclusion and future work. 

Background 

This work is focused on the selection of components 

for unit testing: This activity can be modeled as a 

Multiobjective Optimization Problem (MOP). A MOP 

is a problem that has two or more objectives that can be 

optimized simultaneously. It is important to mention 

that it is common that the MOP objectives are in 

conflict with each other (Coello, 2006). For example, 

the tester simultaneously seeks to reduce the cost and 

maximize the benefit in the test execution, by selecting 

a subset of components (Harman et al., 2006; de 

Andrade Freitas et al., 2016). 

A GA can be used to solve a MOP, the GA works by 

generating an initial population and, according to 

evaluation criteria, selects the best individuals from that 

population, which will serve as a solution to the problem 

or, otherwise, will be combined to get a new generation. 

This process is repeated until a solution is found or until 

it is realized that better solutions will not be achieved in 

the new generations (Coello, 2006). To automate the 

                                                           
3 The components identified through mobile app commits analysis. 
4 Professionals with experience in performing unit testing on Android 

mobile apps. 
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process of selecting a subset of components using a GA, 

it is necessary to measure some metrics. The metrics are 

functions, while the measurements are numbers obtained 

by the application of the metrics. 

This paper is based on metrics identified from a 

technical literature review. We searched for papers that 

use metrics for source code selection. Code Smell (CS) 

metric was chosen because it identifies components that 

indicate weaknesses in the project that may be delaying 

development or increasing the risk of errors or faults in 

the future (Martin, 2009). The Business Value (BV) 

metric was chosen because it allows the identification of 

components that are of greater importance to the mobile 

app business. The CFM, FC, FR and MV metrics were 

based on the SCOUT method for the selection of 

components for unit testing in mobile apps presented by 

(de Andrade Freitas et al., 2016). For this paper, mobile 

app business is considered as the component that 

implements the main mobile app functionalities. 

The basic premise is that if critical areas of the mobile 

apps source code are identified, the effort and cost of 

testing activities can be reduced. Thus, we define four 

categories (static, dynamic, market and business analysis) 

for the set of metrics used in this study, as follows. 
Static analysis, which are collected by measurements 

made up of representations of the system (Somerville, 
2011): CFM and CS; Dynamic analysis, which are 
collected by measurements made up of a program in 
execution (Somerville, 2011): FC and FR; Market 
analysis, which are collected by measurements that 
consider market information (de Andrade Freitas et al., 
2016): MV; Business analysis, which are collected by 
measurements that consider the main functionalities 
(Zakaria et al., 2015): BV. The next subsections will 
detail each metric. 

Cost of Future Maintenance (CFM) 

Software change due to corrective and non-corrective 

actions (Bourque and Fairley, 2014). Each component 

has a propensity for the associated defect and in case of 

failure, software maintainers spend time to understand 

the system and make the appropriate changes. 

 
Table 1: Six Hasltead’s metrics 

Metric Symbol Equation 

Halstead Length  N  N = N1 + N2 

Halstead Vocabulary  n  n = n1 + n2 

Halstead Volume  V  V = N  (LOG2n) 

Halstead Difficulty  D  
1 2

2 2

n N
D

n
   

Halstead Effort  E  E = D  V 

Halstead Bugs  B  
3000

V
B   

Legend: N1 = total number of operators; N2 = total number of 

operands; n1 = different number of operators; n2 = different 

number of operands. 

The CFM metric is derived from two metrics: 

Halstead effort and halstead bugs (Halstead, 1979). The 

composition of these two metrics is presented in Table 1, 

they are based on the number of operators and operands 

of the source code. The equation to calculate this metric 

is presented in Equation 1. It is based on the paper of (de 

Andrade Freitas et al., 2016): 

 

 i i ic fm E B    (1) 

 

where, Ei is the amount of work in seconds (Halstead 

Effort metric) to understand and recode component i; 

and Bi is the estimated number of errors (Halstead Bugs 

metric) for component i. 

Code Smell (CS) 

It is a hint that something or part of the mobile app 

source code may cause some problem (Martin, 2009). 

Some code smells presented in the existing technical 

literature for the component level are: 

 

 Long Method (LM): When the component contains 

more than 100 lines, not counting blank lines or 

comments (Palomba, 2015) 

 Long Parameter List (LPL): When the component 

has seven or more parameters (Haque et al., 2018); 

 Switch Statements (SW): When one has a complex 

switch operator, a sequence of nested if statements, 

or a nested repetition loop (for, while, do-while) 

(Haque et al., 2018) 

 Brain Method (BM): Tends to centralize the 

functionality of a class in the same way that a God 

Class centralizes the functionality of an entire 

subsystem or sometimes even an entire system 

(Fontana et al., 2015) 

 Cyclomatic Complexity (CC): When the number of 

possible paths through the source code is greater 

than or equal to five (Fontana et al., 2015) 

 

Equation 2 is used to calculate the code smell value 

for each component: 

 

5

i
i

S
cs    (2) 

 

where, Si is the number of code smell detected for 

component i. 

Fault Risk (FR) 

A good source of information is the fault history 

discovered in previous tests as well as the experience of 

the software engineer. To uncover the fault risk, test 

cases are designed specifically by software engineers 
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who try to anticipate the most plausible faults in a given 

mobile app (Bourque and Fairley, 2014). 

The data needed to calculate this metric comes from 

the record of the execution of a component in test cases 

that have passed or failed. Equation 3 was extracted from 

(Jones et al., 2002; de Andrade Freitas et al., 2016): 

 

 
i

i

i i

P
rf

P F



 (3) 

 

where, Pi is the ratio of the number of past test cases that 

executed component i to the total number of test cases 

passed in the test set; and Fi is the ratio of the number of 

test cases that failed and executed component i to the 

total number of failed test cases in the test set. 

Frequency of Calls (FC) 

During mobile app execution, the number of times a 

component is called is counted, because in static 

analysis the component may have been assigned a high 

priority. However, the impact of these static metrics 

must be associated in some way with a metric that 

reflects the level of request of a running component (de 

Andrade Freitas et al., 2016). This metric will compute 

the number of times a component was called while 

running the test cases. 

Market Vulnerability (MV) 

Expresses the vulnerability of a component among 

mobile devices according to market distribution (Android, 

2020), such as API market and screen size. One way to 

calculate market vulnerability for a component is presented 

in (de Andrade Freitas et al., 2016) as follows: 
 

 For each device, a list of failed test cases is created; 

 For each component that was run by a failed test 

case, its minimum and maximum associated market 

is computed 

 The Api Market (AM) of the component is 

calculated as the sum of the API market percentage 

of the devices that failed 

 The component Screen Market (SM) is calculated as 

the sum of the screen size and the market density of 

failed devices 

 The minimum vulnerability of the market can be 

expressed as the maximum value between AM and SM 

 The maximum vulnerability of the market can be 

expressed as the sum of AM and SM 

 The market vulnerable component is the average of the 

minimum and maximum market value Vulnerability 
 

Business Value (BV) 

Value Based Software Engineering (VBSE) aims 

to shift conventional software engineering practices to 

become business value-centric for system users 

(Zakaria et al., 2015). In this concept, each 

requirement, use case, object and defect of the mobile 

app are not treated as equally important. Therefore, 

use cases with a higher business value should have 

more test cases. This metric was adapted from (Ray and 

Mohapatra, 2012). The user sets a value for each test 

case and when a test case executes a component, the 

value of that test case is added to the component. 

Table 2 shows a comparison between the metrics 

presented above. 

This section presents the components selection as a 

multiobjective problem, also some metrics that can be 

used for this problem. The next section presents the 

related papers found in technical literature on component 

selection and prioritization, some of these papers use the 

metrics mentioned in this section. 

Related Work 

Related works were classified into two categories, 

according to the nature of the problem: (1) Component 

prioritization and (2) component selection, although the 

focus of this work will be the selection of components. 

First, we discuss the prioritization of components. 

Next, we discuss the component selection works. 

Finally, we compare some attributes of the works 

described with the proposed study. 

 
Table 2: Comparison of metrics 

  Requires execution  

Metric Analysis of app UI tests Based 

Cost of Future Maintenance Static Not It is based on error risk and the required effort required 

(CFM)   to correct the error. 

Code Smell (CS) Static Not It is the propensity to defect based on code smells. 

Fault Risk (FR) Dynamic Yes It is based on the failures of the UI tests. 

Frequency of Calls (FC) Dynamic Yes It is based on the number of times the component is 

   called during the execution of the app. 

Market Vulnerability (MV) Dynamic Yes It is based on the percentage of the device’s market 

 (Market)  where the UI tests that run the component have failed. 

Business Value (BV) Dynamic  It is based on the weight assigned to the UI tests that 

 (Business) Yes run the component. 



Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392 

DOI: 10.3844/jcssp.2020.1367.1392 

 

1371 

Component Prioritization 

Component prioritization helps to create an order 

(priority) associated with components from defined criteria, 

such as code line coverage, risk exposure factor, among 

others, with the aim of revealing defects earlier (Ray and 

Mohapatra, 2012). Several studies have been conducted on 

known techniques and strategies for components 

prioritization. For example, (Shihab et al., 2010) proposed 

an approach that leverages the project’s development 

history to generate a prioritized list of components for unit 

tests writing. The list of components is updated 

dynamically as the development of the legacy system 

progresses. To evaluate this approach, a case study was 

conducted on a large legacy commercial software system. 

The results suggest that heuristics based on component size, 

frequency of modification and frequency of bug fixes 

should be used to prioritize the unit test writing of legacy 

systems that employ Test-Driven Maintenance (TDM). 

Ray et al. (2011) proposed a program metric called 

influence metric to find the influence of a program 

element on the source code. The influence metric for a 

component m in a program shows the program statements 

number that directly or indirectly use the output produced 

by component m. The authors calculate the influence 

metric for a class c based on the influence metric of all its 

components. Experiments were conducted for two well-

known case studies - Library Management System and 

Commercial Automation System - and prioritized critical 

elements in the source code of each case study. The 

experimental studies justify that this approach is more 

precise than those existing in the prioritization of critical 

elements at the implementation level. 

Ray and Mohapatra (2012) proposed an approach that 

considers five factors of a component, such as influence 

value, average execution time, structural complexity, 

severity and market value as inputs and produces the 

component priority value as output. Experiments were 

conducted to compare this approach with a related 

approach. The results show that the approach that prioritizes 

the test effort within the source code is able to minimize the 

highly discriminated types of faults as well as the number of 

faults in the post-release time of a software system. 

Mensah et al. (2018) proposed a prioritization 

scheme that mainly comprises the identification, 

examination and estimation of the rework effort of the 

prioritized tasks, for that they use the comments of the 

source code. The proposed prioritization scheme is a 

technique that helps in making decisions before 

launching the software, in an attempt to minimize 

overhead maintenance costs. 

Component Selection 

The first generic formulation for the Component 

Selection Problem (CSP) in the area of Search-Based 

Software Engineering (SBSE) was presented by 

(Harman et al., 2006), suggesting as future work the use 

of automated approaches employing search-based 

software engineering. After that, many papers have been 

proposed in different fields of software engineering, 

for example, software reuse (Ismail et al., 2008; 

Mahmood and Noman, 2014; Amjad and Khan, 2015) 

and the Next Release Problem (NRP) (Durillo et al., 

2011; Zhang et al., 2013). In the field of unit testing 

for mobile apps, some works were found in this 

context: de Andrade Freitas et al. (2014; 2016). 

de Andrade Freitas et al. (2014) presented a multi-

objective evolutionary approach that looks for a subset 

of components for unit testing that minimizes cost while 

maximizing its strategic importance. To define the 

strategic importance of the component, the authors used 

static and dynamic metrics, such as cyclomatic 

complexity, operational coverage and frequency of 

modification. The experiments carried out in a real 

context on an industry web system, confirm the proposed 

benefits in selecting components by reducing cost and 

maximizing strategic importance. 

de Andrade Freitas et al. (2016) presented an 

automated process for collecting static, dynamic and 

market value metrics and a multi-objective method for 

selecting components for unit testing called SCOUT 

(Selector of Software Components for Unit Testing). 

SCOUT can assist testers in different domains; however, 

experiments were performed on the Android platform 

and results show that SCOUT reduces market 

vulnerability compared to other methods. The study also 

compared the efficacy of seven algorithms in solving the 

component selection problem for unit testing, where the 

NSGAII genetic algorithm was the most effective. 

However, the SCOUT method does not consider some 

important metrics, for example, the Code Smell (CS) 

metric, which identifies components that are at risk of 

errors or faults (Fontana et al., 2015; Palomba, 2015; 

Haque et al., 2018); and the Business Value (BV) metric, 

which identifies components of greater importance to 

business mobile apps (Hosseingholizadeh, 2010; Ray 

and Mohapatra, 2012). 
Our work was inspired by (de Andrade Freitas et al., 

2016). We propose an approach that performs the 
selection of components based on the SCOUT method, 
including the metrics CS and BV that have been shown 
to be important for the component selection problem. 

Table 3 presents a comparison with related works; it can 

be observed that most of the works perform experiment 

with source code written in the Java language. It is also 

highlighted that of the three levels, the level that most 

appeared in the works was that of component. 

Related works presented in this section help to notice 
the importance of automating the selection of components 
for unit testing in mobile applications. The next section 
presents the proposed approach for component selection 

and the technologies used for implementation. 
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Table 3: Comparison of related works 

Work  Category  Level  Language  Platform 

Shihab et al. (2010)  Prioritization  Component  C and C++  Uninformed 

Ray et al. (2011)  Prioritization  Class and Component  Java  Desktop 

Ray and Mohapatra (2012)  Prioritization  Class and Component  Java  Uninformed 

Mensah et al. (2018)  Prioritization  Class  Java and C  Web and Desktop 

de Andrade Freitas et al. (2014)  Selection  Component  Java  Web 

de Andrade Freitas et al. (2016)  Selection  Component  Java  Mobile 

This work  Selection  Component  Java  Mobile 

Legend: Work = reference to work; Category = informs if the work is component selection or prioritization; Level = specifies the 

part of the code that the selection or prioritization will focus on; Language = informs the language of the source code used in the 

experiment; Platform = refers to the platform on which the experiments were run. 

 

SCUTMA Approach 

Problem Modeling 

The Component Selection Problem (CSP) for unit 

testing was mapped from an analogy of a theory extracted 

from Biology: The structure of chromosomes. As a 

chromosome has several genes and a population contains 

several chromosomes, in the work in focus, each gene 

represents a component and a chromosome represents a 

possible solution to the problem. From then on, we have 

the genetic representation for NSGA-II (Fig. 1). 

For the present work, the NSGA-II multi-objective 

algorithm was used, based on results from (de 

Andrade Freitas et al., 2016) which evaluated seven 

algorithms (random approach, heuristic construction, 

gurobi, GA, SPEA-II, NSGA-II and NSGA-III) for CSP 

applied in unit testing. The result obtained showed that 

the NSGA-II algorithm proved to be the most effective. 

NSGA-II uses the tournament selection technique. In 

this technique, a certain number of individuals of the 

population are randomly chosen. Then, there is direct 

competition from these individuals for the right to be a 

father, according to the objective functions of each one. 

The best individual in this tournament will be selected to 

be the father of the next generation. In conjunction with 

turner selection, elitism is used, in which NSGA-II 

ensures the maintenance of the best individuals of one 

generation in the next generation. The crossover operator 

that will be used will be the single point and the 

mutation operator will be the bitwise for binary-coded. 

In this study there are two objectives: (1) Maximizing 

the benefit and, (2) reducing the cost of unit testing. The 

objective function for maximizing the benefit is 

represented in Equation 4: 

 





 

1

/

N

i

pCfm cfmi pFr fri pFc fci

pMv mvi pCs csi pBv bvi

pCfm pFr pFc pMv pCs pBv xi



     

     

     



 (4) 

 

Where: 

pCfm = Percentage of the cfm metric 

cfmi = The cost of future maintenance 

pFr = The percentage of fr metric 

fri = Fault risk 

pFc = The percentage of fc metric 

fci = The frequency of calls 

pMv = The percentage of the mv metric 

mvi = The market vulnerability 

pCs = The percentage of the cs metric 

csi = Code smell 

pBv = The percentage of the bv metric 

bvi = The business value 

xi = The value 1 (one) if component i is selected, 

otherwise it is 0 (zero). 

 

Values for pCfm, pFr, pFc, pMv, pCs and pBv may 

be one of the following percentages (0; 0.2; 0.4; 0.6; 0.6 

and 1.0), where 0 means 0% of the metric, i.e., the metric 

will not be used, 0.2 means 20% of the metric value 

and so on. The objective function to minimize cost 

was based on (de Andrade Freitas et al., 2016) and is 

represented in Equation 5: 

 

1

N

i

ci xi


   (5) 

 

where, ci represents the cost to develop unit test 

(Halstead Effort metric) for component i; and xi is the 

value 1 (one) if component i is selected, otherwise it 

is 0 (zero). 

Overview of the SCUTMA Plugin 

The SCUTMA approach has three main processes: 

(1) Run static analysis, where it extracts the CFM and 

CS metrics; (2) run dynamic, market and business 

analysis, where it extracts the metrics FC, FR, MV and 

BV; and (3) components selection, where the genetic 

algorithm is performed to select the components to be 

tested. These and other processes are shown in Fig. 2 and 

explained in the next subsections. The SCUTMA plugin 

was implemented to be used on the Android Studio tool, 

which is an integrated development environment to 

develop mobile apps for Android platform.



Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392 

DOI: 10.3844/jcssp.2020.1367.1392 

 

1373 

 
 

Fig. 1: Genetic representation 

 

 
 

Fig. 2: Overview Approach SCUTMA 

 

Android Studio was chosen because it is the official 

development environment of Android platform. 

Technologies used for development of the SCUTMA 

plugin are the following: 

 

 Intellij IDEA5: A development interface that 

allows one to create plugins fully compatible with 

Android Studio 

 Java Language: The Java language was chosen for the 

SCUTMA plugin development, this is an interpreted 

and object-oriented programming language 

 JHawk6: This tool collects metrics on four different 

levels, including method, class, package and system. 

It was used to aid in the extraction of static metrics 

 Comment Remover7: It is a source code 

commenting library for Java TM 7 and above. It also 

supports JavaScript, HTML, CSS, Properties, JSP 

                                                           
5https://www.jetbrains.com/pt-br/idea/ 
6http://www.virtualmachinery.com/jhawkprod.htm 
7https://github.com/ertugrulcetin/CommentRemover/blob/master/Read

me.md 

and XML comments. This library was used to 

remove comments from Java and XML files 

 Android Debug Bridge (ADB)8: It is a versatile 

command line tool that allows one to communicate 

with an emulator instance or with a connected 

Android device. It was used to get the ID of the 

connected devices and to copy the file in the “.trace” 

format of the device to the computer 

 Spoon9: This tool runs a test script on multiple devices 

simultaneously and displays the results in a meaningful 

way. It was used to run the system test scripts 

 TraceView10: It is a tool that provides graphical 

representations of trace logs. It was used to convert 

the log file from ”.trace” format to ”.csv” 

 Framework jMetal11: It was chosen to assist in the 

implementation of the genetic algorithm, the Pareto 

curve is generated by the jMetal framework. It has 

                                                           
8https://developer.android.com/studio/command-line/adb.html 
9http://square.github.io/spoon/ 
10https://developer.android.com/studio/profile/traceview 
11http://jmetal.sourceforge.net/ 
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open source, is based on Java for multiobjective 

optimization with metaheuristics (Nebro et al., 2015) 
 

Each step that composes the processes presented in 

Fig. 2 will be detailed below, showing some screens of 

the SCUTMA plugin. The SCUTMA plugin is available 

at ”https://bit.ly/2TKxsPG”. 

Select Input Artifacts 

As input artifacts, SCUTMA has two components: 
(1) Source code consisting of a mobile app source code 
for the Android platform, already available in the 
Android Studio environment; and (2) test cases that are 
system tests designed for the mobile app and written in 
the Java language and that use the Espresso12 framework. 
In Fig. 3 we can see the Budget Watch mobile app 
opened in Android Studio and the access menu for the 
SCUTMA plugin on the right side of “Help”. 

After clicking the SCUTMA option, the main screen 
is displayed, shown in Fig. 4. The initial screen has 3 
fields. The Source Code Folder field is populated 
automatically with the source code path of the 
application opened in Android Studio and cannot be 
changed. The SDK Folder field is also filled out 
automatically with the SDK folder’s default path and can 
be changed if it is incorrect. The Choose Type Of 
Metrics field allows one to choose whether to use static 
and/or dynamic metrics in component selection. 

Run Static Analysis 

This process allows the extraction of two metrics: 

CFM and CS: 
 

 Cost of Future Maintenance (CFM): The extraction of 

this metric was done with the aid of the JHawk tool, 

that is used for the extraction of Halstead metrics 

 Code Smell (CS): The code smells were also 

extracted using the JHawk tool. For each code smell 

detected in a component, 1 point will be added to 

the component. Then, the number of code smells 

detected for each component will be added and, 

after that, Equation 2 will be applied 
 

Run Dynamic, Market and Business Analysis 

This process is divided in three steps: test case 
scoring, code instrumentation and metrics extraction. 
These steps are described in the following subsections. 

Scoring Test Cases 

The user will report a weight on an ordinal scale from 

0 to 5 for the importance of each test case, where 0 

means the test case will not run, 1 is least and 5 is very 

important. Test cases represent the system’s use cases. For 

example, on the Android project (Fig. 3), the system test 

                                                           
12https://developer.android.com/training/testing/espresso 

cases are in the directory /app/src/androidTest/. These test 

cases are shown in Fig. 5, where the user would score the 

test cases of the Budget Watch mobile app. 

Code Instrumentation 

In the instrumentation step, the plugin modifies the 

main activity of the application. First, it identifies such 

activity from the application’s AndroidManifest.xml file. 

Then, the Comment Remover tool removes all comments 

from this file and the main activity to avoid errors in 

instrumentation. Finally, the plugin modifies the 

application to insert the startMethodTracing commands 

into the OnCreate method and stopMethodTracing into 

the OnDestroy method of the mobile app’s main 

Activity. These two methods entered as commands are 

contained in the android.os.Debug class and are 

responsible for starting and stopping the profile 

collection respectively. This is to know what is 

happening while running the mobile app. 

Metrics Extraction 

For the extraction of the dynamic, market and business 

metrics, it is necessary to execute the test cases, which is 

performed with the aid of the Spoon tool, because it 

manages the simultaneous execution of a test case across 

multiple devices, as well as logs the runtime and whether 

the test case has passed or failed for each device. 

After each test case run, a tracking file in the ”.trace” 

format will be generated on each device. It provides 

detailed metrics about a component, such as the number of 

calls, execution time and time spent running the component. 

Such file will be copied to the computer through the ADB 

tool. After that, it will be transformed into the ”.csv” format 

by the trace view tool provided with the Android SDK. 

The information generated by the Spoon tool and the 

tracking file in the “.csv” format will be used to extract 

the metrics: Call frequency, risk of failure, market 

vulnerability and business value: 

 

 Call Frequency (FC): The number of calls will be 

needed to compute the call frequency metric 

 Risk of Failure (RF): The data needed to calculate 

this metric comes from recording the execution of a 

component in test cases that passed or failed. Thus, 

the plugin analyzes the result of the Spoon tool and 

the tracking file. As a result of this analysis, a set of 

data will be generated from which test cases failed 

and passed for each component 

 Market Vulnerability (MV): The market 

vulnerability metric is used to represent the 

percentage of the market in which a component is 

vulnerable. For instance, some devices with the 

following API configurations 19, 21, 22 and 23 

have, respectively, 20.8, 9.4, 23.15 and 31.3% 

average market vulnerability and the edit component 

https://bit.ly/2TKxsPG
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failed on devices with APIs 22 and 23 this 

component had a 54.4% market vulnerability 

 Business Value (BV): The plugin analyzes the 

result of the Spoon tool and the tracking file and 

generates a data set of which test cases performed 

each component. When a test case runs a 

component, the weight of that test case is added 

to the component 
 

 
 

Fig. 3: SCUTMA plugin menu 
 

 
 

Fig. 4: SCUTMA plugin home screen 
 

 
 

Fig. 5: Screen mobile app test cases 
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Metrics Scoring 

This step allows the user to select a usage percentage 

for each metric with one of the following percentages 0; 

0.2; 0.4; 0.6; 0.8 and 1.0, where 0 means that 0% of the 

metric will be used, 0.2 will use 20% of the metric value 

and so on. In Fig. 6 the SCUTMA screen is shown where 

the user chooses the percentage of use of each metric. 

Component Selection 

The metrics used correspond to the objective functions 

of the NSGA-II; because in the design of these metrics it 

was planned that they would be part of the objective 

functions. For this reason, all metrics are normalized in 

the interval [0;1] to facilitate the combination of the 

objectives in the NSGA-II. An algorithm combines the 

results of the extraction of metrics into a single file that 

serves as input to the genetic algorithm. The NSGA-II 

implementation was developed in the Java language with 

the aid of the jMetal framework. 

The NSGA-II algorithm implements the concept of 

dominance, that is, the Total Population is classified into 

borders according to the degree of dominance. 

Individuals at the first border are considered the best, 

while individuals at the last border are the worst. Then 

one can find better solutions (points closer to the Pareto 

region) (Zitzler et al., 2004). Figure 6 shows the screen 

where the user informs the parameters necessary to 

execute the genetic algorithm. After execution, the list of 

components of the optimal Pareto solution will be 

presented to the user in the format: Id, package name, 

class name, method name (component), parameters and 

return type, as shown in Fig. 7. 

 

 
 

Fig. 6: Parameters of genetic algorithm 
 

 
 

Fig. 7: Screen showing selected components 
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Limitations of the SCUTMA Plugin 

The SCUTMA plugin works on Windows 7, 
Windows 10 and macOS Catalina 10.15.4 operating 
systems. It is compatible with Android Studio version 
2.2.3 up to version 3.5 (current). Another limitation is 
the Android application source code to be in the Java 
language, due to the Jhawk tool, only analyzing code in 
that language. To use dynamic metrics, market and 
business, the application needs to have system test 
scripts, being a test case per Java file. 

This section has presented the details of the 
SCUTMA approach, the design process and the 
technologies used for the implementation. The next 
section presents the first study carried out with the 
purpose of analyzing the correlation among the metrics 
that are part of the multiobjective solution. 

First study: Metrics Correlation 

This study was designed and performed as a controlled 
experiment based on (Runeson and Höst, 2009) on how to 
design, plan and conduct case studies, surveys, experiments 
or controlled experiments and action research. 

RQ1: Is there a Correlation Among the Metrics? 

The answer to this question will help us decide which 

set of metrics can be used in combination. 
Considering the metrics: CFM, CS, FC, FR, MV and 

BV it is necessary to investigate if there is a correlation 
among them, aiming to identify a subset of metrics to 
support the selection of components for unit testing in 
mobile apps. Table 4 shows a summary of these metrics, 
including symbol, description and equation. 

Subjects Selection 

The subjects selection had two phases; mobile apps 
selection and mobile devices selection. Selection of 
mobile apps was based on four parameters: Popularity 
(number of downloads in the Google Play store), 
diversity (different categories of mobile apps), self-
containment (no more configurations to be implemented) 

and UI test scripts. According to (Kochhar et al., 2015) 
finding automated test script is not a trivial task since the 
authors conducted an empirical investigation regarding 
techniques used to test mobile apps, frameworks used 
and types of testing used into open source mobile apps 
and the concluded Android mobile apps are not properly 
tested since around 86% of the investigated mobile apps 
did not contain any test cases. 

The first three parameters were based on (Fazzini et al., 
2017); and the last one was based on the need to run the 
UI scripts to extract dynamic metrics. Table 5 shows the 
pre-selected mobile apps. In order to identify which mobile 
app could be used for our study we use two mobile apps 
with more UI tests. Our objective was to run mobile apps 
for identifying the correlation among metrics. 

Selection of mobile devices was based on the screen 
size, resolution and the Android SDK versions most used 
by mobile apps published in the Google Play Store (data 
updated in October 2018). In this study, we used mobile 
devices with different versions of Android OS, models, 
screen sizes and densities with the purpose of identifying 
possible failures in mobile devices with great representation 
in the market. The information on which devices certain 
tests have failed is important to obtain the MV metric. 
Table 6 shows the market share of the most commonly used 
API versions and the model and number of devices that 
would be used for each API version. Based on this 
information and according to (Vilkomir et al., 2015), the 
use of 13 devices is sufficient for fault-finding. We defined 
13 devices that would be used in the study, listed in Table 6. 
 
Table 4: Summary of metrics 

Symbol  Description  Equation 

CFM  Cost of Future Maintenance c f mi = Ei  Bi 

CS  Code Smell  
5

Si
csi   

FC  Frequency of Call  - 

FR  Fault Risk  
 

Pi
rfi

Pi Fi



 

MV  Market Vulnerability  - 

BV  Business Value  - 

 
Table 5: Mobile apps used in this study 

     Code  UI 
ID App Version Classification Downloads (LOC) Components Tests Category 

1  Bee Count (BC)  -  4.5/5  10-50 k  3.8k  13/230  15  Productivity 
2  Budget Watch (BW) 0.7  5.0/5  1-2 k  946  15/141  15  Finance 
3  Counter (C)   4.5/5  100-500 k  3 k  37/96  15  Tool 
4  Money Balance (MB) -  -  -  2.9 k  14/257 15  Finance 
5  Pocket Code (PC)  1.1.15  3.8/5  100-500 k  83 k  496/7610  420  Education 
6  Pocket Paint (PP)  0.9.28  3.9/5  100-500 k  11 k  239/916  33  Tool 
7 Recurrence (R)  1.5  4.5/5  10-50 k  2.4 k  27/194  15  Productivity 
8  Simple Draw (SD)  -  4.5/5  50-100 k  569  14/55  15  Tool 
9  Simple Flashlight (SF) -  4.4/5  10-50 k  1 k  33/110  15  Tool 
10  Simple Notes (SN)  -  4.5/5  10-50 k  875 27/103  15  Tool 

Legend: ID = a number to identify the mobile app; Version = mobile app version; App = mobile app name; Classification = based on 
users rating on the Google Play Store; Downloads = number of downloads in the Google Play Store; Code (LOC) = number of lines 
of mobile app code; Components = number of components the tests called/number of all components in the mobile app; UI Tests = 
number of User Interface (UI) tests; Category = category to which the mobile app belongs 
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Table 6: Mobile devices used in this study 

ID  Version  Version name  API  Percentage  Model  Size  Density 

D1  4.4.2 KitKat 19 7.6 BLU  480800  230 
D2      LG E977  7681280  320 
D3  5.0   21  3.5  Galaxy Note 3 LTE  10801920  480 
D4      Alcatel PIXI4 (4.0)  320480  160 
D5  5.1  Lollipop  22  14.4 Alcatel PIXI4 (6.0)  1280720  320 
D6     Galaxy J1 Mini  480800  240 
D7      ASUS Zenfone Go LTE 7201280 320 
D8      Galaxy A9  10801920  420 
D9  6.0  Marshmallow  23  21.3 LG X Power  7201280  320 
D10      Moto E  960540  240 
D11     Moto Z power edition 14402560  640 
D12  7.0  Nougat  24  18.1 Galaxy A5  7201280  294 
D13      Moto G 5  10801920  480 

 

Study Execution 

SCUTMA plugin was used for each mobile app. A 

value between 1 and 5 was randomly selected for each 

test script. Therefore, the test scripts were run at the 

same time on all the mobile devices used in this study. 

Subsequently, the extraction of the value of the metrics 

for each mobile app was carried out. 

Results and Discussion 

The static, dynamic, market and business metrics of 
two mobile apps were extracted and the test scripts of 
each mobile app were executed on 13 devices. The value 
of these metrics for each component per mobile app is 
available at ”https://goo.gl/NwM3je”. 

The SPSS13 program was used to support the 
verification of the existence or not of correlation among 
the metrics, in order to generate the Pearson correlation 
coefficient. This coefficient is adequate when the data 
are quantitative and have normal distribution. Table 7 
presents the value generated by the Pearson correlation 
coefficient; it was extracted from (Rumsey, 2009). 

For this paper the correlations will be interpreted as 
follows: The metrics could be used together when the 
correlation is no linear relationship, weak or moderate; 
and the metrics cannot be used together when the 
correlation is strong or perfect. 

Pocket Code Mobile App 

Dynamic, market and business metrics depend on the 
outcome of system test scripts. In the result of the 
execution, of the 420 test scripts of the Pocket Code 
mobile app by the SCUTMA plugin, it was observed that 
251 (60%) of the test scripts failed on at least one device 
and 169 (40%) of the scripts passed on all the devices. 

Table 8 shows the number of test scripts that failed 
per device. Analyzing this data, we can see that most test 
scripts have failed on almost every device since the 
median percentage of faults per device is 72.51% of all 
test scripts that failed. 

                                                           
13https://www.ibm.com/analytics/us/en/technology/spss/ 

Table 7: Interpreting the correlation value 

Value  Correlation 

0  No linear relationship 

+0.3 or -0.3  Weak 

+0.5 or -0.5  Moderate 

+0.7 or -0.7  Strong 

+1 or -1  Perfect 

 
Table 8: Quantity of faults by device pocket code. 

ID device  Total faults Percentage faults 

D1  184.00 73.31 

D2  192.00  76.49 

D3  180.00  71.71 

D4  196.00  78.09 

D5  177.00  70.52 

D6  184.00  73.31 

D7  182.00  72.51 

D8  173.00  68.92 

D9  179.00  71.31 

D10  185.00  73.71 

D11  176.00  70.12 

D12  184.00  73.31 

D13  178.00 70.92 

Average  182.31  72.63 

Median  182.00  72.51 

Standard deviation  6.37  2.54 

 

Table 9 shows the value of the Pearson correlation 

coefficient for the Pocket Code mobile app. The 

correlation between the Fault Risk (FR) and Market 

Vulnerability (MV) metrics is likely strong due to the 

161 (64.14%) test scripts that failed on all devices and 

the median failure of the test scripts per device to be 

72.51% making the Market Vulnerability (MV) have a 

value close to 1 (one) for most components, since the 

value of this metric depends on the devices in which the 

failure occurred. The Fault Risk (FR) metric was also 

close to 1 (one) for each component, making the 

correlation between the two metrics strong. 

However, if the tests fail with greater variability 
among the devices, the value of the Market Vulnerability 
(MV) metric will have a greater variation, causing it to 
change the correlation value between the two metrics. 

https://goo.gl/NwM3je
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Table 9: Pearson correlation pocket code 

 CFM  CS  BV  FC  MV F R 

CFM  1 

CS  0.19a  1 

BV  0.009  -0.006  1 

FC  0  0.024b  0.238a  1 

MV  -0.001  0  0.528a  0.122a  1 

FR  -0.001  0.002  0.473a  0.119a  0.987a  1 

Legend: a. The correlation is significant at the 0.01 level (2 extremities); b. The correlation is significant at the 0.05 level (2 

extremities) 

 
Table 10: Quantity of faults by device pocket paint 

ID device  Total faults Percentage faults 

D1  22.00  81.48 

D2  20.00  74.07 

D3  22.00  81.48 

D4  22.00  81.48 

D5  20.00  74.07 

D6  19.00  70.37 

D7  20.00  74.07 

D8  19.00  70.37 

D9  19.00  70.37 

D10  19.00  70.37 

D11  24.00  88.89 

D12  19.00  70.37 

D13  20.00  74.07 

Average  20.38  75.50 

Median  20.00  74.07 

Standard deviation  1.61  5.96 

 
Table 11: Pearson correlation pocket paint. 

 CFM  CS  BV  FC  MV  FR 

CFM  1 

CS  0.324a  1 

BV -0.024  -0.032  1 

FC  -0.009  0.006  0.362a  1 

MV  -0.031  -0.041  0.732a  0.266a  1 

FR  -0.028  -0.053  0.413a  0.159a  0.882a  1 

Legend: a. The correlation is significant at the 0.01 level (2 extremities). 

 

Pocket Paint Mobile App 

In the result of the execution of the 33 system test scripts 

of the Pocket Paint mobile app by the SCUTMA plugin, it 

turns out that 27 (82%) test scripts failed on at least one 

device and 6 (18%) test scripts passed on all devices. 

The number of test scripts that failed per device for 

the Pocket Paint mobile app is shown in Table 10. In this 

mobile app, the median percentage of device faults was 

74.07%. This means that most test scripts failed on 

almost every device. Since 17 (62.96%) test scripts 

failed on all devices. 

We consider the large number of faults in both the 

Pocket Code mobile app and Pocket Paint due to the 

following reasons. First of all, it is difficult to make a 

script that works on different devices because even if all 

the required user interface elements are on screen, 

layouts can still differ based on OS version, screen size 

and orientation (Samuel and Pfahl, 2016). Second, we 

did not have the information on which devices were used 

to create test scripts. Finally, we need to measure MV 

and BV metrics, therefore we could not run the test 

scripts previously. 

Table 11 shows the value of the Pearson correlation 

coefficient for the Pocket Paint mobile app. The results 

show that there is a strong correlation between the 

Market Vulnerability (MV) and Business Value (BV) 

metrics. However, the Business Value (BV) of each 

component depends on the weight given to each test 

script. Therefore, the correlation may change according 

to the weight given to each test script. 

The explanation for the strong correlation between 

the Market Vulnerability (MV) and Fault Risk (FR) 

metrics is the same as that reported in the Pocket Code 

mobile app, because here as well, there is a slight 

variation in the devices where the test scripts failed. 
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Fig. 8: Metrics that can be used together 

 

Discussion 

Figure 8 shows which metrics can be used together. 

We can observe that the CFM and CS static metrics can 

be used together, since the result of the correlation 

between these two metrics was weak (0.19) and 

moderate (0.324). The CFM and CS metrics can be used 

together with the metrics FC, FR, MV and BV, as there 

is a weak correlation among them. Probably this weak 

correlation is due to the CFM and CS metrics being 

extracted statically and the metrics FC, FR, MV and BV 

require execution of the mobile app system test cases. 

The CFM, CS, FC, FR, MV and BV metrics can be 

used together in the same objective function, as observed 

in Fig. 8. However, as a suggestion, we could 

recommend that the tester chooses to use only one of the 

FR or MV metric for component selection, in which the 

test cases still depend on the compatibility problem 

among different devices, because in the results of this 

study, the correlation between these two metrics was 

strong (0.987 and 0.882) and the test cases still depended 

on the compatibility problem among different devices. 

The BV metric can be used together with the MV 
metric. However, in some cases depending on the user’s 
weight for each test cases, the correlation between these 
two metrics should vary between weak and strong. 

Because in Pocket Code mobile app was moderate (0.528) 
and in Pocket Paint mobile app was strong (0.732). 

Threats to Validity 

This section discusses different threats to the validity of 

our experiment. The instrumentation could be a threat, since 

a change in the mobile apps’ source code was made to 

include support for profile collection of each mobile app, 

because it was not possible to collect this data without the 

instrumentation. However, this instrumentation does not 

influence the operation of the mobile app. In order to 

reduce this threat, the choice of mobile apps was not done 

randomly, since they were selected based on the 

availability of their source codes and test scripts. 

To reduce the threat of results generalization, two 

mobile apps of different categories were used. However, 

the study may not be representative for other mobile app 

categories. The experimental environment can be a 

threat. Our environment was academic, but the 

computational infrastructure used (devices) represents 

the same as in industry by testers. 

Taking into account the fact that the results of the 

previous tests run could affect the next test executions, 

after executing each test script, the SCUTMA plugin 

performs a test procedure to uninstall and clear the App 

Under Test (AUT). Also to reduce the threat of 

confidence in measurements, the weight of each use case 

was assigned randomly in order to simulate the options 

that the user would have. 

The elements outside the experimental environment 

could influence the results, for example, a message or an 

incoming call during the test case execution. Therefore, 

the mobile devices were placed in airplane mode, since 

the AUTs do not need an internet connection to work. 

Another configuration on mobile devices is to configure 

the keep awake option so that the screen does not enter the 

standby mode while the test is running. In addition to the 

first study, we execute a feasibility study of the SCUTMA 

approach; this study will be present at the next section. 

Second Study: Feasibility 

This study aims to analyze the effectiveness of the 

plugin in selecting components for unit testing in mobile 

apps on the Android platform. We followed the guidelines 

of (Runeson and Höst, 2009). For this study we measured 
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the efficiency with the number of components with error 

selected. We define a research question as follow: 

RQ2: What is the effectiveness of the SCUTMA 
plugin in component selection in relation to the selection 

made manually by a specialist with regard to the number 

of components with selected errors? 
Answering this question will help us to understand 

which usage scenarios are recommended to use the plugin. 

In the next subsections of this study, it will be 

explained: (1) How the components with error were 

identified, (2) which scenarios will be considered in 

the assessment, (3) how the selection of participants 

was carried out, (4) which materials were used, (5) 

how the study was carried out and (6) what results 

were found. In addition, threats to the validity of this 

study will be discussed. 

Identification of Components with Error 

The identification of the components with error will 

occur through the analysis of the error correction 

commits. To identify these commits, a manual search of 

commits messages will be performed using the keywords 

fix, problem, incorrect, correct, conform (Mockus and 

Votta, 2000). To mitigate the threats to the validity of 

this study, only the commits of the mobile app version 

used in the experiments will be analyzed. 

We identify some specialists to select components 

manually, following the next steps: (1) Each specialist 

will receive a document explaining the main features and 

features of the mobile app. Next, (2) the specialist will 

select the components for unit testing and will describe 

which criteria were used for the selection. Then, (3) once 

the lists of manually selected components are obtained 

for each mobile app, the researcher will evaluate the 

effectiveness of the selection of each specialist. Finally, 

(4) we will compare the selection of specialists of each 

mobile app with the selection of the SCUTMA plugin. 

Evaluated Scenarios 

In order to compare the selection of specialists 

with the selection of the SCUTMA plugin, 63 

different prioritization scenarios were constructed to 

simulate the broad spectrum of diverse realities 

present in the software industry. The scenarios are 

based on six criteria: Cost of Future Maintenance 

(CFM), Defect Propensity (PD), Frequency of Call 

(FR), Fault Risk (FR), Market Vulnerability (MV) and 

Business Value (BV). 

In the first scenario (C01), the priority is to select 

components with high cost rate of future maintenance for 

unit tests. In the second (C02), components with a high 

degree of readiness to defect (code smells) are selected. 

This rule is followed up to the sixth scenario (C06), 

according to the other criteria. From the seventh scenario 

(C07) onwards, an arrangement is generated that 

incorporates all the combinations of criteria among them, 

as presented in Table 12. 

For example, in the thirteenth scenario (C13), the 

components prioritized for selection are defined as those 

with a high defect propensity rate and risk of failure. The 

normalized value of the considered criteria was used to 

construct the scenarios. 

Due to the random nature of the evolutionary 

approaches, each scenario was executed 30 times with 

the NSGA-II evolution algorithm and the mean among 

the best results was used for comparison according to the 

parameters usually cited in the technical literature for 

evolutionary algorithms. 

The data that were used to execute the algorithm were: 
 

 Population size: 200 

 Maximum number of evaluations: 200.000 

 Crossover rate: 0.85 

 Mutation rate: 0.01 

 
Table 12: Component selection prioritization scenarios 

ID  Criterions  ID  Criterions  ID  Criterions  ID  Criterions 

C01  CFM  C17  FC x MV  C33  PD x FC x MV  C49  CFM x FC x FR x BV 

C02  PD  C18  FC x BV  C34  PD x FC x BV  C50  CFM x FC x MV x BV 

C03  FC  C19  FR x MV  C35  PD x FR x MV  C51  CFM x FR x MV x BV 

C04  FR  C20  FR x BV  C36  PD x FR x BV  C52  PD x FC x FR x MV 

C05  MV  C21  MV x BV  C37  PD x MV x BV  C53  PD x FC x FR x BV 

C06  BV  C22  CFM x PD x FC C38  FC x FR x MV  C54  PD x FC x MV x BV 

C07  CFM x PD  C23  CFM x PD x FR C39  FC x FR x BV  C55  PD x FR x MV x BV 

C08  CFM x FC  C24  CFM x PD x MV C40  FC x MV x BV  C56  FC x FR x MV x BV 

C09  CFM x FR  C25  CFM x PD x BV C41  FR x MV x BV  C57  CFM x PD x FC x FR x MV 

C10  CFM x MV  C26  CFM x FC x FR C42  CFM x PD x FC x FR  C58  CFM x PD x FC x FR x BV 

C11  CFM x BV  C27  CFM x FC x MV C43  CFM x PD x FC x MV C59  CFM x PD x FC x MV x BV 

C12  PD x FC  C28  CFM x FC x BV C44  CFM x PD x FC x BV  C60 CFM x PD x FR x MV x BV 

C13  PD x FR  C29  CFM x FR x MV C45 CFM x PD x FR x MV C61  CFM x FC x FR x MV x BV 

C14  PD x MV  C30  CFM x FR x BV C46  CFM x PD x FR x BV  C62  PD x FC x FR x MV x BV 

C15  PD x BV  C31  CFM x MV x BV C47  CFM x PD x MV x BV C63  CFM x PD x FC x FR x MV x BV 

C16  FC x FR  C32  PD x FC x FR  C48  CFM x FC x FR x MV  
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Equation 6 was used in the results analysis, where it 

is the relation between the components with error and the 

total number of components: 

 

 
TCF

f x
TC

   (6) 

 

where, x is the solution found in the Pareto curve; TCE is 

the total of components with error that has in solution x; and 

TC is the total of components you have in the solution x. 

Participant Selection 

To participate in this study, industry and academia 

professionals with in-app unit testing experience on the 

Android platform were invited. The developer/researcher 

base was obtained from a Linkedin social network search, 

as well as the Android Dev BR community. To participate 

in the study, the professionals had to express interest in 

participating in the study, agreeing to the Informed Consent 

Form (TCLE) and filling out a characterization form. This 

was done with the objective of having the knowledge of the 

degree of experience of each professional and thus directing 

the selection to the next phase of the experiment. The tools 

are available at “https://goo.gl/71TvEQ”. 

The characterization form was sent to more than 100 

professionals. Of this total, 31 participants moved on to 

the next phase of group selection. The 31 participants 

were divided into two groups, Group A and Group B, 

taking into account the information that was filled out on 

the characterization form, on development experience 

and unit test experience time on Android mobile apps. 

Of the total number of participants, only 7 completed 

the study. Of these, 2 of them have 2 years of experience 

(29%); 2 of them have 3 years of experience (29%); 3 of 

them have 1, 4 and 5 years of experience, respectively 

and each represents (14%). 

Materials 

Because the study involved the manual and automated 

selection of components, it was necessary to use mobile 

apps with UI tests. Previously we analyzed and executed UI 

tests of mobile apps in Table 5. We selected two mobile 

apps with UI tests more compatible with different mobile 

devices. Table 13 shows the description of some features of 

mobile apps used for this study. More detailed information 

about these mobile apps is available at 

“https://goo.gl/71TvEQ”. For this study, we have used the 

same devices as used in our first study (Table 6). 

Study Execution 

The feasibility study was conducted online14 and 

executed in two parts. In the first part, participants were 

                                                           
14The study was conducted with specialists from the industry and 

academia (target audience). 

divided into groups A and B, then emailed a description 

of the characteristics of the mobile app for each 

participant. Group A got the Recurrence mobile app and 

Group B with the Budget Watch mobile app. For each 

participant they were asked to perform the selection of 

components for unit test writing and to send the list of 

selected components by e-mail. 

In the second part, for the study execution process, 

each mobile app was opened by the SCUTMA plugin in 

Android Studio, a value between 1 and 5 was randomly 

selected for each test script, so the test scripts were run at 

the same time in all the mobile devices used in the 

experiment. Subsequently, the value of the metrics for the 

mobile app was started. Finally, in the SCUTMA plugin, 

components for the unit test writing were selected and 63 

different selections were made using the 63 scenarios to 

select the components. The list of components selected 

from each scenario was compared to the list assembled 

from the selection made by the specialists. 

The following will present the results of this study for 

each of the mobile apps, starting with the Budget Watch 

mobile app and then the result for the Recurrence mobile 

app. First, the list of components with error will be 

shown, followed by the evaluation of the effectiveness of 

the manual selection performed by the specialists, 

continuing with the evaluation of the effectiveness of the 

automated selection performed by the SCUTMA plugin, 

finally the comparison of the manual selection with the 

automated selection. 

Mobile App Budget Watch Results 

Table 14 shows the list of Components that were 

identified with Error (CE) for the Budget Watch mobile 

app. This list of components will be used to evaluate the 

selection of specialists and the SCUTMA plugin. 

Specialists Evaluation 

The first Specialist (S1) selected eight components 

using the criterion “Public methods, which are possible 

to be tested, methods that are used within 

functionalities”, which represents 5.67% of the total 

components of the mobile app. Of these, one of them (ID 

CE9) is in the list of twelve components with known 

errors, presented in Table 14, representing 8.33%. 

The second Specialist (S2) selected sixteen 

components using the criterion “Classes dealing with 

lifecycle methods”, which represent 11.35% of the total 

components of the mobile app. Of these, eight (Ids CE1, 

CE2, CE3, CE4, CE6, CE8, CE11 and CE12) are in the 

list of twelve components with known errors Table 14, 

representing 66.67%. Figure 9 presents the graph that 

shows the coverage percentage of each of the two 

specialists for the components that were identified with 

errors in the Budget Watch mobile app. 

https://goo.gl/71TvEQ
https://goo/
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Fig. 9: Coverage of components with errors by specialists for the Budget Watch mobile app 
 

 
 

Fig. 10: Number of components with error that could be selected by each metric for the Budget Watch mobile app 
 
Table 13: Mobile app descriptions 

ID  App  Version  Code (LOC)  Components  Tests  Category 

1  Budget Watch (BW)  0.7  946  36/141  15  Finances 

2  Recurrence (R)  1.5  2.4 k  27/194  15  Productivity 

Legend: ID = a number to identify the mobile app; App = mobile app name; Version = mobile app version; Code (LOC) = number of 

lines of code in the mobile app; Components = number of components the tests called/total number of mobile app components; Tests 

= number of mobile app UI tests; Category = category to which the mobile app belongs 
 
Table 14: List of components with errors in the Budget Watch mobile app 

ID  Class  Component signature 

CE1  BudgetActivity  protected void onCreate(Bundle savedInstanceState) 
CE2  BudgetActivity  public boolean onContextItemSelected(MenuItem item)) 
CE3  BudgetActivity  public void onResume() 
CE4  BudgetActivity  protected void onDestroy() 
CE5  BudgetViewActivity (R)  public boolean onOptionsItemSelected(MenuItem item) 
CE6  BudgetViewActivity (R)  public void onResume() 
CE7  BudgetViewActivity (R)  protected void onDestroy() 
CE8  BudgetViewActivity (R)  protected void onCreate(Bundle savedInstanceState) 
CE9  CsvDatabaseExporter (R)  public void exportData(DBHelper db, OutputStreamWriter output) 
CE10  DatabaseCleanupTask (R)  protected void doInBackground(Void... nothing) 
CE11  MainActivity (R)  protected void onCreate(Bundle savedInstanceState) 
CE12  MainActivity (R)  private void displayAboutDialog() 

 

SCUTMA Plugin Evaluation 

For a better understanding of the coverage of 

components with errors by the SCUTMA plugin, Fig. 10 

shows the number of components with error (presented 

in Table 14) that could be selected for each metric used 

in the 63 scenarios. 

The two components (IDs CE1 and CE3 from Table 

14) were executed during the execution of the test cases. 

Therefore, they are more likely to be selected in 

scenarios using the metrics BV, MV, FR and FC. The 

four components with CE2, CE6, CE9 and CE12 IDs of 

Table 14 are more likely to be selected in scenarios using 

the PD metric, since code fragments have been identified 

in those components. Finally, all components of the 

mobile app, including the twelve faulty components in 

Table 14, can be selected in scenarios that use the CFM 

metric, as all components have this metric. 

Components with Error 

Table 15 presents the coverage of components with 

error of the best and worst of the 63 scenarios for the 

Budget Watch mobile app. It is observed that the 

solutions of each of the scenarios managed to find at 

most 10 components (83.33%) with error. It is worth 

noting that each of the scenarios obtained a different 

Specialist 1 (S1) 

8.33% 

Specialist 2 (S2) 

91.67% 

33.33% 

66.67% 

Components with selected errors Unselected errors Components  

2 
 

2 
 

2 
 

2 

4 

12 

BV 
 

MV 
 

FR 
 

FC 
 

PD 
 

CFD 

Amount of components with error 
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number of solutions at the Pareto frontier. The Pareto 

frontier was generated from the 30 runs of the genetic 

algorithm for each of the scenarios and only the Pareto 

frontier solutions were analyzed. The complete table 

with the result of the 63 scenarios can be accessed at 

“https://goo.gl/92kQEf”. 
Still analyzing Table 15, it can be seen that the 

scenario 1 (C01) obtained solution with the highest value 
for the relative number of components in error divided by 
the total number of components (Equation 6) when return 
from 1 to 8 parts with error, this is due to the fact that all 
components have a Cost of Future Maintenance (CFM). 

The C02 scenario using the default Propensity (PD) 
metric selected four components with error and these 
components had identified code smells (Fig. 10). The 
four scenarios C03, C04, C05 and C06 using the 
Frequency of Call (FC), Fault Risk (FR), Market 
Vulnerability (MV) and Business Value (BV) metrics 
respectively selected two components with error, which 
were performed by the test cases (Fig. 10). 

With regard to the best case, scenarios C51 and C50 
can be cited, as these were the best and second best 
scenario for Equation 6, respectively. The best solution for 
the C50 scenario obtained 21.27% of the total components 
of the mobile app and with this number of components 
this solution covered 75% of the components with errors 
identified and got 70% more components. For scenario 
C51, the best solution was 26.95% of the total components 

of the mobile app, covering 83.33% of the components 
with errors identified and over 73.68% of components. 
This indicates that in the best case SCUTMA is achieving 
good coverage of the components with error, however, it 
needs a refinement to decrease the number of additional 
components that make up the solution. 

As far as the worst case is concerned, scenario C42 
can be cited because it had the lowest value for Equation 
6. The worst solution for scenario C42 obtained 21.98% 
of the total components of the mobile app, with that 
number of components, this solution covered 8.33% of 
the components with errors identified and was with 
96.77% of components. 

Components with General Error 

Figure 11 shows the percentage of solutions for each 

number of error components identified in the Pareto 

frontier solutions. It is observed that most Pareto frontier 

solutions identified three components with error and 

only 1.43% of the solutions identified zero components 

with error. This indicates that SCUTMA has good error 

coverage. However, Fig. 12 shows that 84.61% of the 

components in the solutions did not contain errors. For 

this reason, it is necessary to refine the plugin to reduce 

the number of components that do not contain errors 

(false positives), directing to components that have real 

errors, in real mobile apps. 

 
Table 15: List of components with errors in the Budget Watch mobile app 

  Components with error 
  -------------------------------------------------------------------------------------------------------------------------------------------------------- 

  0  1  2  3  4  5  6  7  8  9  10  11  12 

C1 Quantity  489  619  500  578  282  198  570  264  69  7  0  0  0 
 Higher f(x)%  0.00  100.00  100.00  75.00  66.67  62.50  46.15  53.85  34.78  25.71  0.00  0.00  0.00 

 Lower f(x)%  0.00  12.50  20.00  20.00  25.00  25.00  13.95  14.58  15.69  17.65  0.00  0.00  0.00 

C2 Quantity  28  18  2  5  6  0  0 0  0  0  0  0  0 
 Higher f(x)%  0.00  20.00  10.53  14.29  17.39  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  5.26  10.00  12.50  15.38  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C3 Quantity  6  31  19  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  100.00  25.00  0.00 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  7.14  11.76  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C4 Quantity  8  41  4  0  0  0  0  0  0  0  0  0 0 
 Higher f(x)%  0.00  50.00  14.29  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  7.14  12.50  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C5 Quantity  7  19  2  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  100.00  13.33 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x) %  0.00  7.14  12.50  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C6 Quantity  3  34  28 0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  100.00  40.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00 7.14  11.76  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C42 Quantity  20  440  310  196  273  306  495  215  261  89  0  0  0 
 Higher f(x)%  0.00  50.00  40.00  13.04 12.90 15.15  17.14  17.95  19.05  20.45  0.00  0.00 0.00 

 Lower f(x)%  0.00 3.23  5.88  7.89  10.00  11.90  12.50  14.00  14.29  15.52  0.00  0.00  0.00 

C50 Quantity  21  242  383  550  652  364  305  575  134  12  0  0  0 
 Higher f(x)%  0.00  50.00  28.57  20.00  22.22  25.00  27.27  26.92  27.59  30.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  5.26  8.70  12.00  14.29  17.24  18.18  12.96  14.81  17.65  0.00  0.00  0.00 
C51 Quantity  14  201  460  690  749  444  303 533  121  12  8  0  0 

 Higher f(x)%  0.00  100.00  40.00  18.75  22.22  25.00 27.27  29.17  28.57  21.43  26.32  0.00  0.00 

 Lower f(x)%  0.00  5.00  8.70  12.00  13.33  16.67  18.18 1 3.73  16.33  18.37  17.54  0.00  0.00 

Legend: C01 to C63 = are the scenarios; 0 to 12 = the number of components with error; Quantity = is the total of solutions that found a specific 

number of components with error (0 - 12); Higher f(x) = refers to the solution that had the highest value for Equation 6; Lower f(x) = refers to the 
solution that had the lowest value for Equation 6 

https://goo.gl/92kQEf
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Fig. 11: Percentage of SCUTMA solutions for the budget 

watch mobile app 
 

 
 
Fig. 12: Percentage of error-free components of SCUTMA 

solutions for the Budget Watch mobile app 

 
Table 16: Metrics and components with error for the budget 

watch mobile app 

Metric CE  NE  CE/NE 

Cost of future maintenance 422511  2296622  0.18 

Market vulnerability  230023  1263927  0.18 

Business value  224797  1265740  0.17 

Code smell  220903  1398426  0.15 

Frequency of call  220808  1252222  0.17 

Fault risk  216164  1206150  0.18 

 

Metrics and Components with Errors 

With regard to the metrics that compose the 

component selection prioritization scenarios, Table 16 

presents the number of Components with Error (CE) and 

No Error (NE) for each of the metrics. The Future 

Maintenance Cost (CFM) metric has the highest number 

of components with error and no error. This is due to the 

fact that all the components have a value for this metric, 

making the scenarios that use this metric have more 

solutions and consequently more components. It is also 

observed that the relation between components with 

error and without error was similar to all the metrics, 

being between 0.15 and 0.18. 

Comparison between the Specialists and the 

SCUTMA Plugin 

For the comparison of the automated selection using 

the SCUTMA plugin with the manual selection 

performed by specialists, the result of the specialist S2 

was used, since between the two specialists he had a 

greater coverage (8; 66.67%) of the components with 

errors. For SCUTMA, scenarios C01, C50 and C51 were 

selected because they had the best result among the 63 

scenarios. Figure 13 presents a comparison between the 

percentage of components with error selected by 

specialist S2 and the three best scenarios (C01, C50 and 

C51) of the SCUTMA plugin. 

It is observed that the specialist S2 obtained a lower 

coverage of the components with error compared to the 

scenarios C50 and C51 of SCUTMA. Although the 

number of error components selected by the SCUTMA 

is greater than that of the S2 specialist, it was observed 

that the SCUTMA solutions brought a larger number of 

components that were not identified with error, as 

shown in Table 17. This indicates that the SCUTMA 

plugin needs to improve on this aspect, based on the 

result of this mobile app. 

Mobile App Recurrence Results 

Table 18 lists the 15 components that were identified 

with error (CE) for the Recurrence mobile app. This list 

of components will be used to evaluate the selection of 

specialists and the SCUTMA plugin. 

Specialists Evaluation 

The first Specialist (S1) selected 24 components 

using the criterion “representative components for the 

business, without dependencies of the Android 

framework”, which represent 12.37% of the total 

components of the mobile app. Of these, two of them 

(components with ids CE5 and CE6) are in the list of 

fifteen components with known errors presented in Table 

18, representing 13.33%. 

The second Specialist (S2) selected 37 components 

using the criterion “components of more complex 

classes, classes where silly mistakes usually happen”, 

which represent 19.07% of the total components of the 

mobile app. Of these, one (component with id CE6) is in 

the list of components with known errors of Table 18, 

representing 6.66%. 

The third specialist (S3) selected 21 components 

using the criterion “main features: 1 - Create reminder; 2 

– view reminder; 3 - CRUD Database”, which represent 

10.82% of the total components of the mobile app. Of 

these, one (component with CE15 id) is in the list of 

components with error, representing 6.66%. 

The fourth Specialist (S4) selected 33 components 

using the criterion “public components of business 

classes and utilities”, which represent 17.01% of the total 

components. Of these, two (components with ids CE5 

and CE6) are in the list of components with errors, 

representing 13.33%. 

The fifth Specialist (S5) selected 34 components 

using the criteria “components that are independent of 

1.12% 

6.35% 

10.68% 

0.06% 0.00% 0.00% 
1.43% 

11.47% 

14.76% 

15.05% 

12.88% 

11.73% 

14.48% 
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15.39% 

84.61% 

With error 
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the Android SDK”, which represent 17.52% of the total 

components. Of these, no component is in the list of 

failed components. In Fig. 14 the graph showing the 

coverage percentage of each of the five specialists is 

shown for the components that were identified with 

errors in the Recurrence mobile app. 

Table 17: Result of Equation 6 for the Budget Watch mobile app 

 Equation 6 (fx) (%) 

Specialist 2 (S2)  50.00 

SCUTMA (C01)  34.78 

SCUTMA (C50)  30.00 

SCUTMA (C51)  26.32 

 

 
 

Fig. 13: Comparison between specialists and SCUTMA for the Budget Watch mobile app 
 

 
 

Fig. 14: Coverage of components with errors by specialists for the Recurrence mobile app 
 
Table 18: List of failing components of the recurrence mobile app 

ID  Class  Component signature 

CE1  AboutActivity  void launchAppURL() 

CE2  AboutActivity  void launchEmail() 

CE3  AboutActivity  void showContributorsDialog(View view) 

CE4  AboutActivity  void showLibrariesDialog() 

CE5  AlarmReceiver  public void onReceive(Context context, Intent intent) 

CE6  AlarmUtil  public static void setNextAlarm(Context context, Reminder reminder, DatabaseHelper database) 

CE7  CreateEditActivity  void colourSelector() 

CE8  CreateEditActivity  void datePicker(View view) 

CE9  Create Edit Activity  void iconSelector() 

CE10  CreateEditActivity  void repeatSelector() 

CE11  CreateEditActivity  void switchClicked() 

CE12  CreateEditActivity  void timePicker() 

CE13  CreateEditActivity  void toggleSwitch() 

CE14  MainActivity  void fabClicked() 

CE15  ViewActivity  public void actionMarkAsDone()  

66.67% 66.67% 
75.00% 

83.33% 

Specialist 2 (S2) SCUTMA (C01) SCUTMA (C50) SCUTMA (C51) 

Components with selected errors 

Specialist 1 (S1) Specialist 2 (S2) Specialist 3 (S3) 

86.67% 93.34% 93.34% 

13.33% 
6.66% 6.66% 

Specialist 4 (S4) Specialist 5 (S5) 

13.33% 0.00% 

86.67% 100.00% 

Components with selected errors Unselected errors Components  
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SCUTMA Plugin Evaluation 

Figure 15 shows the number of components with 
error (Table 18) that could be selected for each metric 
used in the 63 scenarios. The component with id CE14 
of Table 18 was run during the execution of the test 
cases. Therefore, it has a greater probability of being 
selected in the scenarios that use the metrics BV, MV, 
FR and FC. The component with id CE6 is more likely 
to be selected in scenarios using the PD metric, since 
code smells have been identified in that component. 
Finally, all components of the mobile app, including the 
fifteen components with errors in Table 18, can be 
selected in scenarios that use the CFM metric, since all 
components have a cost of future maintenance. 

Components with Error 

Table 19 shows the coverage of components with error 

of the best and worst of the 63 scenarios for the 

Recurrence mobile app. It is observed that the solutions of 

each of the scenarios managed to find 5 at most 

components (33.33%) with error. It is worth noting that 

each of the scenarios obtained a different number of 

solutions at the Pareto frontier. The Pareto frontier was 

generated from the 30 runs of the genetic algorithm for 

each of the scenarios and only the Pareto frontier solutions 

were analyzed. The complete table with the result of the 

63 scenarios can be accessed at “https://goo.gl/92kQEf”. 

In Table 19 it can be verified that scenario 1 (C01) 

obtained the solution with the highest value for the ratio 

of components with error divided by the total number of 

components (Equation 6), when it found 2 to 5 

components with error. This is due to the fact that all 

components have a Cost of Future Maintenance (CFM). 

Scenario 2 (C02) using the default propensity metric 

selected a component with error and this component has 

code smells identified (Fig. 15). The four scenarios C03, 

C04, C05 and C06 using the Call Frequency (FC), Risk 

of Failure (FR), Market Vulnerability (MV) and 

Business Value (BV) metrics respectively did not select 

any components with error, because to reduce the search 

space of the genetic algorithm, components with less 

than two cyclomatic complexity were removed and this 

includes the CE14 component that has cyclomatic 

complexity equal to one. 

 
Table 19: Component coverage with the best and worst of the 63 scenarios for the Recurrence mobile app 

  Components with error 
  ---------------------------------------------------------------------------------------------------------------------------------------------------- 
  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

C01 Quantity  1031  799  346  398  37  4  0  0  0  0  0  0  0  0 0  0 
 Higher f(x)%  0.00  50.00  66.67  27.27  15.38  13.16  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  3.70  5.26  6.25  8.70  11.11  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C02 Quantity  7  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  14.29  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 0.00  0.00  0.00 

 Lower f(x)%  0.00  12.50  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C03 Quantity  29  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C04 Quantity  18  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C05 Quantity  13  0  0  0  0  0  0  0  0  0  0  0  0  0 0  0 
 Higher f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 0.00 0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C06 Quantity  29  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C07 Quantity  530  1370  342 384  39  1  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  33.33  28.57  17.65  13.79  13.16  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  3.45  5.13  6.52  8.33  13.16  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C23 Quantity  418  1277  345  136  15  1  0  0  0  0  0  0  0  0  0  0 
 Higher f(x)%  0.00  50.00  11.76  10.00 11.76  12.82  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)% 0.00  2.22  4.55  6.12  7.84  12.82  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
C28 Quantity  816  582  316  292  25  3  0  0  0  0  0  0  0  0  0  0 

 Higher f(x)%  0.00  16.67  14.29  10.71  12.50  13.16  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  2.56  4.00  6.12  8.16  11.36  0.00 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
C29 Quantity  848  603  332  321  41  4  0  0  0  0  0  0  0  0  0  0 

 Higher f(x)%  0.00  50.00  14.29  10.71  12.50  13.16  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  2.78  4.44  5.77  7.84  11.11  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
C58 Quantity  440  1249  423  178  28  2  0  0  0  0  0  0  0  0  0  0 

 Higher f(x)%  0.00  20.00  11.76  15.00  12.50  13.16  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Lower f(x)%  0.00  2.56  4.08  6.00  7.84  11.11  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

Legend: C01 to C63 = are the scenarios; 0 to 15 = the number of components with error; Quantity = is the total of solutions that found a specific 

number of components with error (0 - 15); Higher f(x) = refers to the solution that had the highest value for Equation 6; Lower f(x) = refers to the 
solution that had the lowest value for Equation 6. 

https://goo.gl/92kQEf
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Fig. 15: Number of components with error that could be selected by each metric for the Recurrence mobile app 

 

 
 
Fig. 16: Percentage of SCUTMA solutions for the Recurrence 

mobile app 

 

In relation to the best case we will analyze scenario 

C0, as this was the best scenario for Equation 6. The best 

solution for scenario C01 with 5 components with error 

obtained 19.58% of the total components of the mobile 

app and with this number of components this solution 

covered 33.33% of the components with errors identified 

and got 86.84% of additional components. This indicates 

that in the best case SCUTMA is reaching a low 

coverage of the components with error, being that the 

majority (10; 66.67%) of the components with error for 

this mobile app has a cyclomatic complexity equal to 

one, making it impossible for its selection by the plugin. 

As for the worst case we will analyze scenario C23, 

because it had the lowest value for Equation 6. The 

worst solution for scenario C23 obtained 23.19% of the 

total components of the mobile app and with that number 

of components this solution covered 6.66% of the 

components with errors identified and was with 97.77% 

of components. 

Components with General Error 

Figure 16 shows the percentage of solutions for each 

number of error components identified in the Pareto 

frontier solutions is shown. It is observed that most 

Pareto frontier solutions identified a component with 

error and 32.09% of the solutions identified zero 

components with error. This indicates that SCUTMA has 

a low error coverage when errors are concentrated in 

components with complexity equal to one. 

For a better understanding, Fig. 17 shows that 

95.31% of the components in the solutions did not 

contain errors. For this reason, it is noticed that the 

SCUTMA plugin does not have a good error coverage 

when the errors are concentrated in components with a 

cyclomatic complexity equal to one. 

Metrics and Components with Errors 

In terms of the metrics that compose the component 

selection prioritization scenarios, Table 20 presents the 

number of Components with Error (CE) and No Error 

(NE) for each of the metrics. The Cost of Future 

Maintenance (CFM) metric has the largest number of 

components with error and no error, because all 

components have a value for this metric, making the 

scenarios using this metric have more solutions and 

consequently more components. It is also noticed that 

the relation between components with error and without 

error was equal in all the metrics, with the value of 0,04. 

Comparison between the Specialists and the 

SCUTMA Plugin 

For the comparison of the automated selection using 

the SCUTMA plugin with manual selection performed 

by specialists, the results of the specialists S1 and S4 

were used, since the specialists were among the five 

participants who obtained a greater coverage (2; 13.33%) 

of the components with errors. For SCUTMA, scenarios 

C01, C07, C28, C29 and C58 were selected because they 

had the best result among the 63 scenarios. 

Figure 18 presents a comparison between the percentage 

of components with error selected by the specialists (S1 and 

S4) and the five best scenarios (C01, C07, C28, C29 and 

C58) of the SCUTMA plugin. It is observed that specialists 

S1 and S4 obtained a lower coverage for the components 

with error than the SCUTMA. 

It can also be observed that specialists S1 and S4 

presented a greater number of components that were not 

identified with error than the SCUTMA, as shown in 

Table 21. This shows that the SCUTMA plugin obtained 

a better result than the experts for this mobile app. 
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Fig. 17: Percent of components with and without error of SCUTMA solutions for the Recurrence mobile app 

 

 
 

Fig. 18: Comparison between experts and SCUTMA for the Recurrence mobile app 

 
Table 20: Metrics and components with error for the Recurrence mobile app 

Metric  CE  NE  CE/NE 

Cost of future maintenance 79050  1596576  0.04 

Market vulnerability  40194  850033  0.04 

Business value  39193  835852  0.04 

Code smell  41456  842526  0.04 

Frequency of call  39145  823446  0.04 

Fault risk  39389  832566  0.04 

 
Table 21: Result of Equation 6 for the recurrence mobile app 

 Equation 6 (fx) (%) 

Specialist 1 (S1)  8.33 

Specialist 4 (S4)  6.06 

SCUTMA (C01)  13.16 

SCUTMA (C07)  13.16 

SCUTMA (C28)  13.16 

SCUTMA (C29)  13.16 

SCUTMA (C58)  13.16 

 

Threats to Validity 

In this section, we discuss the threats to the validity 

of our results and the measures applied. As part of the 

study was conducted with people, there is the threat of 

abandonment of the experiment. To reduce this threat, 

the time of submission of the second part of the study 

with specialists was no more than 48 h after the response 

of the characterization form. 

The selection of mobile apps can be a threat, so the 

sample of the projects was not random, since it came 

from the availability of f-droid15 open-source mobile 

                                                           
15 https://f-droid.org/en/packages/ 

apps that contained UI test scripts within the research 

group in which the work was accomplished. 

In order to reduce the bias of the mono-operation, the 

empirical study used two Android platform mobile apps 

from different categories developed in the Java language. 

However, the study may not be representative for other 

categories of mobile apps, the study offers some evidence 

of feasibility of SCUTMA since in some scenarios it 

selected more components with error than the experts. 

In the future, we intend to increase the number of 

mobile apps to include different mobile app categories. 

The threat of selection and treatment interaction was 

reduced by applying a questionnaire to the characterization 

of the profile, to verify if the participant fit the profile 

expected for the study. To reduce the threat of confidence of 

the measures, the component selection using the SCUTMA 

plugin was done performing 30 executions of the genetic 

algorithm to decrease the effect of randomness. 

Conclusion and Future Works 

In this study, we explore the automated selection of 

components for unit testing in Android mobile apps. 
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Specialist 

(S1) 

Specialist 

(S4) 
SCUTMA 

(C01) 

SCUTMA 

(C07) 

SCUTMA 

(C28) 
SCUTMA 

(C29) 

SCUTMA 

(C58) 

Components with selected errors 



Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392 

DOI: 10.3844/jcssp.2020.1367.1392 

 

1390 

Therefore, we present the SCUTMA approach in order to 

increase the cost-benefit value of the selected 

components. For the SCUTMA approach a set of metrics 

(HE, CFM, CS, FC, MV and BV) was selected to measure 

the cost and benefit value of the components. In order to 

analyze whether the metrics could be used together, a first 

study was carried out. The result of this empirical study 

showed the possibility of using the metrics CFM, CS, FC, 

FR, MV and BV combined in a solution for the selection 

of components according to Fig. 8. 

A second study was conducted to evaluate the 

effectiveness of SCUTMA in selecting components with 

error compared to the list generated through the 

selection of components performed by specialists. The 

results confirmed the feasibility of the proposal in 

assisting the developer in the selection of components 

for unit testing, because in the two applications 

SCUTMA scenarios selected more components with 

error than the experts, for example, in the Budget 

Watch mobile app the best scenario C51 and better E2 

specialist respectively selected 83.33 and 66.67% of the 

components with error. However, the need for 

refinement to improve the result in some component 

selection prioritization scenarios was noted, as some 

SCUTMA scenarios presented more false positives than 

the experts, for example, in the Budget Watch mobile 

app the best scenario C51 and better specialist E2 

selected respectively 65.22 and 50% of false positives. 

Our findings provide a basic understanding of how 

the SCUTMA approach can be used in different 

scenarios. This knowledge will help developers choose 

which metrics to use in component selection in order to 

improve the efficiency of unit tests. As future work, it is 

foreseen to carry out a study using the Technology 

Acceptance Model (TAM), in order to evaluate the 

usability and acceptance of the SCUTMA plugin. Another 

possibility would be a study that evaluates the efficiency 

of using the SCUTMA plugin on the Android platform. 

The current version of the SCUTMA approach 

component selection for the unit test; it would be 

interesting to include the automatic generation of unit 

tests from the components selected by SCUTMA. 

Another interesting future research will be to analyze 

how the selection of components behaves through other 

multi-objective solutions. Finally, there is the possibility 

of adapting the approach and conducting a feasibility 

study for the iOS platform. 
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