

 © 2020 Josias Gomes, Isabel K. Villanes, Silvia M. Ascate, Awdren Fontão, Eduardo Noronha de Andrade Freitas and Arilo

Claudio Dias-Neto. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

SCUTMA: Selecting Components for Unit Testing in Mobile

Applications

1Josias Gomes, 1Isabel K. Villanes, 1Silvia M. Ascate, 3Awdren Fontão,
2Eduardo Noronha de Andrade Freitas and 1Arilo Claudio Dias-Neto

1Institute of Computing, Federal University of Amazonas, Manaus – Brazil
2Department of Informatics, Federal Institute of Goias, Goiania – Brazil
3Faculty of Computing, Federal University of Mato Grosso do Sul, Campo Grande – Brazil

Article history

Received: 15-07-2020

Revised: 28-09-2020

Accepted: 14-10-2020

Corresponding Author:

Josias Gomes

Institute of Computing, Federal

University of Amazonas,

Manaus – Brazil
Email: josias@icomp.ufam.edu.br

Abstract: Context The source code of a mobile application has several

components (i.e., code units) and they have a cost (e.g., test creation and

execution) and benefit (e.g., find bug) value for performing unit testing.

Problem Choosing in which components unit tests should be done, in order

to increase the benefit (effectiveness) and decrease the cost of this activity.

Proposal This study presents an approach that supports the selection of

components for unit test creation in Android mobile applications. The

SCUTMA approach allows the selection of components with respect to the

following criteria, which can be combined: Cost of future maintenance,

propensity to defects, frequency of call, risk of failure, market

vulnerability and business value. Results Two empirical studies were

performed to evaluate SCUTMA. The first study aimed at analyzing the

correlation between the metrics that represent the criteria described

above, where the result showed the possibility of using the metrics Cost

of Future Maintenance (CFM), Code Smell (CS), Frequency of Calls

(FC), Fault Risk (FR), Market Vulnerability (MV) and Business Value

(BV) combined in a solution for component selection. The second study

aimed to evaluate the effectiveness of using the SCUTMA approach. The

result indicates that SCUTMA selected more components with error

(58.33%) than the selection performed by specialists (40%). Conclusions

The SCUTMA approach is effective in selecting components for creating

unit tests in Android mobile applications.

Keywords: Mobile Application Testing, Automated Testing, Unit Test,

Component Selection, Metric Correlation

Introduction

Mobile applications (or simply, mobile apps) are

increasingly present in our daily lives. They are

perceived in many areas, such as social networking,

entertainment and e-commerce (Rubinov and Baresi,

2018). Therefore, guaranteeing mobile app quality is

essential and one way to evaluate their quality is

designing, conducting and executing software testing.

Software testing can be applied in several levels. One of

these levels is unit testing, in which individual

components1 of the source code are tested (Jorgensen,

2018). Testing at the unit level brings some benefits,

1In this study, a component refers to a method of a class in an object

oriented language.

such as reducing flaws in existing resources, improving

code structure, decreasing side effects and reducing fear

of code change (Burke and Coyner, 2017).

Despite the importance of testing a mobile app,

testing all its components is often impractical due to its

high effort in a software project. Thus, selecting which

components to test is a challenge, seeking an ideal

subset of components is most likely to contain defects

and that brings less testing effort to the project (de

Andrade Freitas et al., 2016). The existing technical

literature has a limited set of studies that help developers

in choosing components for performing unit testing in

mobile apps (de Andrade Freitas et al., 2016). Thus,

developers need to choose, based on their experience,

which mobile app components have the best value (i.e.,

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1368

cost versus benefit) for unit testing. However, developers

with little experience in this task will face barriers when

selecting components.

The selection of components for unit testing can be

modeled as a multiobjective optimization problem within

the Search-Based Software Testing (SBST) area, which

has attracted much attention in recent years (He et al.,

2017). Within this research line is the pre-test effort, in

which the test code is selected in order to guide the test

construction to attain the maximum coverage based on

several metrics. Some metrics that can be used are: Long

components in code (Liu et al., 2015), components with

fault risk based on failure history (de Andrade Freitas et al.,

2016), components that centralize the accountability of a

class (Vidal et al., 2016), components that call many

other components of other classes (Hecht et al., 2016),

among other possibilities.

In this context, this work proposes an approach based

on Genetic Algorithm (GA) to help developers in

selecting components that have a greater value in

relation to the cost-benefit of unit testing of Android

mobile applications (because Android is the most

popular and open mobile platform). We implemented the

approach as a plugin called Selecting Components for

Unit Testing in Mobile Applications (SCUTMA) that

was added as an extension at Android Studio IDE. To

measure the cost and benefit value of the components

against the selection criteria, the following metrics were

chosen based on a technical literature review performed

by the authors: Halstead Effort (HE), Cost of Future

Maintenance (CFM), Code Smell (CS), Frequency of

Calls (FC), Fault Risk (FR), Market Vulnerability (MV)

and Business Value (BV). The developed plugin extracts

these metrics and then runs the NSGA-II multiobjective

genetic algorithm to select the components to be tested.

In order to evaluate the proposed approach, two

empirical studies were carried out. In the first study, we

present a controlled experiment aiming to analyze

whether there is a correlation among the selected metrics

(CFM, CS, FC, FR, MV and BV), because a strong

correlation of a pair of metrics indicates that they should

not be used together. For the experiment, two Android

open source mobile apps belonging to two different

categories were selected. These mobile apps have test

scripts2 of system (a pre-condition of the proposed

approach to use one of the criteria for the selection of

unit tests). We selected 13 devices for the execution of

these test scripts. Results indicate that the CFM, CS, FC,

FR, MV and BV metrics can be used together. However,

in case the test scripts are incompatible with different

devices, we recommend the use of FR or MV.

In the second study, the goal was to analyze the

effectiveness of the SCUTMA approach in selecting

2Step-by-step instructions that allow one to perform a test

(Dwarakanath et al., 2018).

components with error3 compared to manual selection

performed by unit test specialists4 in Android mobile apps.

For the experiment, we used two Android mobile apps

that had test scripts, which were also run on 13 mobile

devices. For the comparison between the specialists and

SCUTMA, 63 usage scenarios were constructed. The

result showed the feasibility of the proposed approach to

assist developers in the selection of components for unit

testing, since the SCUTMA plugin selected more

components with error (58.33%) than the specialists

(40%). The main contributions of this work are:

 The correlation analysis between the metrics CFM,

FC, FR, MV, CS and BV

 Definition of an approach for component selection

in mobile apps on the Android platform using an

evolutionary algorithm based on static, dynamic,

market and business metrics

 Analysis of an automated component selection using

the SCUTMA plugin in relation to a manual

selection performed by unit testing specialists in

Android mobile apps

This paper is organized as follows: Section two

presents the theoretical foundation, section three

discusses related works, section four presents the

approach and SCUTMA plugin, sections five and six

present the planning, execution and analysis of the

results and discussions of the studies. Finally, Section

seven presents the conclusion and future work.

Background

This work is focused on the selection of components

for unit testing: This activity can be modeled as a

Multiobjective Optimization Problem (MOP). A MOP

is a problem that has two or more objectives that can be

optimized simultaneously. It is important to mention

that it is common that the MOP objectives are in

conflict with each other (Coello, 2006). For example,

the tester simultaneously seeks to reduce the cost and

maximize the benefit in the test execution, by selecting

a subset of components (Harman et al., 2006; de

Andrade Freitas et al., 2016).

A GA can be used to solve a MOP, the GA works by

generating an initial population and, according to

evaluation criteria, selects the best individuals from that

population, which will serve as a solution to the problem

or, otherwise, will be combined to get a new generation.

This process is repeated until a solution is found or until

it is realized that better solutions will not be achieved in

the new generations (Coello, 2006). To automate the

3 The components identified through mobile app commits analysis.
4 Professionals with experience in performing unit testing on Android

mobile apps.

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1369

process of selecting a subset of components using a GA,

it is necessary to measure some metrics. The metrics are

functions, while the measurements are numbers obtained

by the application of the metrics.

This paper is based on metrics identified from a

technical literature review. We searched for papers that

use metrics for source code selection. Code Smell (CS)

metric was chosen because it identifies components that

indicate weaknesses in the project that may be delaying

development or increasing the risk of errors or faults in

the future (Martin, 2009). The Business Value (BV)

metric was chosen because it allows the identification of

components that are of greater importance to the mobile

app business. The CFM, FC, FR and MV metrics were

based on the SCOUT method for the selection of

components for unit testing in mobile apps presented by

(de Andrade Freitas et al., 2016). For this paper, mobile

app business is considered as the component that

implements the main mobile app functionalities.

The basic premise is that if critical areas of the mobile

apps source code are identified, the effort and cost of

testing activities can be reduced. Thus, we define four

categories (static, dynamic, market and business analysis)

for the set of metrics used in this study, as follows.
Static analysis, which are collected by measurements

made up of representations of the system (Somerville,
2011): CFM and CS; Dynamic analysis, which are
collected by measurements made up of a program in
execution (Somerville, 2011): FC and FR; Market
analysis, which are collected by measurements that
consider market information (de Andrade Freitas et al.,
2016): MV; Business analysis, which are collected by
measurements that consider the main functionalities
(Zakaria et al., 2015): BV. The next subsections will
detail each metric.

Cost of Future Maintenance (CFM)

Software change due to corrective and non-corrective

actions (Bourque and Fairley, 2014). Each component

has a propensity for the associated defect and in case of

failure, software maintainers spend time to understand

the system and make the appropriate changes.

Table 1: Six Hasltead’s metrics

Metric Symbol Equation

Halstead Length N N = N1 + N2

Halstead Vocabulary n n = n1 + n2

Halstead Volume V V = N  (LOG2n)

Halstead Difficulty D
1 2

2 2

n N
D

n
 

Halstead Effort E E = D  V

Halstead Bugs B
3000

V
B 

Legend: N1 = total number of operators; N2 = total number of

operands; n1 = different number of operators; n2 = different

number of operands.

The CFM metric is derived from two metrics:

Halstead effort and halstead bugs (Halstead, 1979). The

composition of these two metrics is presented in Table 1,

they are based on the number of operators and operands

of the source code. The equation to calculate this metric

is presented in Equation 1. It is based on the paper of (de

Andrade Freitas et al., 2016):

 i i ic fm E B  (1)

where, Ei is the amount of work in seconds (Halstead

Effort metric) to understand and recode component i;

and Bi is the estimated number of errors (Halstead Bugs

metric) for component i.

Code Smell (CS)

It is a hint that something or part of the mobile app

source code may cause some problem (Martin, 2009).

Some code smells presented in the existing technical

literature for the component level are:

 Long Method (LM): When the component contains

more than 100 lines, not counting blank lines or

comments (Palomba, 2015)

 Long Parameter List (LPL): When the component

has seven or more parameters (Haque et al., 2018);

 Switch Statements (SW): When one has a complex

switch operator, a sequence of nested if statements,

or a nested repetition loop (for, while, do-while)

(Haque et al., 2018)

 Brain Method (BM): Tends to centralize the

functionality of a class in the same way that a God

Class centralizes the functionality of an entire

subsystem or sometimes even an entire system

(Fontana et al., 2015)

 Cyclomatic Complexity (CC): When the number of

possible paths through the source code is greater

than or equal to five (Fontana et al., 2015)

Equation 2 is used to calculate the code smell value

for each component:

5

i
i

S
cs  (2)

where, Si is the number of code smell detected for

component i.

Fault Risk (FR)

A good source of information is the fault history

discovered in previous tests as well as the experience of

the software engineer. To uncover the fault risk, test

cases are designed specifically by software engineers

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1370

who try to anticipate the most plausible faults in a given

mobile app (Bourque and Fairley, 2014).

The data needed to calculate this metric comes from

the record of the execution of a component in test cases

that have passed or failed. Equation 3 was extracted from

(Jones et al., 2002; de Andrade Freitas et al., 2016):

 
i

i

i i

P
rf

P F



 (3)

where, Pi is the ratio of the number of past test cases that

executed component i to the total number of test cases

passed in the test set; and Fi is the ratio of the number of

test cases that failed and executed component i to the

total number of failed test cases in the test set.

Frequency of Calls (FC)

During mobile app execution, the number of times a

component is called is counted, because in static

analysis the component may have been assigned a high

priority. However, the impact of these static metrics

must be associated in some way with a metric that

reflects the level of request of a running component (de

Andrade Freitas et al., 2016). This metric will compute

the number of times a component was called while

running the test cases.

Market Vulnerability (MV)

Expresses the vulnerability of a component among

mobile devices according to market distribution (Android,

2020), such as API market and screen size. One way to

calculate market vulnerability for a component is presented

in (de Andrade Freitas et al., 2016) as follows:

 For each device, a list of failed test cases is created;

 For each component that was run by a failed test

case, its minimum and maximum associated market

is computed

 The Api Market (AM) of the component is

calculated as the sum of the API market percentage

of the devices that failed

 The component Screen Market (SM) is calculated as

the sum of the screen size and the market density of

failed devices

 The minimum vulnerability of the market can be

expressed as the maximum value between AM and SM

 The maximum vulnerability of the market can be

expressed as the sum of AM and SM

 The market vulnerable component is the average of the

minimum and maximum market value Vulnerability

Business Value (BV)

Value Based Software Engineering (VBSE) aims

to shift conventional software engineering practices to

become business value-centric for system users

(Zakaria et al., 2015). In this concept, each

requirement, use case, object and defect of the mobile

app are not treated as equally important. Therefore,

use cases with a higher business value should have

more test cases. This metric was adapted from (Ray and

Mohapatra, 2012). The user sets a value for each test

case and when a test case executes a component, the

value of that test case is added to the component.

Table 2 shows a comparison between the metrics

presented above.

This section presents the components selection as a

multiobjective problem, also some metrics that can be

used for this problem. The next section presents the

related papers found in technical literature on component

selection and prioritization, some of these papers use the

metrics mentioned in this section.

Related Work

Related works were classified into two categories,

according to the nature of the problem: (1) Component

prioritization and (2) component selection, although the

focus of this work will be the selection of components.

First, we discuss the prioritization of components.

Next, we discuss the component selection works.

Finally, we compare some attributes of the works

described with the proposed study.

Table 2: Comparison of metrics

 Requires execution

Metric Analysis of app UI tests Based

Cost of Future Maintenance Static Not It is based on error risk and the required effort required

(CFM) to correct the error.

Code Smell (CS) Static Not It is the propensity to defect based on code smells.

Fault Risk (FR) Dynamic Yes It is based on the failures of the UI tests.

Frequency of Calls (FC) Dynamic Yes It is based on the number of times the component is

 called during the execution of the app.

Market Vulnerability (MV) Dynamic Yes It is based on the percentage of the device’s market

 (Market) where the UI tests that run the component have failed.

Business Value (BV) Dynamic It is based on the weight assigned to the UI tests that

 (Business) Yes run the component.

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1371

Component Prioritization

Component prioritization helps to create an order

(priority) associated with components from defined criteria,

such as code line coverage, risk exposure factor, among

others, with the aim of revealing defects earlier (Ray and

Mohapatra, 2012). Several studies have been conducted on

known techniques and strategies for components

prioritization. For example, (Shihab et al., 2010) proposed

an approach that leverages the project’s development

history to generate a prioritized list of components for unit

tests writing. The list of components is updated

dynamically as the development of the legacy system

progresses. To evaluate this approach, a case study was

conducted on a large legacy commercial software system.

The results suggest that heuristics based on component size,

frequency of modification and frequency of bug fixes

should be used to prioritize the unit test writing of legacy

systems that employ Test-Driven Maintenance (TDM).

Ray et al. (2011) proposed a program metric called

influence metric to find the influence of a program

element on the source code. The influence metric for a

component m in a program shows the program statements

number that directly or indirectly use the output produced

by component m. The authors calculate the influence

metric for a class c based on the influence metric of all its

components. Experiments were conducted for two well-

known case studies - Library Management System and

Commercial Automation System - and prioritized critical

elements in the source code of each case study. The

experimental studies justify that this approach is more

precise than those existing in the prioritization of critical

elements at the implementation level.

Ray and Mohapatra (2012) proposed an approach that

considers five factors of a component, such as influence

value, average execution time, structural complexity,

severity and market value as inputs and produces the

component priority value as output. Experiments were

conducted to compare this approach with a related

approach. The results show that the approach that prioritizes

the test effort within the source code is able to minimize the

highly discriminated types of faults as well as the number of

faults in the post-release time of a software system.

Mensah et al. (2018) proposed a prioritization

scheme that mainly comprises the identification,

examination and estimation of the rework effort of the

prioritized tasks, for that they use the comments of the

source code. The proposed prioritization scheme is a

technique that helps in making decisions before

launching the software, in an attempt to minimize

overhead maintenance costs.

Component Selection

The first generic formulation for the Component

Selection Problem (CSP) in the area of Search-Based

Software Engineering (SBSE) was presented by

(Harman et al., 2006), suggesting as future work the use

of automated approaches employing search-based

software engineering. After that, many papers have been

proposed in different fields of software engineering,

for example, software reuse (Ismail et al., 2008;

Mahmood and Noman, 2014; Amjad and Khan, 2015)

and the Next Release Problem (NRP) (Durillo et al.,

2011; Zhang et al., 2013). In the field of unit testing

for mobile apps, some works were found in this

context: de Andrade Freitas et al. (2014; 2016).

de Andrade Freitas et al. (2014) presented a multi-

objective evolutionary approach that looks for a subset

of components for unit testing that minimizes cost while

maximizing its strategic importance. To define the

strategic importance of the component, the authors used

static and dynamic metrics, such as cyclomatic

complexity, operational coverage and frequency of

modification. The experiments carried out in a real

context on an industry web system, confirm the proposed

benefits in selecting components by reducing cost and

maximizing strategic importance.

de Andrade Freitas et al. (2016) presented an

automated process for collecting static, dynamic and

market value metrics and a multi-objective method for

selecting components for unit testing called SCOUT

(Selector of Software Components for Unit Testing).

SCOUT can assist testers in different domains; however,

experiments were performed on the Android platform

and results show that SCOUT reduces market

vulnerability compared to other methods. The study also

compared the efficacy of seven algorithms in solving the

component selection problem for unit testing, where the

NSGAII genetic algorithm was the most effective.

However, the SCOUT method does not consider some

important metrics, for example, the Code Smell (CS)

metric, which identifies components that are at risk of

errors or faults (Fontana et al., 2015; Palomba, 2015;

Haque et al., 2018); and the Business Value (BV) metric,

which identifies components of greater importance to

business mobile apps (Hosseingholizadeh, 2010; Ray

and Mohapatra, 2012).
Our work was inspired by (de Andrade Freitas et al.,

2016). We propose an approach that performs the
selection of components based on the SCOUT method,
including the metrics CS and BV that have been shown
to be important for the component selection problem.

Table 3 presents a comparison with related works; it can

be observed that most of the works perform experiment

with source code written in the Java language. It is also

highlighted that of the three levels, the level that most

appeared in the works was that of component.

Related works presented in this section help to notice
the importance of automating the selection of components
for unit testing in mobile applications. The next section
presents the proposed approach for component selection

and the technologies used for implementation.

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1372

Table 3: Comparison of related works

Work Category Level Language Platform

Shihab et al. (2010) Prioritization Component C and C++ Uninformed

Ray et al. (2011) Prioritization Class and Component Java Desktop

Ray and Mohapatra (2012) Prioritization Class and Component Java Uninformed

Mensah et al. (2018) Prioritization Class Java and C Web and Desktop

de Andrade Freitas et al. (2014) Selection Component Java Web

de Andrade Freitas et al. (2016) Selection Component Java Mobile

This work Selection Component Java Mobile

Legend: Work = reference to work; Category = informs if the work is component selection or prioritization; Level = specifies the

part of the code that the selection or prioritization will focus on; Language = informs the language of the source code used in the

experiment; Platform = refers to the platform on which the experiments were run.

SCUTMA Approach

Problem Modeling

The Component Selection Problem (CSP) for unit

testing was mapped from an analogy of a theory extracted

from Biology: The structure of chromosomes. As a

chromosome has several genes and a population contains

several chromosomes, in the work in focus, each gene

represents a component and a chromosome represents a

possible solution to the problem. From then on, we have

the genetic representation for NSGA-II (Fig. 1).

For the present work, the NSGA-II multi-objective

algorithm was used, based on results from (de

Andrade Freitas et al., 2016) which evaluated seven

algorithms (random approach, heuristic construction,

gurobi, GA, SPEA-II, NSGA-II and NSGA-III) for CSP

applied in unit testing. The result obtained showed that

the NSGA-II algorithm proved to be the most effective.

NSGA-II uses the tournament selection technique. In

this technique, a certain number of individuals of the

population are randomly chosen. Then, there is direct

competition from these individuals for the right to be a

father, according to the objective functions of each one.

The best individual in this tournament will be selected to

be the father of the next generation. In conjunction with

turner selection, elitism is used, in which NSGA-II

ensures the maintenance of the best individuals of one

generation in the next generation. The crossover operator

that will be used will be the single point and the

mutation operator will be the bitwise for binary-coded.

In this study there are two objectives: (1) Maximizing

the benefit and, (2) reducing the cost of unit testing. The

objective function for maximizing the benefit is

represented in Equation 4:





 

1

/

N

i

pCfm cfmi pFr fri pFc fci

pMv mvi pCs csi pBv bvi

pCfm pFr pFc pMv pCs pBv xi



     

     

     



 (4)

Where:

pCfm = Percentage of the cfm metric

cfmi = The cost of future maintenance

pFr = The percentage of fr metric

fri = Fault risk

pFc = The percentage of fc metric

fci = The frequency of calls

pMv = The percentage of the mv metric

mvi = The market vulnerability

pCs = The percentage of the cs metric

csi = Code smell

pBv = The percentage of the bv metric

bvi = The business value

xi = The value 1 (one) if component i is selected,

otherwise it is 0 (zero).

Values for pCfm, pFr, pFc, pMv, pCs and pBv may

be one of the following percentages (0; 0.2; 0.4; 0.6; 0.6

and 1.0), where 0 means 0% of the metric, i.e., the metric

will not be used, 0.2 means 20% of the metric value

and so on. The objective function to minimize cost

was based on (de Andrade Freitas et al., 2016) and is

represented in Equation 5:

1

N

i

ci xi


  (5)

where, ci represents the cost to develop unit test

(Halstead Effort metric) for component i; and xi is the

value 1 (one) if component i is selected, otherwise it

is 0 (zero).

Overview of the SCUTMA Plugin

The SCUTMA approach has three main processes:

(1) Run static analysis, where it extracts the CFM and

CS metrics; (2) run dynamic, market and business

analysis, where it extracts the metrics FC, FR, MV and

BV; and (3) components selection, where the genetic

algorithm is performed to select the components to be

tested. These and other processes are shown in Fig. 2 and

explained in the next subsections. The SCUTMA plugin

was implemented to be used on the Android Studio tool,

which is an integrated development environment to

develop mobile apps for Android platform.

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1373

Fig. 1: Genetic representation

Fig. 2: Overview Approach SCUTMA

Android Studio was chosen because it is the official

development environment of Android platform.

Technologies used for development of the SCUTMA

plugin are the following:

 Intellij IDEA5: A development interface that

allows one to create plugins fully compatible with

Android Studio

 Java Language: The Java language was chosen for the

SCUTMA plugin development, this is an interpreted

and object-oriented programming language

 JHawk6: This tool collects metrics on four different

levels, including method, class, package and system.

It was used to aid in the extraction of static metrics

 Comment Remover7: It is a source code

commenting library for Java TM 7 and above. It also

supports JavaScript, HTML, CSS, Properties, JSP

5https://www.jetbrains.com/pt-br/idea/
6http://www.virtualmachinery.com/jhawkprod.htm
7https://github.com/ertugrulcetin/CommentRemover/blob/master/Read

me.md

and XML comments. This library was used to

remove comments from Java and XML files

 Android Debug Bridge (ADB)8: It is a versatile

command line tool that allows one to communicate

with an emulator instance or with a connected

Android device. It was used to get the ID of the

connected devices and to copy the file in the “.trace”

format of the device to the computer

 Spoon9: This tool runs a test script on multiple devices

simultaneously and displays the results in a meaningful

way. It was used to run the system test scripts

 TraceView10: It is a tool that provides graphical

representations of trace logs. It was used to convert

the log file from ”.trace” format to ”.csv”

 Framework jMetal11: It was chosen to assist in the

implementation of the genetic algorithm, the Pareto

curve is generated by the jMetal framework. It has

8https://developer.android.com/studio/command-line/adb.html
9http://square.github.io/spoon/
10https://developer.android.com/studio/profile/traceview
11http://jmetal.sourceforge.net/

Chromosome 1

Chromosome 2

Chromosome n

Gene 1

Gene 2

Gene n

CFM

FR

FC

MV

CS

BV

Metric

Population Chromosome

(components for unit testing)

Gene (components)

Select input

artifacts
Scoring test

cases

Code

instrumentation
Metrics

extraction

App source

code Test cases

Dynamics

market

business

Run dynamic, market and business analysis

Extracted

metrics

Metrics

scoring
Component

selection
Run static

analysis

Static

Component

list

A
p

p
ro

ac
h

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1374

open source, is based on Java for multiobjective

optimization with metaheuristics (Nebro et al., 2015)

Each step that composes the processes presented in

Fig. 2 will be detailed below, showing some screens of

the SCUTMA plugin. The SCUTMA plugin is available

at ”https://bit.ly/2TKxsPG”.

Select Input Artifacts

As input artifacts, SCUTMA has two components:
(1) Source code consisting of a mobile app source code
for the Android platform, already available in the
Android Studio environment; and (2) test cases that are
system tests designed for the mobile app and written in
the Java language and that use the Espresso12 framework.
In Fig. 3 we can see the Budget Watch mobile app
opened in Android Studio and the access menu for the
SCUTMA plugin on the right side of “Help”.

After clicking the SCUTMA option, the main screen
is displayed, shown in Fig. 4. The initial screen has 3
fields. The Source Code Folder field is populated
automatically with the source code path of the
application opened in Android Studio and cannot be
changed. The SDK Folder field is also filled out
automatically with the SDK folder’s default path and can
be changed if it is incorrect. The Choose Type Of
Metrics field allows one to choose whether to use static
and/or dynamic metrics in component selection.

Run Static Analysis

This process allows the extraction of two metrics:

CFM and CS:

 Cost of Future Maintenance (CFM): The extraction of

this metric was done with the aid of the JHawk tool,

that is used for the extraction of Halstead metrics

 Code Smell (CS): The code smells were also

extracted using the JHawk tool. For each code smell

detected in a component, 1 point will be added to

the component. Then, the number of code smells

detected for each component will be added and,

after that, Equation 2 will be applied

Run Dynamic, Market and Business Analysis

This process is divided in three steps: test case
scoring, code instrumentation and metrics extraction.
These steps are described in the following subsections.

Scoring Test Cases

The user will report a weight on an ordinal scale from

0 to 5 for the importance of each test case, where 0

means the test case will not run, 1 is least and 5 is very

important. Test cases represent the system’s use cases. For

example, on the Android project (Fig. 3), the system test

12https://developer.android.com/training/testing/espresso

cases are in the directory /app/src/androidTest/. These test

cases are shown in Fig. 5, where the user would score the

test cases of the Budget Watch mobile app.

Code Instrumentation

In the instrumentation step, the plugin modifies the

main activity of the application. First, it identifies such

activity from the application’s AndroidManifest.xml file.

Then, the Comment Remover tool removes all comments

from this file and the main activity to avoid errors in

instrumentation. Finally, the plugin modifies the

application to insert the startMethodTracing commands

into the OnCreate method and stopMethodTracing into

the OnDestroy method of the mobile app’s main

Activity. These two methods entered as commands are

contained in the android.os.Debug class and are

responsible for starting and stopping the profile

collection respectively. This is to know what is

happening while running the mobile app.

Metrics Extraction

For the extraction of the dynamic, market and business

metrics, it is necessary to execute the test cases, which is

performed with the aid of the Spoon tool, because it

manages the simultaneous execution of a test case across

multiple devices, as well as logs the runtime and whether

the test case has passed or failed for each device.

After each test case run, a tracking file in the ”.trace”

format will be generated on each device. It provides

detailed metrics about a component, such as the number of

calls, execution time and time spent running the component.

Such file will be copied to the computer through the ADB

tool. After that, it will be transformed into the ”.csv” format

by the trace view tool provided with the Android SDK.

The information generated by the Spoon tool and the

tracking file in the “.csv” format will be used to extract

the metrics: Call frequency, risk of failure, market

vulnerability and business value:

 Call Frequency (FC): The number of calls will be

needed to compute the call frequency metric

 Risk of Failure (RF): The data needed to calculate

this metric comes from recording the execution of a

component in test cases that passed or failed. Thus,

the plugin analyzes the result of the Spoon tool and

the tracking file. As a result of this analysis, a set of

data will be generated from which test cases failed

and passed for each component

 Market Vulnerability (MV): The market

vulnerability metric is used to represent the

percentage of the market in which a component is

vulnerable. For instance, some devices with the

following API configurations 19, 21, 22 and 23

have, respectively, 20.8, 9.4, 23.15 and 31.3%

average market vulnerability and the edit component

https://bit.ly/2TKxsPG

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1375

failed on devices with APIs 22 and 23 this

component had a 54.4% market vulnerability

 Business Value (BV): The plugin analyzes the

result of the Spoon tool and the tracking file and

generates a data set of which test cases performed

each component. When a test case runs a

component, the weight of that test case is added

to the component

Fig. 3: SCUTMA plugin menu

Fig. 4: SCUTMA plugin home screen

Fig. 5: Screen mobile app test cases

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1376

Metrics Scoring

This step allows the user to select a usage percentage

for each metric with one of the following percentages 0;

0.2; 0.4; 0.6; 0.8 and 1.0, where 0 means that 0% of the

metric will be used, 0.2 will use 20% of the metric value

and so on. In Fig. 6 the SCUTMA screen is shown where

the user chooses the percentage of use of each metric.

Component Selection

The metrics used correspond to the objective functions

of the NSGA-II; because in the design of these metrics it

was planned that they would be part of the objective

functions. For this reason, all metrics are normalized in

the interval [0;1] to facilitate the combination of the

objectives in the NSGA-II. An algorithm combines the

results of the extraction of metrics into a single file that

serves as input to the genetic algorithm. The NSGA-II

implementation was developed in the Java language with

the aid of the jMetal framework.

The NSGA-II algorithm implements the concept of

dominance, that is, the Total Population is classified into

borders according to the degree of dominance.

Individuals at the first border are considered the best,

while individuals at the last border are the worst. Then

one can find better solutions (points closer to the Pareto

region) (Zitzler et al., 2004). Figure 6 shows the screen

where the user informs the parameters necessary to

execute the genetic algorithm. After execution, the list of

components of the optimal Pareto solution will be

presented to the user in the format: Id, package name,

class name, method name (component), parameters and

return type, as shown in Fig. 7.

Fig. 6: Parameters of genetic algorithm

Fig. 7: Screen showing selected components

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1377

Limitations of the SCUTMA Plugin

The SCUTMA plugin works on Windows 7,
Windows 10 and macOS Catalina 10.15.4 operating
systems. It is compatible with Android Studio version
2.2.3 up to version 3.5 (current). Another limitation is
the Android application source code to be in the Java
language, due to the Jhawk tool, only analyzing code in
that language. To use dynamic metrics, market and
business, the application needs to have system test
scripts, being a test case per Java file.

This section has presented the details of the
SCUTMA approach, the design process and the
technologies used for the implementation. The next
section presents the first study carried out with the
purpose of analyzing the correlation among the metrics
that are part of the multiobjective solution.

First study: Metrics Correlation

This study was designed and performed as a controlled
experiment based on (Runeson and Höst, 2009) on how to
design, plan and conduct case studies, surveys, experiments
or controlled experiments and action research.

RQ1: Is there a Correlation Among the Metrics?

The answer to this question will help us decide which

set of metrics can be used in combination.
Considering the metrics: CFM, CS, FC, FR, MV and

BV it is necessary to investigate if there is a correlation
among them, aiming to identify a subset of metrics to
support the selection of components for unit testing in
mobile apps. Table 4 shows a summary of these metrics,
including symbol, description and equation.

Subjects Selection

The subjects selection had two phases; mobile apps
selection and mobile devices selection. Selection of
mobile apps was based on four parameters: Popularity
(number of downloads in the Google Play store),
diversity (different categories of mobile apps), self-
containment (no more configurations to be implemented)

and UI test scripts. According to (Kochhar et al., 2015)
finding automated test script is not a trivial task since the
authors conducted an empirical investigation regarding
techniques used to test mobile apps, frameworks used
and types of testing used into open source mobile apps
and the concluded Android mobile apps are not properly
tested since around 86% of the investigated mobile apps
did not contain any test cases.

The first three parameters were based on (Fazzini et al.,
2017); and the last one was based on the need to run the
UI scripts to extract dynamic metrics. Table 5 shows the
pre-selected mobile apps. In order to identify which mobile
app could be used for our study we use two mobile apps
with more UI tests. Our objective was to run mobile apps
for identifying the correlation among metrics.

Selection of mobile devices was based on the screen
size, resolution and the Android SDK versions most used
by mobile apps published in the Google Play Store (data
updated in October 2018). In this study, we used mobile
devices with different versions of Android OS, models,
screen sizes and densities with the purpose of identifying
possible failures in mobile devices with great representation
in the market. The information on which devices certain
tests have failed is important to obtain the MV metric.
Table 6 shows the market share of the most commonly used
API versions and the model and number of devices that
would be used for each API version. Based on this
information and according to (Vilkomir et al., 2015), the
use of 13 devices is sufficient for fault-finding. We defined
13 devices that would be used in the study, listed in Table 6.

Table 4: Summary of metrics

Symbol Description Equation

CFM Cost of Future Maintenance c f mi = Ei  Bi

CS Code Smell
5

Si
csi 

FC Frequency of Call -

FR Fault Risk
 

Pi
rfi

Pi Fi




MV Market Vulnerability -

BV Business Value -

Table 5: Mobile apps used in this study

 Code UI
ID App Version Classification Downloads (LOC) Components Tests Category

1 Bee Count (BC) - 4.5/5 10-50 k 3.8k 13/230 15 Productivity
2 Budget Watch (BW) 0.7 5.0/5 1-2 k 946 15/141 15 Finance
3 Counter (C) 4.5/5 100-500 k 3 k 37/96 15 Tool
4 Money Balance (MB) - - - 2.9 k 14/257 15 Finance
5 Pocket Code (PC) 1.1.15 3.8/5 100-500 k 83 k 496/7610 420 Education
6 Pocket Paint (PP) 0.9.28 3.9/5 100-500 k 11 k 239/916 33 Tool
7 Recurrence (R) 1.5 4.5/5 10-50 k 2.4 k 27/194 15 Productivity
8 Simple Draw (SD) - 4.5/5 50-100 k 569 14/55 15 Tool
9 Simple Flashlight (SF) - 4.4/5 10-50 k 1 k 33/110 15 Tool
10 Simple Notes (SN) - 4.5/5 10-50 k 875 27/103 15 Tool

Legend: ID = a number to identify the mobile app; Version = mobile app version; App = mobile app name; Classification = based on
users rating on the Google Play Store; Downloads = number of downloads in the Google Play Store; Code (LOC) = number of lines
of mobile app code; Components = number of components the tests called/number of all components in the mobile app; UI Tests =
number of User Interface (UI) tests; Category = category to which the mobile app belongs

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1378

Table 6: Mobile devices used in this study

ID Version Version name API Percentage Model Size Density

D1 4.4.2 KitKat 19 7.6 BLU 480800 230
D2 LG E977 7681280 320
D3 5.0 21 3.5 Galaxy Note 3 LTE 10801920 480
D4 Alcatel PIXI4 (4.0) 320480 160
D5 5.1 Lollipop 22 14.4 Alcatel PIXI4 (6.0) 1280720 320
D6 Galaxy J1 Mini 480800 240
D7 ASUS Zenfone Go LTE 7201280 320
D8 Galaxy A9 10801920 420
D9 6.0 Marshmallow 23 21.3 LG X Power 7201280 320
D10 Moto E 960540 240
D11 Moto Z power edition 14402560 640
D12 7.0 Nougat 24 18.1 Galaxy A5 7201280 294
D13 Moto G 5 10801920 480

Study Execution

SCUTMA plugin was used for each mobile app. A

value between 1 and 5 was randomly selected for each

test script. Therefore, the test scripts were run at the

same time on all the mobile devices used in this study.

Subsequently, the extraction of the value of the metrics

for each mobile app was carried out.

Results and Discussion

The static, dynamic, market and business metrics of
two mobile apps were extracted and the test scripts of
each mobile app were executed on 13 devices. The value
of these metrics for each component per mobile app is
available at ”https://goo.gl/NwM3je”.

The SPSS13 program was used to support the
verification of the existence or not of correlation among
the metrics, in order to generate the Pearson correlation
coefficient. This coefficient is adequate when the data
are quantitative and have normal distribution. Table 7
presents the value generated by the Pearson correlation
coefficient; it was extracted from (Rumsey, 2009).

For this paper the correlations will be interpreted as
follows: The metrics could be used together when the
correlation is no linear relationship, weak or moderate;
and the metrics cannot be used together when the
correlation is strong or perfect.

Pocket Code Mobile App

Dynamic, market and business metrics depend on the
outcome of system test scripts. In the result of the
execution, of the 420 test scripts of the Pocket Code
mobile app by the SCUTMA plugin, it was observed that
251 (60%) of the test scripts failed on at least one device
and 169 (40%) of the scripts passed on all the devices.

Table 8 shows the number of test scripts that failed
per device. Analyzing this data, we can see that most test
scripts have failed on almost every device since the
median percentage of faults per device is 72.51% of all
test scripts that failed.

13https://www.ibm.com/analytics/us/en/technology/spss/

Table 7: Interpreting the correlation value

Value Correlation

0 No linear relationship

+0.3 or -0.3 Weak

+0.5 or -0.5 Moderate

+0.7 or -0.7 Strong

+1 or -1 Perfect

Table 8: Quantity of faults by device pocket code.

ID device Total faults Percentage faults

D1 184.00 73.31

D2 192.00 76.49

D3 180.00 71.71

D4 196.00 78.09

D5 177.00 70.52

D6 184.00 73.31

D7 182.00 72.51

D8 173.00 68.92

D9 179.00 71.31

D10 185.00 73.71

D11 176.00 70.12

D12 184.00 73.31

D13 178.00 70.92

Average 182.31 72.63

Median 182.00 72.51

Standard deviation 6.37 2.54

Table 9 shows the value of the Pearson correlation

coefficient for the Pocket Code mobile app. The

correlation between the Fault Risk (FR) and Market

Vulnerability (MV) metrics is likely strong due to the

161 (64.14%) test scripts that failed on all devices and

the median failure of the test scripts per device to be

72.51% making the Market Vulnerability (MV) have a

value close to 1 (one) for most components, since the

value of this metric depends on the devices in which the

failure occurred. The Fault Risk (FR) metric was also

close to 1 (one) for each component, making the

correlation between the two metrics strong.

However, if the tests fail with greater variability
among the devices, the value of the Market Vulnerability
(MV) metric will have a greater variation, causing it to
change the correlation value between the two metrics.

https://goo.gl/NwM3je

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1379

Table 9: Pearson correlation pocket code

 CFM CS BV FC MV F R

CFM 1

CS 0.19a 1

BV 0.009 -0.006 1

FC 0 0.024b 0.238a 1

MV -0.001 0 0.528a 0.122a 1

FR -0.001 0.002 0.473a 0.119a 0.987a 1

Legend: a. The correlation is significant at the 0.01 level (2 extremities); b. The correlation is significant at the 0.05 level (2

extremities)

Table 10: Quantity of faults by device pocket paint

ID device Total faults Percentage faults

D1 22.00 81.48

D2 20.00 74.07

D3 22.00 81.48

D4 22.00 81.48

D5 20.00 74.07

D6 19.00 70.37

D7 20.00 74.07

D8 19.00 70.37

D9 19.00 70.37

D10 19.00 70.37

D11 24.00 88.89

D12 19.00 70.37

D13 20.00 74.07

Average 20.38 75.50

Median 20.00 74.07

Standard deviation 1.61 5.96

Table 11: Pearson correlation pocket paint.

 CFM CS BV FC MV FR

CFM 1

CS 0.324a 1

BV -0.024 -0.032 1

FC -0.009 0.006 0.362a 1

MV -0.031 -0.041 0.732a 0.266a 1

FR -0.028 -0.053 0.413a 0.159a 0.882a 1

Legend: a. The correlation is significant at the 0.01 level (2 extremities).

Pocket Paint Mobile App

In the result of the execution of the 33 system test scripts

of the Pocket Paint mobile app by the SCUTMA plugin, it

turns out that 27 (82%) test scripts failed on at least one

device and 6 (18%) test scripts passed on all devices.

The number of test scripts that failed per device for

the Pocket Paint mobile app is shown in Table 10. In this

mobile app, the median percentage of device faults was

74.07%. This means that most test scripts failed on

almost every device. Since 17 (62.96%) test scripts

failed on all devices.

We consider the large number of faults in both the

Pocket Code mobile app and Pocket Paint due to the

following reasons. First of all, it is difficult to make a

script that works on different devices because even if all

the required user interface elements are on screen,

layouts can still differ based on OS version, screen size

and orientation (Samuel and Pfahl, 2016). Second, we

did not have the information on which devices were used

to create test scripts. Finally, we need to measure MV

and BV metrics, therefore we could not run the test

scripts previously.

Table 11 shows the value of the Pearson correlation

coefficient for the Pocket Paint mobile app. The results

show that there is a strong correlation between the

Market Vulnerability (MV) and Business Value (BV)

metrics. However, the Business Value (BV) of each

component depends on the weight given to each test

script. Therefore, the correlation may change according

to the weight given to each test script.

The explanation for the strong correlation between

the Market Vulnerability (MV) and Fault Risk (FR)

metrics is the same as that reported in the Pocket Code

mobile app, because here as well, there is a slight

variation in the devices where the test scripts failed.

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1380

Fig. 8: Metrics that can be used together

Discussion

Figure 8 shows which metrics can be used together.

We can observe that the CFM and CS static metrics can

be used together, since the result of the correlation

between these two metrics was weak (0.19) and

moderate (0.324). The CFM and CS metrics can be used

together with the metrics FC, FR, MV and BV, as there

is a weak correlation among them. Probably this weak

correlation is due to the CFM and CS metrics being

extracted statically and the metrics FC, FR, MV and BV

require execution of the mobile app system test cases.

The CFM, CS, FC, FR, MV and BV metrics can be

used together in the same objective function, as observed

in Fig. 8. However, as a suggestion, we could

recommend that the tester chooses to use only one of the

FR or MV metric for component selection, in which the

test cases still depend on the compatibility problem

among different devices, because in the results of this

study, the correlation between these two metrics was

strong (0.987 and 0.882) and the test cases still depended

on the compatibility problem among different devices.

The BV metric can be used together with the MV
metric. However, in some cases depending on the user’s
weight for each test cases, the correlation between these
two metrics should vary between weak and strong.

Because in Pocket Code mobile app was moderate (0.528)
and in Pocket Paint mobile app was strong (0.732).

Threats to Validity

This section discusses different threats to the validity of

our experiment. The instrumentation could be a threat, since

a change in the mobile apps’ source code was made to

include support for profile collection of each mobile app,

because it was not possible to collect this data without the

instrumentation. However, this instrumentation does not

influence the operation of the mobile app. In order to

reduce this threat, the choice of mobile apps was not done

randomly, since they were selected based on the

availability of their source codes and test scripts.

To reduce the threat of results generalization, two

mobile apps of different categories were used. However,

the study may not be representative for other mobile app

categories. The experimental environment can be a

threat. Our environment was academic, but the

computational infrastructure used (devices) represents

the same as in industry by testers.

Taking into account the fact that the results of the

previous tests run could affect the next test executions,

after executing each test script, the SCUTMA plugin

performs a test procedure to uninstall and clear the App

Under Test (AUT). Also to reduce the threat of

confidence in measurements, the weight of each use case

was assigned randomly in order to simulate the options

that the user would have.

The elements outside the experimental environment

could influence the results, for example, a message or an

incoming call during the test case execution. Therefore,

the mobile devices were placed in airplane mode, since

the AUTs do not need an internet connection to work.

Another configuration on mobile devices is to configure

the keep awake option so that the screen does not enter the

standby mode while the test is running. In addition to the

first study, we execute a feasibility study of the SCUTMA

approach; this study will be present at the next section.

Second Study: Feasibility

This study aims to analyze the effectiveness of the

plugin in selecting components for unit testing in mobile

apps on the Android platform. We followed the guidelines

of (Runeson and Höst, 2009). For this study we measured

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1381

the efficiency with the number of components with error

selected. We define a research question as follow:

RQ2: What is the effectiveness of the SCUTMA
plugin in component selection in relation to the selection

made manually by a specialist with regard to the number

of components with selected errors?
Answering this question will help us to understand

which usage scenarios are recommended to use the plugin.

In the next subsections of this study, it will be

explained: (1) How the components with error were

identified, (2) which scenarios will be considered in

the assessment, (3) how the selection of participants

was carried out, (4) which materials were used, (5)

how the study was carried out and (6) what results

were found. In addition, threats to the validity of this

study will be discussed.

Identification of Components with Error

The identification of the components with error will

occur through the analysis of the error correction

commits. To identify these commits, a manual search of

commits messages will be performed using the keywords

fix, problem, incorrect, correct, conform (Mockus and

Votta, 2000). To mitigate the threats to the validity of

this study, only the commits of the mobile app version

used in the experiments will be analyzed.

We identify some specialists to select components

manually, following the next steps: (1) Each specialist

will receive a document explaining the main features and

features of the mobile app. Next, (2) the specialist will

select the components for unit testing and will describe

which criteria were used for the selection. Then, (3) once

the lists of manually selected components are obtained

for each mobile app, the researcher will evaluate the

effectiveness of the selection of each specialist. Finally,

(4) we will compare the selection of specialists of each

mobile app with the selection of the SCUTMA plugin.

Evaluated Scenarios

In order to compare the selection of specialists

with the selection of the SCUTMA plugin, 63

different prioritization scenarios were constructed to

simulate the broad spectrum of diverse realities

present in the software industry. The scenarios are

based on six criteria: Cost of Future Maintenance

(CFM), Defect Propensity (PD), Frequency of Call

(FR), Fault Risk (FR), Market Vulnerability (MV) and

Business Value (BV).

In the first scenario (C01), the priority is to select

components with high cost rate of future maintenance for

unit tests. In the second (C02), components with a high

degree of readiness to defect (code smells) are selected.

This rule is followed up to the sixth scenario (C06),

according to the other criteria. From the seventh scenario

(C07) onwards, an arrangement is generated that

incorporates all the combinations of criteria among them,

as presented in Table 12.

For example, in the thirteenth scenario (C13), the

components prioritized for selection are defined as those

with a high defect propensity rate and risk of failure. The

normalized value of the considered criteria was used to

construct the scenarios.

Due to the random nature of the evolutionary

approaches, each scenario was executed 30 times with

the NSGA-II evolution algorithm and the mean among

the best results was used for comparison according to the

parameters usually cited in the technical literature for

evolutionary algorithms.

The data that were used to execute the algorithm were:

 Population size: 200

 Maximum number of evaluations: 200.000

 Crossover rate: 0.85

 Mutation rate: 0.01

Table 12: Component selection prioritization scenarios

ID Criterions ID Criterions ID Criterions ID Criterions

C01 CFM C17 FC x MV C33 PD x FC x MV C49 CFM x FC x FR x BV

C02 PD C18 FC x BV C34 PD x FC x BV C50 CFM x FC x MV x BV

C03 FC C19 FR x MV C35 PD x FR x MV C51 CFM x FR x MV x BV

C04 FR C20 FR x BV C36 PD x FR x BV C52 PD x FC x FR x MV

C05 MV C21 MV x BV C37 PD x MV x BV C53 PD x FC x FR x BV

C06 BV C22 CFM x PD x FC C38 FC x FR x MV C54 PD x FC x MV x BV

C07 CFM x PD C23 CFM x PD x FR C39 FC x FR x BV C55 PD x FR x MV x BV

C08 CFM x FC C24 CFM x PD x MV C40 FC x MV x BV C56 FC x FR x MV x BV

C09 CFM x FR C25 CFM x PD x BV C41 FR x MV x BV C57 CFM x PD x FC x FR x MV

C10 CFM x MV C26 CFM x FC x FR C42 CFM x PD x FC x FR C58 CFM x PD x FC x FR x BV

C11 CFM x BV C27 CFM x FC x MV C43 CFM x PD x FC x MV C59 CFM x PD x FC x MV x BV

C12 PD x FC C28 CFM x FC x BV C44 CFM x PD x FC x BV C60 CFM x PD x FR x MV x BV

C13 PD x FR C29 CFM x FR x MV C45 CFM x PD x FR x MV C61 CFM x FC x FR x MV x BV

C14 PD x MV C30 CFM x FR x BV C46 CFM x PD x FR x BV C62 PD x FC x FR x MV x BV

C15 PD x BV C31 CFM x MV x BV C47 CFM x PD x MV x BV C63 CFM x PD x FC x FR x MV x BV

C16 FC x FR C32 PD x FC x FR C48 CFM x FC x FR x MV

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1382

Equation 6 was used in the results analysis, where it

is the relation between the components with error and the

total number of components:

 
TCF

f x
TC

 (6)

where, x is the solution found in the Pareto curve; TCE is

the total of components with error that has in solution x; and

TC is the total of components you have in the solution x.

Participant Selection

To participate in this study, industry and academia

professionals with in-app unit testing experience on the

Android platform were invited. The developer/researcher

base was obtained from a Linkedin social network search,

as well as the Android Dev BR community. To participate

in the study, the professionals had to express interest in

participating in the study, agreeing to the Informed Consent

Form (TCLE) and filling out a characterization form. This

was done with the objective of having the knowledge of the

degree of experience of each professional and thus directing

the selection to the next phase of the experiment. The tools

are available at “https://goo.gl/71TvEQ”.

The characterization form was sent to more than 100

professionals. Of this total, 31 participants moved on to

the next phase of group selection. The 31 participants

were divided into two groups, Group A and Group B,

taking into account the information that was filled out on

the characterization form, on development experience

and unit test experience time on Android mobile apps.

Of the total number of participants, only 7 completed

the study. Of these, 2 of them have 2 years of experience

(29%); 2 of them have 3 years of experience (29%); 3 of

them have 1, 4 and 5 years of experience, respectively

and each represents (14%).

Materials

Because the study involved the manual and automated

selection of components, it was necessary to use mobile

apps with UI tests. Previously we analyzed and executed UI

tests of mobile apps in Table 5. We selected two mobile

apps with UI tests more compatible with different mobile

devices. Table 13 shows the description of some features of

mobile apps used for this study. More detailed information

about these mobile apps is available at

“https://goo.gl/71TvEQ”. For this study, we have used the

same devices as used in our first study (Table 6).

Study Execution

The feasibility study was conducted online14 and

executed in two parts. In the first part, participants were

14The study was conducted with specialists from the industry and

academia (target audience).

divided into groups A and B, then emailed a description

of the characteristics of the mobile app for each

participant. Group A got the Recurrence mobile app and

Group B with the Budget Watch mobile app. For each

participant they were asked to perform the selection of

components for unit test writing and to send the list of

selected components by e-mail.

In the second part, for the study execution process,

each mobile app was opened by the SCUTMA plugin in

Android Studio, a value between 1 and 5 was randomly

selected for each test script, so the test scripts were run at

the same time in all the mobile devices used in the

experiment. Subsequently, the value of the metrics for the

mobile app was started. Finally, in the SCUTMA plugin,

components for the unit test writing were selected and 63

different selections were made using the 63 scenarios to

select the components. The list of components selected

from each scenario was compared to the list assembled

from the selection made by the specialists.

The following will present the results of this study for

each of the mobile apps, starting with the Budget Watch

mobile app and then the result for the Recurrence mobile

app. First, the list of components with error will be

shown, followed by the evaluation of the effectiveness of

the manual selection performed by the specialists,

continuing with the evaluation of the effectiveness of the

automated selection performed by the SCUTMA plugin,

finally the comparison of the manual selection with the

automated selection.

Mobile App Budget Watch Results

Table 14 shows the list of Components that were

identified with Error (CE) for the Budget Watch mobile

app. This list of components will be used to evaluate the

selection of specialists and the SCUTMA plugin.

Specialists Evaluation

The first Specialist (S1) selected eight components

using the criterion “Public methods, which are possible

to be tested, methods that are used within

functionalities”, which represents 5.67% of the total

components of the mobile app. Of these, one of them (ID

CE9) is in the list of twelve components with known

errors, presented in Table 14, representing 8.33%.

The second Specialist (S2) selected sixteen

components using the criterion “Classes dealing with

lifecycle methods”, which represent 11.35% of the total

components of the mobile app. Of these, eight (Ids CE1,

CE2, CE3, CE4, CE6, CE8, CE11 and CE12) are in the

list of twelve components with known errors Table 14,

representing 66.67%. Figure 9 presents the graph that

shows the coverage percentage of each of the two

specialists for the components that were identified with

errors in the Budget Watch mobile app.

https://goo.gl/71TvEQ
https://goo/

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1383

Fig. 9: Coverage of components with errors by specialists for the Budget Watch mobile app

Fig. 10: Number of components with error that could be selected by each metric for the Budget Watch mobile app

Table 13: Mobile app descriptions

ID App Version Code (LOC) Components Tests Category

1 Budget Watch (BW) 0.7 946 36/141 15 Finances

2 Recurrence (R) 1.5 2.4 k 27/194 15 Productivity

Legend: ID = a number to identify the mobile app; App = mobile app name; Version = mobile app version; Code (LOC) = number of

lines of code in the mobile app; Components = number of components the tests called/total number of mobile app components; Tests

= number of mobile app UI tests; Category = category to which the mobile app belongs

Table 14: List of components with errors in the Budget Watch mobile app

ID Class Component signature

CE1 BudgetActivity protected void onCreate(Bundle savedInstanceState)
CE2 BudgetActivity public boolean onContextItemSelected(MenuItem item))
CE3 BudgetActivity public void onResume()
CE4 BudgetActivity protected void onDestroy()
CE5 BudgetViewActivity (R) public boolean onOptionsItemSelected(MenuItem item)
CE6 BudgetViewActivity (R) public void onResume()
CE7 BudgetViewActivity (R) protected void onDestroy()
CE8 BudgetViewActivity (R) protected void onCreate(Bundle savedInstanceState)
CE9 CsvDatabaseExporter (R) public void exportData(DBHelper db, OutputStreamWriter output)
CE10 DatabaseCleanupTask (R) protected void doInBackground(Void... nothing)
CE11 MainActivity (R) protected void onCreate(Bundle savedInstanceState)
CE12 MainActivity (R) private void displayAboutDialog()

SCUTMA Plugin Evaluation

For a better understanding of the coverage of

components with errors by the SCUTMA plugin, Fig. 10

shows the number of components with error (presented

in Table 14) that could be selected for each metric used

in the 63 scenarios.

The two components (IDs CE1 and CE3 from Table

14) were executed during the execution of the test cases.

Therefore, they are more likely to be selected in

scenarios using the metrics BV, MV, FR and FC. The

four components with CE2, CE6, CE9 and CE12 IDs of

Table 14 are more likely to be selected in scenarios using

the PD metric, since code fragments have been identified

in those components. Finally, all components of the

mobile app, including the twelve faulty components in

Table 14, can be selected in scenarios that use the CFM

metric, as all components have this metric.

Components with Error

Table 15 presents the coverage of components with

error of the best and worst of the 63 scenarios for the

Budget Watch mobile app. It is observed that the

solutions of each of the scenarios managed to find at

most 10 components (83.33%) with error. It is worth

noting that each of the scenarios obtained a different

Specialist 1 (S1)

8.33%

Specialist 2 (S2)

91.67%

33.33%

66.67%

Components with selected errors Unselected errors Components

2

2

2

2

4

12

BV

MV

FR

FC

PD

CFD

Amount of components with error

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1384

number of solutions at the Pareto frontier. The Pareto

frontier was generated from the 30 runs of the genetic

algorithm for each of the scenarios and only the Pareto

frontier solutions were analyzed. The complete table

with the result of the 63 scenarios can be accessed at

“https://goo.gl/92kQEf”.
Still analyzing Table 15, it can be seen that the

scenario 1 (C01) obtained solution with the highest value
for the relative number of components in error divided by
the total number of components (Equation 6) when return
from 1 to 8 parts with error, this is due to the fact that all
components have a Cost of Future Maintenance (CFM).

The C02 scenario using the default Propensity (PD)
metric selected four components with error and these
components had identified code smells (Fig. 10). The
four scenarios C03, C04, C05 and C06 using the
Frequency of Call (FC), Fault Risk (FR), Market
Vulnerability (MV) and Business Value (BV) metrics
respectively selected two components with error, which
were performed by the test cases (Fig. 10).

With regard to the best case, scenarios C51 and C50
can be cited, as these were the best and second best
scenario for Equation 6, respectively. The best solution for
the C50 scenario obtained 21.27% of the total components
of the mobile app and with this number of components
this solution covered 75% of the components with errors
identified and got 70% more components. For scenario
C51, the best solution was 26.95% of the total components

of the mobile app, covering 83.33% of the components
with errors identified and over 73.68% of components.
This indicates that in the best case SCUTMA is achieving
good coverage of the components with error, however, it
needs a refinement to decrease the number of additional
components that make up the solution.

As far as the worst case is concerned, scenario C42
can be cited because it had the lowest value for Equation
6. The worst solution for scenario C42 obtained 21.98%
of the total components of the mobile app, with that
number of components, this solution covered 8.33% of
the components with errors identified and was with
96.77% of components.

Components with General Error

Figure 11 shows the percentage of solutions for each

number of error components identified in the Pareto

frontier solutions. It is observed that most Pareto frontier

solutions identified three components with error and

only 1.43% of the solutions identified zero components

with error. This indicates that SCUTMA has good error

coverage. However, Fig. 12 shows that 84.61% of the

components in the solutions did not contain errors. For

this reason, it is necessary to refine the plugin to reduce

the number of components that do not contain errors

(false positives), directing to components that have real

errors, in real mobile apps.

Table 15: List of components with errors in the Budget Watch mobile app

 Components with error
 --

 0 1 2 3 4 5 6 7 8 9 10 11 12

C1 Quantity 489 619 500 578 282 198 570 264 69 7 0 0 0
 Higher f(x)% 0.00 100.00 100.00 75.00 66.67 62.50 46.15 53.85 34.78 25.71 0.00 0.00 0.00

 Lower f(x)% 0.00 12.50 20.00 20.00 25.00 25.00 13.95 14.58 15.69 17.65 0.00 0.00 0.00

C2 Quantity 28 18 2 5 6 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 20.00 10.53 14.29 17.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 5.26 10.00 12.50 15.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C3 Quantity 6 31 19 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 100.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 7.14 11.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C4 Quantity 8 41 4 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 50.00 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 7.14 12.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C5 Quantity 7 19 2 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 100.00 13.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x) % 0.00 7.14 12.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C6 Quantity 3 34 28 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 100.00 40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 7.14 11.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C42 Quantity 20 440 310 196 273 306 495 215 261 89 0 0 0
 Higher f(x)% 0.00 50.00 40.00 13.04 12.90 15.15 17.14 17.95 19.05 20.45 0.00 0.00 0.00

 Lower f(x)% 0.00 3.23 5.88 7.89 10.00 11.90 12.50 14.00 14.29 15.52 0.00 0.00 0.00

C50 Quantity 21 242 383 550 652 364 305 575 134 12 0 0 0
 Higher f(x)% 0.00 50.00 28.57 20.00 22.22 25.00 27.27 26.92 27.59 30.00 0.00 0.00 0.00

 Lower f(x)% 0.00 5.26 8.70 12.00 14.29 17.24 18.18 12.96 14.81 17.65 0.00 0.00 0.00
C51 Quantity 14 201 460 690 749 444 303 533 121 12 8 0 0

 Higher f(x)% 0.00 100.00 40.00 18.75 22.22 25.00 27.27 29.17 28.57 21.43 26.32 0.00 0.00

 Lower f(x)% 0.00 5.00 8.70 12.00 13.33 16.67 18.18 1 3.73 16.33 18.37 17.54 0.00 0.00

Legend: C01 to C63 = are the scenarios; 0 to 12 = the number of components with error; Quantity = is the total of solutions that found a specific

number of components with error (0 - 12); Higher f(x) = refers to the solution that had the highest value for Equation 6; Lower f(x) = refers to the
solution that had the lowest value for Equation 6

https://goo.gl/92kQEf

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1385

Fig. 11: Percentage of SCUTMA solutions for the budget

watch mobile app

Fig. 12: Percentage of error-free components of SCUTMA

solutions for the Budget Watch mobile app

Table 16: Metrics and components with error for the budget

watch mobile app

Metric CE NE CE/NE

Cost of future maintenance 422511 2296622 0.18

Market vulnerability 230023 1263927 0.18

Business value 224797 1265740 0.17

Code smell 220903 1398426 0.15

Frequency of call 220808 1252222 0.17

Fault risk 216164 1206150 0.18

Metrics and Components with Errors

With regard to the metrics that compose the

component selection prioritization scenarios, Table 16

presents the number of Components with Error (CE) and

No Error (NE) for each of the metrics. The Future

Maintenance Cost (CFM) metric has the highest number

of components with error and no error. This is due to the

fact that all the components have a value for this metric,

making the scenarios that use this metric have more

solutions and consequently more components. It is also

observed that the relation between components with

error and without error was similar to all the metrics,

being between 0.15 and 0.18.

Comparison between the Specialists and the

SCUTMA Plugin

For the comparison of the automated selection using

the SCUTMA plugin with the manual selection

performed by specialists, the result of the specialist S2

was used, since between the two specialists he had a

greater coverage (8; 66.67%) of the components with

errors. For SCUTMA, scenarios C01, C50 and C51 were

selected because they had the best result among the 63

scenarios. Figure 13 presents a comparison between the

percentage of components with error selected by

specialist S2 and the three best scenarios (C01, C50 and

C51) of the SCUTMA plugin.

It is observed that the specialist S2 obtained a lower

coverage of the components with error compared to the

scenarios C50 and C51 of SCUTMA. Although the

number of error components selected by the SCUTMA

is greater than that of the S2 specialist, it was observed

that the SCUTMA solutions brought a larger number of

components that were not identified with error, as

shown in Table 17. This indicates that the SCUTMA

plugin needs to improve on this aspect, based on the

result of this mobile app.

Mobile App Recurrence Results

Table 18 lists the 15 components that were identified

with error (CE) for the Recurrence mobile app. This list

of components will be used to evaluate the selection of

specialists and the SCUTMA plugin.

Specialists Evaluation

The first Specialist (S1) selected 24 components

using the criterion “representative components for the

business, without dependencies of the Android

framework”, which represent 12.37% of the total

components of the mobile app. Of these, two of them

(components with ids CE5 and CE6) are in the list of

fifteen components with known errors presented in Table

18, representing 13.33%.

The second Specialist (S2) selected 37 components

using the criterion “components of more complex

classes, classes where silly mistakes usually happen”,

which represent 19.07% of the total components of the

mobile app. Of these, one (component with id CE6) is in

the list of components with known errors of Table 18,

representing 6.66%.

The third specialist (S3) selected 21 components

using the criterion “main features: 1 - Create reminder; 2

– view reminder; 3 - CRUD Database”, which represent

10.82% of the total components of the mobile app. Of

these, one (component with CE15 id) is in the list of

components with error, representing 6.66%.

The fourth Specialist (S4) selected 33 components

using the criterion “public components of business

classes and utilities”, which represent 17.01% of the total

components. Of these, two (components with ids CE5

and CE6) are in the list of components with errors,

representing 13.33%.

The fifth Specialist (S5) selected 34 components

using the criteria “components that are independent of

1.12%

6.35%

10.68%

0.06% 0.00% 0.00%
1.43%

11.47%

14.76%

15.05%

12.88%

11.73%

14.48%

0 1 2 3 4 5 6 7 8 9 10 11 12

15.39%

84.61%

With error

No error

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1386

the Android SDK”, which represent 17.52% of the total

components. Of these, no component is in the list of

failed components. In Fig. 14 the graph showing the

coverage percentage of each of the five specialists is

shown for the components that were identified with

errors in the Recurrence mobile app.

Table 17: Result of Equation 6 for the Budget Watch mobile app

 Equation 6 (fx) (%)

Specialist 2 (S2) 50.00

SCUTMA (C01) 34.78

SCUTMA (C50) 30.00

SCUTMA (C51) 26.32

Fig. 13: Comparison between specialists and SCUTMA for the Budget Watch mobile app

Fig. 14: Coverage of components with errors by specialists for the Recurrence mobile app

Table 18: List of failing components of the recurrence mobile app

ID Class Component signature

CE1 AboutActivity void launchAppURL()

CE2 AboutActivity void launchEmail()

CE3 AboutActivity void showContributorsDialog(View view)

CE4 AboutActivity void showLibrariesDialog()

CE5 AlarmReceiver public void onReceive(Context context, Intent intent)

CE6 AlarmUtil public static void setNextAlarm(Context context, Reminder reminder, DatabaseHelper database)

CE7 CreateEditActivity void colourSelector()

CE8 CreateEditActivity void datePicker(View view)

CE9 Create Edit Activity void iconSelector()

CE10 CreateEditActivity void repeatSelector()

CE11 CreateEditActivity void switchClicked()

CE12 CreateEditActivity void timePicker()

CE13 CreateEditActivity void toggleSwitch()

CE14 MainActivity void fabClicked()

CE15 ViewActivity public void actionMarkAsDone()

66.67% 66.67%
75.00%

83.33%

Specialist 2 (S2) SCUTMA (C01) SCUTMA (C50) SCUTMA (C51)

Components with selected errors

Specialist 1 (S1) Specialist 2 (S2) Specialist 3 (S3)

86.67% 93.34% 93.34%

13.33%
6.66% 6.66%

Specialist 4 (S4) Specialist 5 (S5)

13.33% 0.00%

86.67% 100.00%

Components with selected errors Unselected errors Components

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1387

SCUTMA Plugin Evaluation

Figure 15 shows the number of components with
error (Table 18) that could be selected for each metric
used in the 63 scenarios. The component with id CE14
of Table 18 was run during the execution of the test
cases. Therefore, it has a greater probability of being
selected in the scenarios that use the metrics BV, MV,
FR and FC. The component with id CE6 is more likely
to be selected in scenarios using the PD metric, since
code smells have been identified in that component.
Finally, all components of the mobile app, including the
fifteen components with errors in Table 18, can be
selected in scenarios that use the CFM metric, since all
components have a cost of future maintenance.

Components with Error

Table 19 shows the coverage of components with error

of the best and worst of the 63 scenarios for the

Recurrence mobile app. It is observed that the solutions of

each of the scenarios managed to find 5 at most

components (33.33%) with error. It is worth noting that

each of the scenarios obtained a different number of

solutions at the Pareto frontier. The Pareto frontier was

generated from the 30 runs of the genetic algorithm for

each of the scenarios and only the Pareto frontier solutions

were analyzed. The complete table with the result of the

63 scenarios can be accessed at “https://goo.gl/92kQEf”.

In Table 19 it can be verified that scenario 1 (C01)

obtained the solution with the highest value for the ratio

of components with error divided by the total number of

components (Equation 6), when it found 2 to 5

components with error. This is due to the fact that all

components have a Cost of Future Maintenance (CFM).

Scenario 2 (C02) using the default propensity metric

selected a component with error and this component has

code smells identified (Fig. 15). The four scenarios C03,

C04, C05 and C06 using the Call Frequency (FC), Risk

of Failure (FR), Market Vulnerability (MV) and

Business Value (BV) metrics respectively did not select

any components with error, because to reduce the search

space of the genetic algorithm, components with less

than two cyclomatic complexity were removed and this

includes the CE14 component that has cyclomatic

complexity equal to one.

Table 19: Component coverage with the best and worst of the 63 scenarios for the Recurrence mobile app

 Components with error
 --
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C01 Quantity 1031 799 346 398 37 4 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 50.00 66.67 27.27 15.38 13.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 3.70 5.26 6.25 8.70 11.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C02 Quantity 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 12.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C03 Quantity 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C04 Quantity 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C05 Quantity 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C06 Quantity 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C07 Quantity 530 1370 342 384 39 1 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 33.33 28.57 17.65 13.79 13.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 3.45 5.13 6.52 8.33 13.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C23 Quantity 418 1277 345 136 15 1 0 0 0 0 0 0 0 0 0 0
 Higher f(x)% 0.00 50.00 11.76 10.00 11.76 12.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 2.22 4.55 6.12 7.84 12.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C28 Quantity 816 582 316 292 25 3 0 0 0 0 0 0 0 0 0 0

 Higher f(x)% 0.00 16.67 14.29 10.71 12.50 13.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 2.56 4.00 6.12 8.16 11.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C29 Quantity 848 603 332 321 41 4 0 0 0 0 0 0 0 0 0 0

 Higher f(x)% 0.00 50.00 14.29 10.71 12.50 13.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 2.78 4.44 5.77 7.84 11.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C58 Quantity 440 1249 423 178 28 2 0 0 0 0 0 0 0 0 0 0

 Higher f(x)% 0.00 20.00 11.76 15.00 12.50 13.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Lower f(x)% 0.00 2.56 4.08 6.00 7.84 11.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Legend: C01 to C63 = are the scenarios; 0 to 15 = the number of components with error; Quantity = is the total of solutions that found a specific

number of components with error (0 - 15); Higher f(x) = refers to the solution that had the highest value for Equation 6; Lower f(x) = refers to the
solution that had the lowest value for Equation 6.

https://goo.gl/92kQEf

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1388

Fig. 15: Number of components with error that could be selected by each metric for the Recurrence mobile app

Fig. 16: Percentage of SCUTMA solutions for the Recurrence

mobile app

In relation to the best case we will analyze scenario

C0, as this was the best scenario for Equation 6. The best

solution for scenario C01 with 5 components with error

obtained 19.58% of the total components of the mobile

app and with this number of components this solution

covered 33.33% of the components with errors identified

and got 86.84% of additional components. This indicates

that in the best case SCUTMA is reaching a low

coverage of the components with error, being that the

majority (10; 66.67%) of the components with error for

this mobile app has a cyclomatic complexity equal to

one, making it impossible for its selection by the plugin.

As for the worst case we will analyze scenario C23,

because it had the lowest value for Equation 6. The

worst solution for scenario C23 obtained 23.19% of the

total components of the mobile app and with that number

of components this solution covered 6.66% of the

components with errors identified and was with 97.77%

of components.

Components with General Error

Figure 16 shows the percentage of solutions for each

number of error components identified in the Pareto

frontier solutions is shown. It is observed that most

Pareto frontier solutions identified a component with

error and 32.09% of the solutions identified zero

components with error. This indicates that SCUTMA has

a low error coverage when errors are concentrated in

components with complexity equal to one.

For a better understanding, Fig. 17 shows that

95.31% of the components in the solutions did not

contain errors. For this reason, it is noticed that the

SCUTMA plugin does not have a good error coverage

when the errors are concentrated in components with a

cyclomatic complexity equal to one.

Metrics and Components with Errors

In terms of the metrics that compose the component

selection prioritization scenarios, Table 20 presents the

number of Components with Error (CE) and No Error

(NE) for each of the metrics. The Cost of Future

Maintenance (CFM) metric has the largest number of

components with error and no error, because all

components have a value for this metric, making the

scenarios using this metric have more solutions and

consequently more components. It is also noticed that

the relation between components with error and without

error was equal in all the metrics, with the value of 0,04.

Comparison between the Specialists and the

SCUTMA Plugin

For the comparison of the automated selection using

the SCUTMA plugin with manual selection performed

by specialists, the results of the specialists S1 and S4

were used, since the specialists were among the five

participants who obtained a greater coverage (2; 13.33%)

of the components with errors. For SCUTMA, scenarios

C01, C07, C28, C29 and C58 were selected because they

had the best result among the 63 scenarios.

Figure 18 presents a comparison between the percentage

of components with error selected by the specialists (S1 and

S4) and the five best scenarios (C01, C07, C28, C29 and

C58) of the SCUTMA plugin. It is observed that specialists

S1 and S4 obtained a lower coverage for the components

with error than the SCUTMA.

It can also be observed that specialists S1 and S4

presented a greater number of components that were not

identified with error than the SCUTMA, as shown in

Table 21. This shows that the SCUTMA plugin obtained

a better result than the experts for this mobile app.

VN

VM

RF

FC

PD

CMF

1

1

1

1

1

15

Number of components with error

1.27% 0.06%

32.09%

10.20%

15.41%

40.97%

0 1 2 3 4 5

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1389

Fig. 17: Percent of components with and without error of SCUTMA solutions for the Recurrence mobile app

Fig. 18: Comparison between experts and SCUTMA for the Recurrence mobile app

Table 20: Metrics and components with error for the Recurrence mobile app

Metric CE NE CE/NE

Cost of future maintenance 79050 1596576 0.04

Market vulnerability 40194 850033 0.04

Business value 39193 835852 0.04

Code smell 41456 842526 0.04

Frequency of call 39145 823446 0.04

Fault risk 39389 832566 0.04

Table 21: Result of Equation 6 for the recurrence mobile app

 Equation 6 (fx) (%)

Specialist 1 (S1) 8.33

Specialist 4 (S4) 6.06

SCUTMA (C01) 13.16

SCUTMA (C07) 13.16

SCUTMA (C28) 13.16

SCUTMA (C29) 13.16

SCUTMA (C58) 13.16

Threats to Validity

In this section, we discuss the threats to the validity

of our results and the measures applied. As part of the

study was conducted with people, there is the threat of

abandonment of the experiment. To reduce this threat,

the time of submission of the second part of the study

with specialists was no more than 48 h after the response

of the characterization form.

The selection of mobile apps can be a threat, so the

sample of the projects was not random, since it came

from the availability of f-droid15 open-source mobile

15 https://f-droid.org/en/packages/

apps that contained UI test scripts within the research

group in which the work was accomplished.

In order to reduce the bias of the mono-operation, the

empirical study used two Android platform mobile apps

from different categories developed in the Java language.

However, the study may not be representative for other

categories of mobile apps, the study offers some evidence

of feasibility of SCUTMA since in some scenarios it

selected more components with error than the experts.

In the future, we intend to increase the number of

mobile apps to include different mobile app categories.

The threat of selection and treatment interaction was

reduced by applying a questionnaire to the characterization

of the profile, to verify if the participant fit the profile

expected for the study. To reduce the threat of confidence of

the measures, the component selection using the SCUTMA

plugin was done performing 30 executions of the genetic

algorithm to decrease the effect of randomness.

Conclusion and Future Works

In this study, we explore the automated selection of

components for unit testing in Android mobile apps.

4.69%

95.31%

With error

No error

13.33% 13.33%

33.33% 33.33% 33.33% 33.33% 33.33%

Specialist

(S1)

Specialist

(S4)
SCUTMA

(C01)

SCUTMA

(C07)

SCUTMA

(C28)
SCUTMA

(C29)

SCUTMA

(C58)

Components with selected errors

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1390

Therefore, we present the SCUTMA approach in order to

increase the cost-benefit value of the selected

components. For the SCUTMA approach a set of metrics

(HE, CFM, CS, FC, MV and BV) was selected to measure

the cost and benefit value of the components. In order to

analyze whether the metrics could be used together, a first

study was carried out. The result of this empirical study

showed the possibility of using the metrics CFM, CS, FC,

FR, MV and BV combined in a solution for the selection

of components according to Fig. 8.

A second study was conducted to evaluate the

effectiveness of SCUTMA in selecting components with

error compared to the list generated through the

selection of components performed by specialists. The

results confirmed the feasibility of the proposal in

assisting the developer in the selection of components

for unit testing, because in the two applications

SCUTMA scenarios selected more components with

error than the experts, for example, in the Budget

Watch mobile app the best scenario C51 and better E2

specialist respectively selected 83.33 and 66.67% of the

components with error. However, the need for

refinement to improve the result in some component

selection prioritization scenarios was noted, as some

SCUTMA scenarios presented more false positives than

the experts, for example, in the Budget Watch mobile

app the best scenario C51 and better specialist E2

selected respectively 65.22 and 50% of false positives.

Our findings provide a basic understanding of how

the SCUTMA approach can be used in different

scenarios. This knowledge will help developers choose

which metrics to use in component selection in order to

improve the efficiency of unit tests. As future work, it is

foreseen to carry out a study using the Technology

Acceptance Model (TAM), in order to evaluate the

usability and acceptance of the SCUTMA plugin. Another

possibility would be a study that evaluates the efficiency

of using the SCUTMA plugin on the Android platform.

The current version of the SCUTMA approach

component selection for the unit test; it would be

interesting to include the automatic generation of unit

tests from the components selected by SCUTMA.

Another interesting future research will be to analyze

how the selection of components behaves through other

multi-objective solutions. Finally, there is the possibility

of adapting the approach and conducting a feasibility

study for the iOS platform.

Acknowledgement

This research was funded by CAPES (Higher

Education Personnel Improvement Coordination),

Brazil, Finance Code 001; and Research Support

Foundation State of Amazonas (FAPEAM) - PAPAC

Project (Edital 005/2019).

Author’s Contributions

Josias Gomes: Contributing to the conceptualization

of the research, developing the methodology, analyzing

the results and to the writing of the manuscript.

Isabel K. Villanes, Silvia M. Ascate and Awdren

Fontão: Worked on most of the parts, introduction,

background and empirical studies and to the writing of

the manuscript.

Eduardo Noronha de Andrade Freitas: Supervising

the research.

Arilo Claudio Dias-Neto: Supervising the research.

Ethics

This manuscript is original and has not been

published elsewhere and contains no ethical issues.

References

Amjad, S. A., & Khan, S. A. (2015, September). A

framework for enhancing readability and opportunistic

reuse of enterprise software. In 2015 6th IEEE

International Conference on Software Engineering and

Service Science (ICSESS) (pp. 48-53). IEEE.

Android (2020). Market. https://goo.gl/8d974X

Bourque, P., & Fairley, R. E. (2014). Guide to the software

engineering body of knowledge (SWEBOK (R)):

Version 3.0. IEEE Computer Society Press.

Burke, E. M., & Coyner, B. M. (2017). Top 12 reasons

to write unit tests.

https://web.archive.org/web/20170811233259/http://

www.onjava.com/pub/a/onjava/2003/04/02/javaxpc

kbk.html

Coello, C. C. (2006). Evolutionary multi-objective

optimization: a historical view of the field. IEEE

computational intelligence magazine, 1(1), 28-36.

de Andrade Freitas, E. N., Camilo-Junior, C. G., &

Vincenzi, A. M. R. (2016, October). SCOUT: a

multi-objective method to select components in

designing unit testing. In 2016 IEEE 27th

International Symposium on Software Reliability

Engineering (ISSRE) (pp. 36-46). IEEE.
de Andrade Freitas, E. N., Vincenzi, A. M. R., & Júnior,

C. G. C. (2014). Prioritization of Artifacts for Unit
Testing Using Genetic Algorithm Multiobjective
Non Pareto. Institute of Informatic, Universidade
Federal de Goiás, Goiânia, Goiás., Brazil2009.

Durillo, J. J., Zhang, Y., Alba, E., Harman, M., & Nebro, A.
J. (2011). A study of the bi-objective next release
problem. Empirical Software Engineering, 16, 29-60.

Fazzini, M., Freitas, E. N. D. A., Choudhary, S. R., & Orso,
A. (2017, March). Barista: A technique for recording,
encoding and running platform independent android
tests. In 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST)
(pp. 149-160). IEEE.

https://goo.gl/8d974X

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1391

Fontana, F. A., Ferme, V., Zanoni, M., & Roveda, R.

(2015, October). Towards a prioritization of code

debt: A code smell intensity index. In 2015 IEEE

7th International Workshop on Managing Technical

Debt (MTD) (pp. 16-24). IEEE.

Halstead, M. H. (1979). Advances in software science. In

Advances in Computers (Vol. 18, pp. 119-172).

Elsevier.

Haque, M. S., Carver, J., & Atkison, T. (2018, March).

Causes, impacts and detection approaches of code

smell: A survey. In Proceedings of the ACMSE

2018 Conference (pp. 1-8).

Harman, M., Skaliotis, A., Steinhöfel, K., & Baker, P.

(2006, July). Search--based approaches to the

component selection and prioritization problem. In

Proceedings of the 8th annual conference on Genetic

and evolutionary computation (pp. 1951-1952).

He, Y., Zhu, X., Wang, G., Sun, H., & Wang, Y. (2017,

July). Predicting bugs in software code changes

using isolation forest. In 2017 IEEE International

Conference on Software Quality, Reliability and

Security (QRS) (pp. 296-305). IEEE.

Hecht, G., Moha, N., & Rouvoy, R. (2016, May). An

empirical study of the performance impacts of

android code smells. In Proceedings of the

international conference on mobile software

engineering and systems (pp. 59-69).

Hosseingholizadeh, A. (2010, April). A source-based

risk analysis approach for software test

optimization. In 2010 2nd International Conference

on Computer Engineering and Technology (Vol. 2,

pp. V2-601). IEEE.

Ismail, S., Wan-Kadir, W. M., Saman, Y. M., & Mohd-

Hashim, S. Z. (2008, August). A review on the

component evaluation approaches to support

software reuse. In 2008 international symposium on

information technology (Vol. 4, pp. 1-6). IEEE.

Jones, J. A., Harrold, M. J., & Stasko, J. (2002, May).

Visualization of test information to assist fault

localization. In Proceedings of the 24th International

Conference on Software Engineering. ICSE 2002

(pp. 467-477). IEEE.

Jorgensen, P. C. (2018). Software testing: a craftsman’s

approach. CRC press.

Kochhar, P. S., Thung, F., Nagappan, N.,

Zimmermann, T., & Lo, D. (2015, April).

Understanding the test automation culture of app

developers. In 2015 IEEE 8th International

Conference on Software Testing, Verification and

Validation (ICST) (pp. 1-10). IEEE.

Liu, H., Liu, Q., Niu, Z., & Liu, Y. (2015). Dynamic and

automatic feedback-based threshold adaptation for

code smell detection. IEEE Transactions on

Software Engineering, 42(6), 544-558.

Mahmood, S., & Noman, M. (2014, September).

Acceptance test case driven component selection

approach. In 2014 8th. Malaysian Software

Engineering Conference (MySEC) (pp. 49-54). IEEE.

Martin, R. C. (2009). Clean code: a handbook of agile

software craftsmanship. Pearson Education.

Mensah, S., Keung, J., Svajlenko, J., Bennin, K. E., &

Mi, Q. (2018). On the value of a prioritization

scheme for resolving Self-admitted technical debt.

Journal of Systems and Software, 135, 37-54.

Mockus, A., & Votta, L. G. (2000, October). Identifying

Reasons for Software Changes using Historic

Databases. In icsm (pp. 120-130).

Nebro, A. J., Durillo, J. J., & Vergne, M. (2015, July).

Redesigning the jMetal multi-objective optimization

framework. In Proceedings of the companion

publication of the 2015 annual conference on genetic

and evolutionary computation (pp. 1093-1100).

Palomba, F. (2015, May). Textual analysis for code

smell detection. In 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering

(Vol. 2, pp. 769-771). IEEE.

Ray, M., & Mohapatra, D. P. (2012). Code-based

prioritization: a pre-testing effort to minimize post-

release failures. Innovations in Systems and

Software Engineering, 8(4), 279-292.

Ray, M., Lal Kumawat, K., & Mohapatra, D. P.

(2011). Source code prioritization using forward

slicing for exposing critical elements in a

program. Journal of Computer Science and

Technology, 26(2), 314-327.

Rubinov, K., & Baresi, L. (2018). What Are We Missing

When Testing Our Android Apps?. Computer,

51(4), 60-68.

Rumsey, D. J. (2009). Statistics II for dummies. John

Wiley & Sons.

Runeson, P., & Höst, M. (2009). Guidelines for

conducting and reporting case study research in

software engineering. Empirical software

engineering, 14(2), 131.

Samuel, T., & Pfahl, D. (2016, November). Problems and

solutions in mobile application testing. In International

Conference on Product-Focused Software Process

Improvement (pp. 249-267). Springer, Cham.

Shihab, E., Jiang, Z. M., Adams, B., Hassan, A. E., &

Bowerman, R. (2010, July). Prioritizing unit test

creation for test-driven maintenance of legacy

systems. In 2010 10th International Conference on

Quality Software (pp. 132-141). IEEE.

Somerville, I. (2011). Software Engineering. Addison

Wesley. https://www.pearson.com/us/higher-

education/product/Sommerville-Software-

Engineering-9th-Edition/9780137035151.html

Josias Gomes et al. / Journal of Computer Science 2020, 16 (10): 1367.1392

DOI: 10.3844/jcssp.2020.1367.1392

1392

Vidal, S., Guimaraes, E., Oizumi, W., Garcia, A., Pace,

A. D., & Marcos, C. (2016, April). On the criteria

for prioritizing code anomalies to identify

architectural problems. In Proceedings of the 31st

Annual ACM Symposium on Applied Computing

(pp. 1812-1814).

Vilkomir, S., Marszalkowski, K., Perry, C., &

Mahendrakar, S. (2015, May). Effectiveness of

multi-device testing mobile applications. In 2015

2nd ACM International Conference on Mobile

Software Engineering and Systems (pp. 44-47).

IEEE.

Zakaria, N. A., Ibrahim, S., & Mahrin, M. N. R. (2015,
December). A proposed value-based software
process tailoring framework. In 2015 9th Malaysian
Software Engineering Conference (MySEC) (pp.
149-153). IEEE.

Zhang, Y., Harman, M., & Lim, S. L. (2013). Empirical
evaluation of search based requirements interaction
management. Information and Software
Technology, 55(1), 126-152.

Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A
tutorial on evolutionary multiobjective optimization.
In Metaheuristics for multiobjective optimisation
(pp. 3-37). Springer, Berlin, Heidelberg.

