

 © 2019 Azza A. Taha. This open access article is distributed under a Creative Commons Attribution (CC-BY)

3.0 license.

 Journal of Computer Science

Original Research Paper

ML-Style Multi-Abstraction Calculus with Type Inference

Algorithm

Azza A. Taha

Department of Mathematics, Ain Shams University, Cairo, Egypt

Article history

Received: 01-03-2019

Revised: 12-04-2019

Accepted: 30-05-2019

Email: azzataha@sci.asu.edu.eg

Abstract: ML-style multi-abstraction calculus, �letmx, is introduced as an

extension of the Hindley-Milner type system. The calculus has a new multi-

abstraction, a simultaneous application and a simultaneous explicit substitution.

In comparison with some other multi-abstraction formalization, the calculus

has the advantage of saving the usual α equivalence between all terms. The

calculus can be used to represent contexts, where contexts in lambda calculus

are lambda terms with holes. The calculus has a subject reduction property,

is confluent and has a sound and complete type inference algorithm.

Keywords: Lambda Calculus, Hindley-Milner Type System, Contexts,

Explicit Substitution, Unification, Type-Inference Algorithm

Introduction

The simply typed lambda calculus enriched with the

let-expression is the core of most functional

programming languages like ML (Harper, 2011) and

Haskell (Thompson, 2011). One of the key properties of

this type system is that it supports parametric

polymorphism that allows a part of a program to be used

with different types in different situations. It was first

studied by Hindley (1969) in the field of combinatory

logic and later independently by Milner (1978). This

type system is often referred to as ML-style or Hindley-

Milner type system. One of the key properties of this

type system is that every well-typed term has a most

general type. The computation of the most general type

is called principal type. Algorithm W is a well-known

type inference algorithm in the literature for the Hindley-

Milner type system (Milner, 1978; Damas, 1985; Damas

and Milner, 1982; Urban and Nipkow, 2009). The

algorithm is based on Robinson’s unification Algorithm

(Robinson, 1965). In this study, the calculus �letmx is

introduced as an extension of the Hindley-Milner type

system to include a multi-abstraction, a simultaneous

application and an explicit simultaneous substitution.

The multi-abstraction; ()1
, ,

n
x xµ … .M abstracts a

sequence of variables x1,…,xn in M. The simultaneous

application; M•(|N1,…,Nn|) applies all the arguments
N1,…,Nn to M simultaneously. The explicit simultaneous

substitution, M<x1,…,xn: = N1,…,Nn> has a number of

substitutions rather than one substitution. It has the

advantage of performing all of the substitutions,

: :1 ,
i i
x N i n< = > ≤ ≤ in parallel which reduces reduction

steps and consequently decreases programs execution

time. The multi-abstraction of �letmx calculus resembles

in some sense the simultaneous abstraction defined by

Ruhrberg (1996) but it has the advantage of saving the

usual α-equivalence between all terms. The author

introduced a simple simultaneous calculus where the

usual lambda-abstraction over a single variable is

replaced by abstraction over a set of variables, terms are

applied to records assigning terms to variables. This

system overcomes the strict ordering requirements of the

standard �-calculus, as a consequence of the un-ordered

variables, the system partially lost the α-equivalence.
The �letmx calculus can be used to represent contexts;

terms with some holes. For example, writing [.] for a
hole, the term (�y.[.]) is a context. The distinctive feature
of contexts is filling its hole with a term, in which some
free variables may get captured and become bound. For
example, if the hole of the context (�y.[.]) is filled with
the term x+y, the term (�y.x+y) is obtained in which the
variable y becomes bound by �y. This feature is called
variable capturing or capturing substitution. Capturing-
substitution is different from the usual capture-avoiding
substitution of the lambda calculus which avoids variable
capturing by applying the α-conversion rule when it is
necessary. The main problem in computing with
contexts, in the framework of the lambda calculus, is
when the β- reduction is directly performed on contexts,
some terms may be lost. To see this problem, consider
the context �x.(�y.[.])(2+z), if the hole of this context is
filled with the term x+y, the term �x.(�y.x+y)(2+z) is
obtained. By β-reducing this term, we get the term

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

746

�x.x+(2+z). On the other hand, if the β-reduction is first
performed in the term �x.(�y.[.])(2+z), we get the term
�x.[.]. Then, by filling the hole of this term by the term
x+y we get different result �x.x+y. That is, the β-
reduction and filling holes are not consistent and
consequently the confluence property is lost. It is
remarkable that, the correct result is �x.x+(2+z). The
term 2+z is lost when the β-reduction is performed
before filling the hole.

This problem can be solved by using �letmx terms to

represent the context �x.(�y.[.])(2+z) as:

()(), y (2)λx. λy. X x z• +

where, the hole is represented by the variable X applied

to the sequence of variables x, y using the new

simultaneous application •. The type of the variable X is

()1 2
, ,τ τ υ⇒ where the type variables τ1, τ2 are the types

of the variables x and y respectively (the variables

intended to get captured after filling the hole). To fill the

hole of the term ((| , |))(2)λx. λy. X x y z• + with the term

x+y, the new multi-abstraction term µ(x,y).x+y is

substituted for X in this term, to get:

(((,).) (| x, y |)) (2)λx. λy. µ x y x y z+ • +

The underline subterm can be reduced by the

reduction rules of �letmx to the term x+y. Therefore, the

above term is reduced to �x.(�y.x + y)(2+z), which can

farther be reduced to �x.x+(2+z) as required.

On the other hand, if the β-reduction is first performed

in the term λx.(λy. X•(|x, y|))(2+z), we get the term:

λx.X•(|x, (2 + z)|)

The term 2+z is stored in the variable y, of (|x, y|), in

case if the β-reduction is performed before filling the hole.

Filling the hole of this term with the term x+y is then

achieved by substituting the new abstraction µ(x,y).x+y

for X to get:

() ().(, .) (| x, |)x x y x y 2 zλ µ + • +

The underline subterm can be reduced by the reduction

rules of �letmx to the term x+(2+z). Therefore, the above term

is reduced to the term �x.x+(2+z) as required. In this

representation, hole filling and β-reduction commute, that is

the formalization is confluent.
Note that, the order of the variables in the

simultaneous application as well as in the multi-
abstraction are given according to their lexicographic
order, e.g.,:

() ()

() ()2 1 1 2 1 2

. . . (, ,). | , , | and

. . (,). | , |

z x y x y z M x y z

x x x x M x x

•

•

λ λ λ µ

λ λ µ

There is also another problem in computing with

context. Consider the context �x.[.]. If the hole of this

context is filled with x we get the term �x.x. This term is

α-equivalent to �y.y. It is desired to find a representation

of a context which is α-equivalent to �x.[.] and which

is at the same time when filled with x becomes �y.y.

This is achieved by using �letmx terms to represent the

context �x.[.] as �x.(X•(|x|)) which is α-equivalent to

�y.(X•(|y|)). Filling the hole in each of these two
contexts with the variable x is achieved by substituting

the new abstraction µ(x).x for the hole variable X in

these two contexts to get the two terms

�x.(µ(x).x)•(|x|) and �y.(µ(x).x)•(|y|) respectively.
These two terms are respectively reduced by the

reduction rules of �letmx to the two α-equivalent terms

�x.x and �y.y respectively as required.

There has been several contributions to the field of

formalization and computation with contexts, e.g.,

Hashimoto (1998); Hashimoto and Ohori (2001);

Bognar (2002); Sands (1998); Sato et al. (2002); Taha

et al. (2002) and Tobisawa (2015); among these only

the system given by Hashimoto (1998) is an ML-style

polymorphic type system with a sound and complete

type inference algorithm. This system is based on the

simply typed system Hashimoto and Ohori (2001), in

which hole filling and β-reduction rule can be

combined under a restriction that a term containing a

hole cannot be β-reduced.

Using λletmx to represent contexts, holes of contexts

are represented by the normal variables, the type of these

variables includes the type of the variables that intended

to get captured after filling the hole. The usual lambda

abstraction is used to abstract hole variables. Filling

holes is represented by the usual application and the new

multi-abstraction which represents the variables intended

to get captured after filling the hole. The β-reduction and

filling holes can be combined without restrictions. A

context is a first-class object; it can be passed as

argument and returned from functions. Filling holes is an

explicit operation; it can be computed within the system.

In this representation, there is no need to use any specific

operations for context; the ordinary lambda abstraction

and application can be used together with the new multi-

abstraction and simultaneous application as indicated

above. The λletmx calculus has a subject reduction

property, is confluent and has a sound and complete type

inference algorithm. The calculus also has an explicit

substitution in the sense of Bloo and Rose (1995). The

explicit substitution describes the details of the

computation process; it distributes the substitution

through terms to be finally evaluated at variables. The

explicit substitution is important to make the process of

executing the reduction explicit as a part of the calculus

rather than implicit at the meta-level. Moreover, the

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

747

explicit substitution of the λletmx has a number of

substitutions rather than one substitution. It has the

advantage of performing all the substitutions

simultaneously which reduces some of the reduction

steps and consequently reduces programs execution

time. Last, in comparison with some other formalization

the ordinary α-equivalence is defined for all terms.

Since holes of contexts are place holders for some

unknown terms, filling holes with terms has the effect of

dynamic binding which enables a given program to

interact with other programs dynamically. This

mechanism can be useful in systems like distributed

programming and mobile computing. We refer to

Hashimoto and Ohori (2001) for a detailed explanation

for contexts applications. The calculus can also be used

in other applications that needs to abstract a sequence of

variables at a time, needs to apply all the arguments

simultaneously and at the same time needs to keep the α-

conversion between terms.

Materials and Methods

The Calculus

Types

The types of the λletmx calculus are defined by the

following grammar.

τ,υ :: =α ; type variable

 |b ; basic type (e.g., int, ···)

 | τ ⇒ υ ; function type

 | (| |)τ n ⇒ υ ; multi-function type

The multi-function type ()| |
n

τ ⇒ υ is an abbreviation

of (|τ1,…,τn|)n ⇒ υ and n∈N , where (| |)
n

τ is an n-tuple

(The braces (| , |) are used instead of the usual (,) which
are used to group terms). The type schemes are defined as:

:: | .σ τ α σ= ∀

A type scheme is a type that may contain

quantification of type variables at the outermost position
only. Let α,β,γ,α1,β1,γ1,… range over type variables,
τ,υ,ς,τ1,υ1,ς1,… over types and σ,σ1,… over type
schemes. The type scheme σ = ∀α1∀α2…∀αn.τ is
abbreviated as

1 2 n
... . , or .∀α α α τ ∀α τ . In this type, the type

variables α1,…,αn are said to be bound in σ. Type
variables that occur in τ and are not bound are said to be
free in σ. We write FTV(σ) for the set of free type
variables of σ. If FTV(τ) = 0/ , then τ is said to be a
monotype. A type scheme is closed if it has no free type
variables. We assume α-equivalence on ∀ abstraction.

For instance, ∀α.α is α-equivalent to ∀β.β.
The set FTV, is defined inductively over λletmx types as:

{ }

()n

FTV()

FTV(b) 0

FTV() FTV() FTV()

FTV (| |) FTV() FTV()

FTV(,) FTV() { }

α = α

= /

τ⇒ υ = τ ∪ υ

τ ⇒ υ = τ ∪ υ

∀α σ = σ − α

where, FTV ()τ = FTV(τ1)∪…∪ FTV(τn).

A type substitution, S, of types for type variables is a

function that maps from type variables to

types
1 1

,...,

n n
τ α τ α , where each i i

τ α is called a

component of S and all αi, 0≤i≤n are distinct. This

function will be shortened to τ α
 . The domain of S,

dom(S), is { }1
,...

n
α α . The codomain of S, cod(S),

is { }1
,...

n
τ τ . The set of variables in a substitution S,

Var(S), is dom(S) ∪FTV ()τ . The empty substitution is

denoted by []. The composition of two substitutions S

and R, denoted by (S °R) or SR. If σ is a type scheme,

then (S°R)σ, SRσ or S(Rσ), is the substitution which has

the same effect as applying R then S to σ. The

substitution SR is a new substitution constructed from S

and R by first modifying R by applying S to its

components and then adding the components of S not

found in R. Therefore, if S =
1 1

,...,

n n
τ α τ α and R

=
1 1

,...,

n n
υ β υ β , then SR is a new substitution:

1 1 1 1
,..., , ,...,

n n n n
S S υ β υ β τ α τ α

this substitution should be adjusted by deleting any

binding
i i

Sυ β for which Sυi=βi and any binding

/
j j

τ α for which { }, ,

j 1 n
α β β∈ … . Finally, the substitution

S is said to be idempotent if and only if SS = S.

If σ is a type scheme and S is type substitution /τ α

,

then Sσ is a type scheme obtained by replacing each free

occurrence of αi in σ by τi. Sσ is defined inductively on

λletmx types as:

{ }

()

() ()

()

{ }

()

[]()

1 2 1 2

1 2 1 2

/

/ ,

/

/ / /

/ (| |) | [/] | /

. / ,

/ .

. / / ,

.

i i

n
n

if

b b

if

and FTV

othewise

 =

 = ∉

 =

 ⇒ = ⇒

 ⇒ = ⇒

 ∀ ∉
 ∉ ∀ =

 ∀

τ α α τ

τ α β β β α

τ α

τ α υ υ τ α υ τ α υ

τ α υ υ τ α υ τ α υ

β τ α σ β α

β τ
τ α β σ

γ τ α γ β σ

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

748

A type scheme σ1 is an instance of σ2 if σ1 = Sσ2 for

some substitution S. A type scheme σ1 = ∀β1...βm.τ1 is

ageneric instance of σ2 = ∀α1…αn.τ2, written as 2 1
σ σ≻ ,

if there is a substitution S with domain {α1,…,αn} s.t. τ1 =

Sτ2 and βi,1 ≤ i ≤ n, are not free in σ2. For example, int

⇒ int is a generic instance of ∀α.α ⇒ α, written as

. int int,α α α∀ ⇒ ⇒≻ where []S int= α . The relation ≻

is reflexive and transitive.

The following Lemma shows that ≻ is preserved by

substitutions.

Lemma 1 (Damas, 1985)

If
1 2
σ σ≻ then for any substitution S,

1 2
S Sσ σ≻ .

Terms

Assume V is a countable infinite set of term variables

x,y,x1,y1,X,Y,X1,Y1,…. We use capital letters X,Y,… for

hole variables; variables of type ()| |τ ⇒ υ.The terms of

λletmx are defined by the following grammar:

()

()
n

, :: ;

| . ;

| MN ;

| let : ;

| : ;

| µ . ;

| | | ;

n

M N x variable

x M abstraction

application

 x M in N let polymorphism

M x N explicit simultaneous substitution

x M multi-abstraction

M N simultaneous application

=

λ

=

< = >

•

where, the variables x,x1,x2,…,xn range over V. The term

µn ()x .M is an abbreviation of µn(x1,…,xn).M, the term M

• ()| |
n

N is an abbreviation of M•(|N1,…,Nn|)n and the

trem M :x N< = > is an abbreviation of M < x1:= N1,…,xn

:= Nn >, where n∈N . It is clear that the xi’s in µn ()x .M

and in M :x N< = > should be distinct. When it is clear,

the index n in ()
n

µ x .M and M•(|N|)n will sometimes be

omitted.

The set of free variables in a term M, FV(M), is

defined inductively on λletmx term M as:

FV(x) = {x}

FV(λx.M) = FV(M)−{x}

FV(MN) = FV(M)∪FV(N)

FV(let x := M in N) = (FV(N)−{x})∪FV(M)

FV(M :< x N = >) = (FV(M)−{ }x) ∪FV ()N

FV(µn ()x .M) = FV(M)−{ }x

FV(M• ()| |
n

N) = FV(M)∪FV ()N

where, FV ()N = FV(N1) ∪…∪FV(Nn).

Two terms M and N are α-equivalent, written as

M≡N, if they are identical except for the renaming of

bound variables bound by λ, by xi in M :x N< = > , by x

in let x:= M in N or by xi in µn ()x .M. This equivalence is

defined inductively over λletmx term M as:

1. x x≡

2. . .x M y Nλ λ≡ if []() [](),M z x N z y≡ for some

z∉FV(MN)

3. MN≡PQ if M ≡ P and N ≡ Q

4. let x := M in N ≡ let y := M' in N’ if M ≡ M’

and [] []N z x N z y′≡ , for z∉FV(NN')

5. : :M x N P y Q< = >≡ < = > , if there are distinct i1,…,in

s.t.
1 n

1 ni i
N Q ,...,N Q≡ ≡ and []

1
1

/ ,...,
n

ni i
M z x P z y z y ≡

,

for some { } () 0z FV MP ∩ = / , where,
1
, ,

n
z z… are

mutually distinct.

6. µn ()x .M ≡ µn ()y .N, ifM z y N z y ≡ , for

some { } () 0z FV MN ∩ = / , where,
1
, ,

n
z z… are

mutually distinct.

7. () ()| | | |
n n

M N P Q• ≡ • if M P≡ and
i i

N Q≡ for

,...,i 1 n=

Note that:

• In 5 above, the number of x and y variables

in : :M x N P y Q< = >≡ < = > should be equal

• IfM N≡ , then () ()FV M FV N=

In the definition of the α-equivalence above, the

capture-avoiding meta-level simultaneous

substitution []/M N x is obtained by substituting Ni for

 ,

i
x 1 i n≤ ≤

in M simultaneously. The substitution

/M N x
 is defined inductively on λletmx term M as:

1. /
i i
x N x N =

2. /y N x y = , if { }y x∉

3. (). / . /y M N x y M N xλ λ = , if { }y x∉ and

()y FV N∉

4. () ()()/ / /MP N x M N x P N x =

5. (let y := M in P) /N x
 = let y := M /N x

 in

P /N x
 , if { }y x∉ and ()y FV N∉

6. (): /M y P N x < = > = / : /M N x y P N x < =
, if

{ } { } 0x y∩ = / and { } () 0y FV N∩ = /

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

749

7. ()() () (). / . /µ y M N x µ y M N x =
, if { } { } 0x y∩ = / and

{ } () 0y FV N∩ = /

8. ()()| | / / /M P N x M N x P N x
 • = •

Typing Rules

A type assignment, Γ, is a set of assumptions of the
form x: σ. If Γ = {x1: σ1,…,xn : σn}, then dom (Γ) =
{x1,…,xn} and Γ(xi) = σi. If V is a set of variables, then
the restriction of Γ to the set V, Γ | V, is {x : σ| x ∈V and
σ= Γ(x)}. A typing judgment is an expression of the form

:Γ M σ⊢ , where Γ is a type assignment, M is a term and
σ is a type scheme. The set of free type variables of a
type assignment, FTV(Γ), is defined as:

FTV(0) 0

FTV(, :) FTV() FTV()x

/ = /

Γ σ = Γ ∪ σ

The following abbreviations are often be used:

1 1

1 1

: : { : } :

, : : : } :

f

: for :

or

for {

x σ M σ x σ M σ

Γ x σ M σ Γ x σ M σ

M σ M σ

∪

∅

⊢ ⊢

⊢ ⊢

⊢ ⊢

Substitution over type assignments is defined as:

S(0/) = 0/

S(Γ,x : σ) = S(Γ),x : S(σ)

The type assignment Γ has an instance Γ' if and only

if there exists a substitution S such that S Γ = Γ'. A

typing judgment :
'

Γ M σ'⊢ is an instance of :Γ M σ⊢ if

there exists a substitution S with S Γ ⊆ Γ' and σ'= Sσ.

If Γ is a type assignment, the closure of a type

scheme σ with respect to Γ is (), . ,Clos Γ σ = ∀α σ where

() ()FTV FTV .α = σ − Γ

For example, if Γ is { }: .x α α γ∀ →

and σ is β γ→ , then Clos (), .σ β β γΓ = ∀ → .

Assume that Γ contains at most one assumption for

each variable x. The type assignment Γx stands for

removing any assumption x from Γ. The notation, :x σ is

used as an abbreviation for
1 1
: , , :

n n
x xσ σ… . The typing

rules of λletmx that are used to derive a typing judgment of

the form :MΓ ⊢ σ , are defined in Fig. 1.

A term M is called typable (or well-typed) if and only

if there exist Γ and τ such that we can derive :Γ M τ⊢ by

using the λletmx typing rules.

Lemma 2 (Milner, 1978)

Let S be a substitution, Γ be a type assignment and τ

be a type, then: () ()S , S' , S' ,Clos Clos Γ τ = Γ τ where

' /S S β α = , () ()FTV FTV= − Γα τ and β are fresh

type variables.

Lemma 3 (Damas and Milner, 1982)

If S is a substitution and Γ⊢M : σ holds, then:

SΓ⊢M : Sσ also holds

Lemma 4 (Damas and Milner, 1982)

If
1 2
≻σ σ and

2 0
, :

x
Γ x σ M: σ⊢ then:

1 0
, :

x
Γ x σ M: σ⊢

Fig. 1: The typing rules for λletmx

()

() ()

()
()

()
()

()

()

1 1 2

2

1

, : :

, : : : :

. : :

:: ,

: . :

: , : :

:

, : , , : : : :

: :

var

x

x

x 1 n n 1 1 n n

x x

x M M N
abs app

 x M MN

 MM FTV
typeGen inst

 M M

M x N
let

 let x M in N

x x M N N
expSub

M x N

x

Γ

Γ Γ ⇒ Γ

Γ ⇒ Γ

ΓΓ ∉ Γ

Γ ∀ Γ

Γ Γ

Γ =

Γ … Γ …Γ

Γ < = >

Γ

≻

σ σ

τ υ τ υ τ

λ τ υ υ

σ σ σσ α

α σ σ

σ σ τ

τ

σ σ τ σ σ

τ

⊢

⊢ ⊢ ⊢

⊢ ⊢

⊢⊢

⊢ ⊢

⊢ ⊢

⊢

⊢ ⊢ ⊢

⊢

() ()
()

()

()
()

: | | : :, : :

. : | | | | :

1 1 nn

n n
n

M N N jx M
mAbs sApp

µ x M M N

Γ ⇒ Γ …Γ

Γ ⇒ Γ •

τ υ τ ττ υ

τ υ υ

⊢ ⊢ ⊢⊢

⊢ ⊢

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

750

Reductions

The reduction rules,
letmx
λ
→ , of λletmx are the union of

the following reduction rules,
λ
→ ,

let
→ ,

m
→ and

x
→ :The

reduction rule
λ
→ is defined by the rule:

() (). :x M N M x N
λ

λ λ → < = >

The reduction rule
let
→ is defined by the rule:

() :
let

let let x N in M M x N= → < = >

The reduction rule
m
→ is defined by the rule:

() ()(). (| |) :
n n m

m µ x M N M x N• → < = >

Note that, The order of the variables (), ,

i
x i 1 n= … in

()
n

µ x is important and there is no reduction for the term

()() ().

n

m

µ x M N• when .n m≠

The reduction rule
x
→ is defined by the following

6 rules:

(xVar) : .
i x i
x x N N< = > →

(gc) : ,
x

M x N M< = > → if { } () 0.x FV M∩ = /

(xAbs) (). : . : ,
x

y M x N y M x Nλ λ< = >→ < = >

 if { },y x∉ and ().y FV N∉

(xApp)
()

()()
1 2

1 2

:

: : .

x
M M x N

M x N M x N

< = >→

< = > < = >

(xmAbs) ()() (). : . :
n x n
y M x N y M x N< = >→ < = >µ µ

 if { } { } 0x y∩ = / and{ }y FV(0N)∩ = / .

(xsApp)
()

() ()

:

: : .

n x

n

M N x P

M x P N x P

• (| |) < = >→

< = > • < = >

Let R = {λ, let, m, x}, we write M →r N, if N is

obtained from M by replacing a subterm M1 in M by N1

such that M1 →r N1, where r ∈R. The reduction →q,r,s is

the union of the three reductions →q, →r and →s, where

q,r,s ∈R. The reflexive and transitive closure of the

reduction → is denoted by *
→ .

Example 1

The term:

()()() ()(). . . | , | , .X x y X x y zx µ x y xyλ λ λ •

is reduced by λletmx reduction rules as:

()()() ()()

()()() ()()

()()() ()()

()() ()()

()() ()()

()() ()()

()() ()

()

. . . | , | , .

 . . | , | : , .

 . . | , | , .

 . | , | : , .

 . | , | , .

 | , | : , .

 , . | , |

 : , :

x

x

x

m

X x y X x y zx µ x y xy

X y X x y x z x µ x y xy

X y X z y x µ x y xy

X X z y y x µ x y xy

X X z x µ x y xy

X z x X µ x y xy

µ x y xy z x

xy x z y x

∗

∗

∗

•

→ • < = >

→ •

→ • < = >

→ •

→ • < = >

→ •

→ < = = >

λ

λ

λ

λ λ λ

λ λ

λ λ

λ

λ

x
zx

∗

→

Properties of the Calculus

In this section, we show that λletmx has the subject

reduction property (Theorem 1) and the confluence

property (Theorem 2). The subject reduction property

insures that the type is preserved by reduction and the

reductions never introduce new free variables. The

confluence property guarantees the uniqueness of the

result if it exists.

Subject Reduction

The following proposition and Lemma are needed in
the proof of the subject reduction theorem.

Proposition 1 (Milner, 1978)

If :
'

Γ M σ'⊢ is an instance of a provable typing

judgment :Γ M σ⊢ then :
'

Γ M σ'⊢ is also provable.

Lemma 5 (Barendregt, 1992):

1. If :Γ M σ⊢ then FV ()M ⊆ dom (Γ)

2. If :Γ M σ⊢ then | () :Γ FV M M σ⊢

Theorem 1 (Subject Reduction)

If :Γ M σ⊢ and *
,

letmx

M N→
λ

 then :Γ N σ⊢ .

Proof

By induction on the derivation of : M Γ τ⊢ using

Proposition 1 and Lemma 5.

Confluence

To show that the reductions
letmx
→

λ
 is confluent, we

first show that the reduction →x is confluent.

Lemma 6

The reduction rule
x
→ on λletmx terms is neotherian

and confluent.

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

751

Proof

To show that
x
→ is neotherian, the length of a term

, ,M M is introduced as:

1. 1x =

2. 1MN M N= + +

3. . 1x M Mλ = +

4. | | 1let x M in N |M| N= = + +

5. () 1
| : | | | 1 where | | | |

n
M x N N M , N N N< = > = + = +…+

6. ()| . |
n

µ x M M n= +

7. | | | | | | 1M M N• (| Ν |) = + +

It can easily be verified that

x
M N→ implies M N> . Then, by checking the

overlapping cases, it can easily be verified that
x
→ is

weakly-confluent and by Newman’s Lemma, the

reduction rule
x
→ is confluent.

A λletmx term M is said to be x-normal if M→xN holds

for no N. From Lemma 6, it is clear that for any λletmx

term M there uniquely exist x-normal term N such that

x
M N

∗

→ . We will write x(M) to denote N.

Next, the parallel reduction (Takahashi, 1989), ⇒ on
x-normal λletmx terms is defined as:

1. x x⇒

2. If M N⇒ , then . .x M x Nλ λ⇒

3. If
1 2

M M⇒ and
1 2

N N⇒ ,then

() ()1
. x :

1 2 2
x M N M x N⇒ < = >λ

4. If
1 2

M M⇒ and
1 2

N N⇒ , then
1 1 2 2

M N M N⇒

5. IfM N⇒ , then (). ().µ x M µ x N⇒

6. IfM N⇒ and , 1
i i
P Q i n⇒ ≤ ≤ ,

then ()() () (). | | x :µ x M P N x Q• ⇒ < = >

7. If M N⇒ and ,1
i i
P Q i n⇒ ≤ ≤ , then () (| |)M P N Q• ⇒ •

8. If
1 2

M M⇒ and
1 2

N N⇒ , then

()1 1 2 2
: in x :let x M N N x M= ⇒ < = >

Then, with each x-normal term M, we associate an x-

normal term M
*
as:

1. *
:x x=

2. ()
* *

. : .x M xM=λ λ

3. ()() ()
*

* *
. : x :x M N M x N= < = >λ

4. ()
* * *
:MN M N= , if M is not a λ abstraction

5. ()() ()
*

*
. : .µ x M µ x M=

6. ()() ()() ()
*

* *
. | | : x :µ x M P M x P• = < = >

7. ()() ()
*

*| | | |M P PΜ
∗

• := • if M is not a multi-

abstraction.

8. () ()* * *
: in : x :let x M N N x M= = < = >

It can easily be verified that:

1. The parallel reduction relation is reflexive, i.e.,

M M⇒

2. *
M M⇒ holds for any x-normal term M

3. If
1 2

M M⇒ , then x () () x
1 2

M M⇒

Lemma 7

If
1 2

M M⇒ , then
1 2letmx

M M
λ

∗

→ .

Proof

By induction on the construction of M1.

Lemma 8 (Substitution Lemma)

If M is an x-normal term, then:

() ()x : : x : : :M x N y Q M y Q x N y Q< = >< = > ≡ < = >< = < = >> ,

where N and Q are λletmx terms, { } { } 0x y∩ = / and

{ } { } 0x FV y∩ = / .

Proof

By induction on the construction of M such that M is

x-normal term.

Lemma 9

If () () () ()1
x x x x ,1 ,

2 i i
M M and N P i n⇒ ⇒ ≤ ≤ , then

() ()x : x : .
1 2

M x N M x P< = > ⇒ < = >

Proof

By induction on the construction of x(M1) such that

x(M1) is x-normal term.

Lemma 10

If
1 , , 2let m

M M
λ

→ , then () ()1 2
x xM M⇒

Proof

By induction on the construction of M1.

Lemma 11

If
1 2x

M M→ , then ()1 2
x x()M M⇒ .

Proof

Immediate from the reflexivity of ⇒ .

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

752

Remark 1

From Lemma 10 and Lemma 11, we have:

If
1 2letmx

M M→
λ

, then () ()1 2
x xM M⇒ .

Lemma 12

The parallel reduction ⇒ on x-normal form is

confluent.

Proof

We can easily verify that if M ⇒ N, then N ⇒ M
*
,

the confluence of ⇒ follows immediately from this fact.

Theorem 2 (Confluence)

The reduction
letmx
→

λ
on λletmx terms is confluent, that

is, if M
letmxλ

∗

→ N and M
letmxλ

∗

→ P, then there is a term Q

such that N
letmxλ

∗

→ Q and P
letmxλ

∗

→ Q.

Proof

Suppose that M
letmxλ

∗

→ N and M
letmxλ

∗

→ P, then from

remark 1, we have: x(M) *
⇒ x(N) and x(M) *

⇒ x(P),

from the confluence of⇒ , there exists Q such that x(N)
*

⇒ Q and x(P) *
⇒ Q. From Lemma 7, x(N)

letmxλ

∗

→ Q and

x(P)
letmxλ

∗

→ Q. Since N
letmxλ

∗

→ x(N) and *

letmx
P

λ
→ x(P), we

have N
letmxλ

∗

→ Q and P
letmxλ

∗

→ Q.

The Proposed Type Inference Algorithm

A Type inference algorithm decides whether a

given term M has a type or not; it takes M and Γ as

inputs and produces a principal (most general) type

(Principal types is different from principal typing. An

algorithm for principal typing takes just M as input

and gives both Γ and σ as outputs. Many languages

have principal types but not principal typing Jim

(1996)) for M if it exists.

It is known that Hindley-Milner typability is

decidable, i.e., there is an algorithm which computes the

principal type scheme of any term. One of the best well

known type inference algorithm in the literature for

Hindley-Milner type system is algorithm W (Milner,

1978; Damas, 1985; Damas and Milner, 1982; Urban

and Nipkow, 2009). Given M and Γ, algorithm W finds a

substitution S and a type τ such that’s :Γ M σ⊢ .

The type scheme σ is called a principal type scheme,

Damas and Milner (1982), of M under Γ if and only if:

1. :Γ M σ⊢ holds

2. If :Γ M σ'⊢ holds, then 'σ σ≻

Algorithm W depends on Robinson’s unification

algorithm, (Robinson, 1965), which takes a pair of types

and either returns a substitution S or fail, where S unifies

the pair of types.

The Unification Algorithm, Unify

The unification algorithm, Unify, is defined for λletmx

types as in Fig. 2. Item 5 in this algorithm catches all

cases that fail if none of the previous cases apply, e.g.,

Unify (,)bτ υ⇒ , Unify ()() , | , , |
1 n 1

τ υ υ υ τ⇒ … ⇒ , etc. This

means that, Unify (τ,υ) fails if τ and υ are two different

non type variables. It is clear that:

Unify(τ,υ) °S fails if Unify(τ,υ) fails.

Fig. 2: Algorithm Unify: τ x υ → S

() []

() ()

()

()

[]

()

()

() ()()

2

2 1 1

1 1 1 1

1

. ,

. , ,

/

. (,) ,

,

,

| ,..., | ,

,

1 2 1 2

1 2 2

1 1 1

n n 2 n

1

1 Unify

fails if FTV

OccurCheck Failed2 Unify or Unify

otherwise

3 Unify S where

S = Unify

S = Unify S S S

4.Unify | ,..., | S where

S = Unify

+

=

 ∈

=

⇒ ⇒ =

°

⇒ ⇒ =

τ τ

α τ

α τ τ α

τ α

τ τ υ υ

τ υ

τ υ

υ υ τ ς ς τ

τ()

()
()

1
, , 1,..., .

,

2

i i i i i i
S = Unify S S S i n

5.Unify fails for all other cases

+
° =

τ

υ ς

τ υ

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

753

Example 2

1. Unify () ()() []| | , | | ,int int int int⇒ ⇒ =α β β α

2. Unify (,)a bα α⇒ ⇒ fails.

The following two Theorems can easily be verified.

Theorem 3 (Soundness of Unify)

If Unify (), Sτ υ = , then .S Sτ υ=

Theorem 4 (Completeness of Unify)

If V unifies τ and υ, then Unify (τ,υ) returns S and

there is another substitution R such that V = RS.

The Type Inference Algorithm,Ŵ

In this study, algorithm W is extended to the terms

of λletmx. The extended algorithm is called Ŵ .

Algorithm Ŵ (Γ,M) is defined inductively on λletmx

term M as in Fig. 3.

In algorithm W
⌢

, (): ,x Clos S SτΓ is an abbreviation

of: x1 : Clos(SΓ,Sτ1),…,xn: Clos(SΓ,Sτn). When any of the

algorithm Ŵ conditions are not met, the algorithm fails.

Example 3

()() ()() ()ˆ : | | , : , | | ,W X int int x int X x V int⇒ • = , where V

= Unify () ()()| | , | | int int int⇒ ⇒β and β is a fresh type

variable.

Soundness of Ŵ

Soundness of Ŵ shows that the algorithm never

yields any results that are not correct. In other words,

any type scheme derives by Ŵ is derivable by the λletmx

type inference rules.

Theorem 5 (Soundness of Ŵ)

If Ŵ (Γ, M) succeeds with (S,τ), then there is a

derivation of SΓ⊢ M: τ.

Proof

By induction on the structure of λletmx term M. We
consider only the following cases, other cases can be
verified similarly:

1. Case M is x and ()(), : . ,
x

W x xΓ ∀
⌢

α τ succeeds with

([], τ [/]β α), where β are fresh type variables.

From the (var) typing rule, we have:

, : :
x

Γ x α.τ x α.τ∀ ∀⊢

Since . / ,α τ τ β α ∀ ≻ then from the (inst) typing

rule we have the following judgment as required:

/, : :
x

Γ x α.τ x τ β α ∀ ⊢

2. Case M is let x = P in N and ()ˆ ,W let x PinNΓ =

succeeds with (), ,

2 1 2
S S τ° where () ()1 1

ˆ ,S W P= Γτ and

() ()()()ˆ, , : , , .
2 2 1 x 1 1

S W S x Clos S N= Γ Γτ τ

From the induction hypothesis, we have:

:

1 1
S P andΓ ⊢ τ (1)

()2 1 2 1 1 2
, : Clos , :

x
S S Γ x S S Γ τ N τ⊢ (2)

Let
2

/
2

S S ′ = β α , where β are fresh type variables

and () ()1 1
.FTV FTV S= − Γα τ Then, from Lemma 2,

judgment (2) above and the fact that '

2 1 2 1
S S S SΓ = Γ ,

because
2

S′ differ from S2 only on bound variables of

S1Γ, we get:

()2 1 1 1 2
, : Clos , :

x 2 2
S' S Γ x S' S Γ S' τ N τ⊢ (3)

Applying the (typeGen) typing rule to judgment (1)

and since () (),
1 1

FTV FTV S= − Γα τ we get:

1 1
:S Γ P α.τ∀⊢ (4)

From the definition of Clos(S1Γ,τ1) and judgment

(4), we get:

()1 1 1
: Clos ,S Γ P S Γ τ⊢ (5)

From Lemma (3) and Judgment (5), we get:

()2 1 2 1 1
: Clos ,

' '
S S Γ P S S Γ τ⊢ (6)

From Lemma (2) and judgment (6), we have:

 ()2 1 2 1 2 1
: Clos ,

' ' '
S S Γ P S S Γ S τ⊢ (7)

Applying the (let) typing rule to judgments (7) and

(3), we get:

2 1 2
let in :

'
S S Γ x P N τ=⊢

Finally, by noting that

2 1 2 1
S S S S′ Γ = Γ , We get the

following required judgment:

2 1 2
let in :S S Γ x P N τ=⊢

3. Case M is ()| |
n

P N• and ()()ˆ , | |
n

W P NΓ • succeeds

with ()1
... ,

n
V S S S V′ο ο ο ο β where:

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

754

Fig. 3: Algorithm �
: x xW M SΓ → τ

(,)
'

S τ = Ŵ (Γ, P) and (8)

() () () ()1 1 1

ˆ ˆ, , ,···, , ,
n n n

S W S N S W S N′ ′= Γ = Γυ υ

(9)

and ()() ()()1
·· · , | ,..., |

n 1 n
V Unify S S S S= ⇒τ υ β and β is a

fresh type variable.

From the induction hypothesis, we have the

judgments:

'

S Γ P : τ⊢ (10)

1 1 1
: , , :

' '

n n n
S S Γ N υ S S Γ N υ…⊢ ⊢ (11)

From Lemma 4 and judgment (11), since

1
,

' '
S Γ S S Γ≻ we also have the following derivations:

1 1
: , , :

' '

n n
S Γ N υ S Γ N υ…⊢ ⊢ (12)

From Lemma 3 and judgments (10) and (12), we get:

1 1

1 1 1 1

1 1

:

: ,

:

'

n n

'

n n

'

n n n n

VS S S Γ P VS S τ

VS S S Γ N VS S υ

VS S S Γ N VS S υ

… …

… …

… …

⋮

⊢

⊢

⊢

 (13)

Applying the (nApp) typing rule to judgments (13) and
since:

()1 1
(| |)

n n
VS S τ V S S υ β… = … ⇒

We get the required judgment

1
(| N |) :'

n
VS S S Γ P V… • β⊢ .

Note that, if :SΓ M τ⊢ , then : Clos (,)SΓ M SΓ τ⊢

also holds, where Clos(SΓ,τ) is called the type scheme

computed by Ŵ for M (Damas and Milner, 1982).

Completeness of Ŵ

Completeness of Ŵ ensures that the algorithm

addresses all possible inputs and does not miss any. In

other words, any derivable type scheme is an instance of

that computed by Ŵ .

� () []() ()

� () () () � ()()

� () () () � ()

()

2 1 1

, , .

.

, . , , , : ,

.

, , , , ,

x

1

2 2

W x where x and

are fresh type variables

W x M S S where S W x M and

is a fresh type variable

W MN V S S V where S W M

S , =

 ′ ′Γ = Γ = ∀

Γ = ⇒ = Γ

Γ = = Γ

β α τ α τ

β

λ β τ τ β

β

ο ο β τ

τ � ()

� () () () � ()

() � ()()()
� () ()

() � () ()

2 1 2

2 1 2 1 1

2 1 1 1

1

1 1 1

(,),

.

 , in , , ,

, , : , ,

, : ... ,

, , ,...,

1

2 x

n

n n

W S ,N ,V = Unify S

and is fresh type variable

W let x M N S S where S W M and

S W S x Clos S N

W M x N S S S where

S W N S

Γ ⇒

Γ = = = Γ

= Γ Γ

′Γ < = > =

= Γ

τ τ β

β

ο τ τ

τ τ

ο ο ο υ

τ τ � ()

() � ()()
� ()() ()() () � ()()

� ()() () () � ()

() � () () � ()

1 1 1

1

1 1 1

,

, ... , : ... , ... , .

, . , | | , , : , ,

.

, | | ... , , ,

, , ,···, , , ,

n

n x n n

x

n
n

n n n

W N and

S W S S x Clos S S S S M

W x M S S where S W x M and

are fresh type variables

W M N V S S S V where S W M and

S W S N S W S N

V Unify

= Γ

′ = Γ Γ

Γ = ⇒ = Γ

′ ′Γ • = = Γ

′ ′= Γ = Γ

=

υ τ

µ β υ υ β

β

ο ο ο ο β τ

υ υ

() ()()1 1
··· , | ··· |

.

n n
 S S S S

and is a fresh type variable

⇒τ υ β

β

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

755

The restriction of a substitution S to a set A of type

variables, S|A, is defined by the set

{ }: .S and A∈ ∈τ α τ α α If S and R are two substitutions

such that for every () (), ,dom S dom R S R∈ ∩ =α α α the

simultaneous composition Damas (1985), of S

and (),R S R⊕ , is defined by:

()
()if

otherwise

S dom S
S R

R

 ∈
⊕ =

α α

α

α

Lemma 13

If Ŵ (Γ, M)= (S, τ), then:

1. () ()Var S FTV New⊆ Γ ∪

2. () ()FTV FTV Newτ ⊆ Γ ∪

where, New is the set of new type variables introduced

by ()ˆ ,W MΓ .

Proof

By induction on the structure of the λletmx term M.

Lemma 14 (Lee and Yi, 1998)

If ′Γ Γ≻ , then Clos (),τΓ ≻Clos (),τ′Γ .

Theorem 6. (Completeness of W
⌢

)

Given Γ and M, let Γ' be an instance of Γ and σ a type

scheme such that ' :MΓ ⊢ σ

then:

1. ()ˆ ,W MΓ succeeds

2. If () ()ˆ , , ,W M SΓ = τ then for some substitution

R, ()and ,RS RClose S′Γ = Γ Γ ≻τ σ

Proof

By induction on the structure of the λletmx term M

following the same technique of Damas (1985) using

Lemma 13 and Lemma 14.

Discussion

Although the representation of contexts and hole-

filling using λletmx terms can also be represented as terms

in the ordinary lambda calculus, the λletmx representation

has the advantage of making contexts internal to the

calculus which enables to write more clear and elegant

programs with fewer reduction steps and then faster

reductions. For instance, consider the context.

[]()1 1
.···. . . ···

n m
x x M Mλ λ which is represented in λletmx

as: ()()()1 1 1
.···. . | ,···, | ···

n n m
x x X x x M Mλ λ • .To fill the hole

X with the term N, the multi-abstraction ().µ x N

is

substituted for X in this term to get:

()() ()()()1 1 1
.···. . . | ,···, | ···

n n m
x x µ x N x x M M•λ λ (14)

This term can be represented as the lambda term:

()()()1 1 1 1
.···. . .··· . ··· ···

n n n m
x x x x N x x M Mλ λ λ λ (15)

The λletmx representation, (14), has a number of

advantages over the encoding using the ordinary lambda

terms, (15):

1. Using both the usual lambda calculus’ abstraction

and application together with the new multi-

abstraction and simultaneous application makes the

representation more clear; simple inspecting of the

representation in (14), it is obvious that the term

with the new multi-abstraction ().x Nµ replaced the

hole and the variables after the new simultaneous

application • is used to store terms in case if the β-

reduction is performed before filling the hole
2. The representation in (14) has also an advantage in

terms of the number of reduction steps. To reduce
the underline subterm of (15), we have to use n β-
reductions, before each of them we have to check if
the α-conversion rule in needed or not to avoid the
unintended variable capturing. An n meta-level
substitutions is also needed after each β-reduction
which also requires to check the necessity of the α-
conversion. Whereas, to reduce the corresponding
underline subterm of (14) only one

m
→ reduction

step is needed. Then, only one checking for an α-
conversion and a sequence of the explicit
simultaneous substitution. The number of reductions
is clearly decreased and consequently the program
execution time is reduced. To make it clear, consider
the simple example:

()() () ()

()*

, . | 1, | : 1, :

: 1, : : 1, : 1

m

x x

µ x y xy y z xy x y y z

x x y y z y x y y z y+ z

• + → < = + = >

→ < = + = > < = + = >→

whereas, in reducing the same term encoded as ordinary

lambda term:

()()() ()()(

() () ()())
()() ()

1 1

1 1 1

1 1

. . 1 . . 1

. 1) . 1

1 1

1

x y xy y z x x xx y z

x xx y x z x y x z

y x z x y z

β

β

λ λ λ λ

λ λ

+ ≡ + →

 + ≡ + →

 + ≡ +

Conclusion

ML-style multi-abstraction calculus, λletmx, is
introduced as an extension of the ML-style Hindley-

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

756

Milner type system. The calculus has a multi-abstraction,
a simultaneous application and an explicit simultaneous
substitution. The multi-abstraction abstracts a sequence
of variables rather than just one variable at a time. The
simultaneous application applies all of its arguments
simultaneously and the explicit simultaneous substitution
has a number of substitutions that can be performed in
parallel which can decrease some reduction steps and
consequently reduces programs execution time. The
calculus has the advantage of saving the usual α-
equivalence between all terms. The ML-style Hindley-
Milner type system is chosen as a base of the calculus
since its typability is decidable and since it supports
parametric polymorphism that allows a part of a program
to be instantiated with different types as needed in
different situations. The calculus has a subject reduction
property, is confluent and has a sound and complete type
inference algorithm. The type inference algorithm infer
the most general or principal types for terms.
The calculus can be used to represent contexts, where

contexts are lambda terms with holes. The multi-

abstraction and simultaneous applications of the calculus

can also have several other useful applications that needs

to abstract a sequence of variables at a time, needs to

apply the arguments simultaneously and which needs at

the same time to keep the usual α-conversion between

terms. The calculus λletmx can serve as a theoretical basis

for a polymorphic functional programming with multi-

abstraction and simultaneous application. An

implementation of the calculus and its type inference

algorithm should be considered as a future work.

Acknowledgment

The author is grateful to Yukiyoshi Kameyama, the
professor of Tsukuba University, for his helpful comments
and suggestions to improve the early draft of this paper.

Ethics

The author confirms that this research is original and
has not been published elsewhere and there is no ethical
issues involved.

References

Barendregt, H.P., 1992. Lambda Calculi with Types.
Handbook of Logic in Computer Science,
Background: Computational Structures, Oxford
University Press, New York, USA,

 ISBN-10: 0-19-853761-1, pp: 117-309.
Bloo, R. and K.H. Rose, 1995. Preservation of strong

normalization in named lambda calculi with
explicit substitution and garbage collection.
Proceeding of CSN’95 (Computer Science in
Netherlands), pp: 62-72.

Bognar, M., 2002. Contexts in Lambda Calculus, Ph.D
thesis, Vrije University, Amsterdam.

Damas, L. and R. Milner, 1982. Principle type-schemes
for functional programs. Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 25-27,
Albuquerque, New Mexico, ACM, pp: 207-212.
DOI: 10.1145/582153.582176

Damas, L., 1985. Type Assignment in Programming

Languages. Ph.D Thesis, Computer Science

Department, Edinburgh University, Technical report

CST-33-85.

Harper, R., 2011. Programming in Standard ML, Robert

Harper. http://www.cs.cmu.edu/ rwh/introsml/

Hashimoto, M. and A. Ohori, 2001. A typed context

calculus. Theoretical Comput. Sci., 266: 249-272.

DOI: 10.1016/S0304-3975(00)00174-2

Hashimoto, M., 1998. First-class contexts in ML. Int. J.

Foundat. Comput. Sci., 11: 65-87.

 DOI: 10.1142/S0129054100000053

Hindley, J.R., 1969. The principal type-scheme of an

object in combinatory logic. Trans. Am. Math. Soc.,

146: 29-60. DOI: 10.2307/1995158

Jim, T., 1996. What are principal typings and what are they

good for? Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming

Languages, Jan. 21-24, Petersburg Beach, Florida,

USA, pp: 42-53. DOI: 10.1145/237721.237728

Lee, O. and K. Yi, 1998. Proofs about a folklore let-

polymorphic type inference algorithm. ACM

Tranact. Programm. Lang. Syst., 20: 707-723.

 DOI: 10.1145/291891.291892

Milner, R., 1978. A theory of type polymorphism in

programming, J. Comput. Sys. Sci., 17: 348-375.

DOI: 10.1016/0022-0000(78)90014-4

Robinson, J.A., 1965. A machine-oriented logic based on

the resolution principle. J. ACM, 12: 23-41.

 DOI: 10.1145/321250.321253

Ruhrberg, P., 1996. Simultaneous abstraction and

Semantic Theories, Ph.D. Thesis, University of

Edinburgh. http://hdl.handle.net/1842/520

Sands, D., 1998. Computing with contexts, a simple

approach. Electronic Notes Theoretical Comput. Sci.,

10: 134-149. DOI: 10.1016/S1571-0661(05)80694-2

Sato, M., T. Sakurai and Y. Kameyama, 2002. A simply

typed context calculus with first-class environments, J.

Funct. Logic Programm, 4: 395-374.

 DOI: 10.1007/3-540-44716-4 23

Taha, A.A., M. Sato and Y. Kameyama, 2002. A second-

order context calculus, J. Comput. Software, 19:

158-175. DOI: 10.11309/jssst.19.158

Takahashi, M., 1989. Parallel reduction in λ-calculus. J.

Symbolic Computat., 7: 113-123.

 DOI: 10.1016/S0747-7171(89)80045-8

Azza A. Taha/ Journal of Computer Science 2019, 15 (5): 745.757

DOI: 10.3844/jcssp.2019.745.757

757

Thompson, S., 2011. Haskell: The Craft of Functional

Programming, 3rd Edn., Pearson Education Limited,

Harlow, United Kingdom: Addison Wesley,

 ISBN: 978-0-201-88295-7, pp: 608.

Tobisawa, K., 2015. A meta lambda calculus with cross-

level computation. Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, Jan. 15-17, Mumbai,

India, pp: 383-393. DOI: 10.1145/2676726.2676976

Urban, C. and T. Nipkow, 2009. Nominal Verification
of Algorithm W. In: From Semantics to Computer
Science: Essays in Honour of Gilles Kahn, Huet,
G., J.J. Levy, G. Plotkin (Eds.), Cambridge
University Press, Cambridge,

 ISBN-10: 0521518253, pp: 363-382.

