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Abstract: Cloud Computing (CC) is a recent technology in the 

Information and Communication Technology (ICT) field. It provides an 

on-demand access to the shared pool of resources via virtualization. Large 

enterprises move toward CC due to its flexibility and scalability driven 

from its elastic pay-per-use model. To provide ensured efficient 

performance to users, tasks should be efficiently mapped to available 

resources. Therefore, Task Scheduling (TS) is significant issue in the CC 

technology. TS is a NP-complete optimization problem, so a deep 

investigation of different metaheuristic and heuristic TS algorithms is 

presented here. Particle Swarm Optimization (PSO) and Genetic 

Algorithms (GA) as metaheuristic algorithms are implemented and their 

performance have been compared to heuristic techniques (First Come First 

Serve (FCFS) and Shortest Job First (SJF)) on symmetric and asymmetric 

environment. The cloud service providers and users have different 

performance requirements. Six performance metrics including makespan, 

flow time, response time, resource utilization, throughput time and degree 

of imbalance have been measured. For asymmetric environment, real 

environment, metaheuristic TS algorithms surpassed the heuristic methods. 

 

Keywords: Cloud Computing, Task Scheduling, Meta-Heuristic, 

Performance Metrics, Asymmetric Environment 

 

Introduction 

Cloud computing, CC, applies distributed computing 

techniques to deliver an on-demand access to a shared 

virtual computing resources (ex. Networks, Servers, 

Storage, Applications and Services) over the Internet 

(Zhang et al., 2010; Singh et al., 2017).  

Virtualization is an emerging technology for 

efficient utilization of cloud resources. It is used to split 

a single physical machine into multiple Virtual 

Machines (VM) (Malhotra et al., 2014; Ahmad et al., 

2015a). Each VM can abstract and isolate the underlying 

hardware and networking resources from each other 

(Ahmad et al., 2015a). VM can be scaled up or down 

according to the demanded services. It also can provide 

resource sharing, high utilization of pooled resources, 

rapid provisioning and workload isolation (Ahmad et al., 

2015b; Zhang et al., 2018).  

Usually, a Cloud Service Provider (CSP), like 

Google, presents these facilities using the pay per use 

model (Arya and Verma, 2014). By the help of cloud 

computing technology, users such as the individuals, 

researchers and large businesses can access their data, 

applications, on different platforms via the internet 

without the need for buying costly computing resources. 

To provide ensured proficient performance to users, 

it is necessary that tasks should be mapped efficiently 

to available resources. Task Scheduling (TS) is one of 

the core challenges in CC environment. The main 

features of competent TS in CC environment are 

minimizing makespan, flow time, response time, 

throughput time and degree of imbalance and 

maximizing resource utilization (Widmer et al., 2008; 

Tsai and Rodrigues, 2014). TS can be classified into 

independent scheduling and dependent scheduling 
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(Masdari et al., 2017; Nagadevi et al., 2013). In 

independent scheduling tasks are independent of each 

other and can be scheduled in any sequence, however in 

dependent scheduling, tasks are represented by a 

Directed Acyclic Graph (DAG) (i.e., workflow 

scheduling). DAG is a directed graph that comprises 

group of edges and vertices. Where each vertex signifies 

the task and every edge signifies the affiliation between 

two nodes or vertices connected through that edge 

(Singh et al., 2015). TS can also be classified into static 

and dynamic task scheduling. In static scheduling, all 

tasks or VMs are known a priori to scheduling. These 

tasks are independent of the virtual machine's states and 

their availability. So, it imposes less runtime overhead. 

On the other hand, in dynamic scheduling, the 

information about the tasks is unknown in advance. So, 

the execution time of task may not be known and the 

information about VMs is not obtained until it comes 

into the scheduling stage (Nagadevi et al., 2013; 

Mathew et al., 2014).  

TS is an optimization problem belonging to the class 

of NP-hard problems, so heuristic (Alworafi et al., 2016; 

Abdulhamid et al., 2015; Mondal et al., 2012; Banga and 

Rana, 2017; Seth and Singh, 2018) and metaheuristic 

methods (Kalra and Singh, 2015; Mustafa et al., 2015; 

Salman et al., 2002; Talbi, 2009; Poonam et al., 2016; 

Ibrahim et al., 2016) can be applied to achieve near 

optimal solution. In this paper, metaheuristic task 

scheduling techniques are implemented using CloudSim 

simulator and compared to the traditional heuristic 

methods to solve the independent static TS problem in 

CC environment. We have employed two different 

environments: Symmetric and asymmetric environments. 

In symmetric environment; the specifications of the VMs 

are fixed. However, in the asymmetric environment, the 

VMs are decided randomly according to various 

specifications such as RAM, Bandwidth and MIPS. 

Symmetric scheduling is unrealistic, because it does not 

take full advantage of the asymmetric nature of VMs.  

Related Work 

TS in CC environment is an open issue and has a lot 

of challenges so it has been recently addressed in many 

studies. In this section, some of those studies are 

reviewed. Tsai and Rodrigues (2014) reviewed the 

literature about metaheuristic scheduling techniques for 

CC and present the main issues and challenges of 

metaheuristic algorithms. 

Further, they provided an extensive discussion of 

metaheuristics algorithms in cloud computing. Another 

study was done by Kalra and Singh (2015) as a 

comparative analysis of various metaheuristic scheduling 

techniques for cloud and grid environments including 

ACO, BAT algorithm, GA, League Championship 

Algorithm (LCA) and PSO. Salman et al. (2002) showed 

that the performance of PSO algorithm run faster than 

GA in solving static TS problem for homogeneous 

distributed computing systems. Sindhu and Mukherjee 

(2013) has presented GA along with three heuristic 

techniques for initialization of the population named 

Largest Cloudlet Fastest Processor (LCFP), Smallest 

Cloudlet Fastest Processor (SCFP) and Minimum 

Completion Time (MCT). Their solution has minimized 

the makespan and maximized the processor utilization.  

He et al. (2013) presented a comparative 

examination of five heuristic algorithms including 

Sequence Scheduling (SS), FCFS, SJF, Balance 

Scheduling (BS) and Greedy Scheduling (GS) 

algorithms and they found that FCFS has the best 

performances in scheduling independent tasks. 

Madni et al. (2017) presented the comparative 

study of six rule based heuristic algorithms in 

homogeneous and heterogeneous environments with 

and without using workload traces with the aim of 

comparing their performance in terms of cost, degree 

of imbalance, makespan and throughput for optimal 

TS in CC environment. 

Those heuristic algorithms are FCFS, MCT, Minimum 

Execution Time (MET), Max-min, Min-min and 

Sufferage. Their results showed that Min-min algorithm 

enhanced the performance of TS problem. Moreover, 

Dasgupta et al. (2013) compare the GA with FCFS, 

Round Robin and Stochastic Hill Climbing algorithms for 

load balancing in cloud computing for task scheduling. 

However, all previously mentioned publications have 

addressed different heuristic and metaheuristic 

techniques for optimizing the TS problem in CC 

environment, they were focused on the techniques 

rather than the environment and its impact on the 

performance of the algorithm. Consequently, we were 

motivated to develop an extensive study for optimizing 

TS problem in a symmetric and asymmetric, real, CC 

environment using metaheuristic algorithms with a 

synthetic and real workload traces.  

Overview of Proposed System  

In this work, we have implemented TS using two 

metaheuristic algorithms (PSO, GA) and compared 

their performance with two traditional techniques 

(FCFS, SJF). The whole system framework is shown in 

Fig. 1. In Fig. 1, let [T1,T2,…..,Tn] denote n independent 

tasks submitted to the cloud and will be scheduled on 

proper resources (virtual machine [VM1,VM2,….,VMm]). 

Tasks are queued in a task queue, TQ. The scheduler is 

responsible for distributing each task from the TQ to the 

appropriate virtual machine (Sarathambekai and 

Umamaheswari, 2017). We have implemented the using 

two metaheuristic algorithms including PSO and GA. 
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Fig. 1: System architecture with task scheduling model in CC environment 

 

The performance of PSO and GA is compared to two 

traditional heuristic algorithms: FCFS (Jamali et al., 

2016) and SJF (Yeboah et al., 2015). We have applied 

six performance metrics for comparing the investigated 

algorithms with the aim to resolve TS problem and 

suggest the appropriate solution for symmetric and 

asymmetric CC environments. For optimizing the 

performance (Ali et al., 2000; Yang et al., 2013), the 

scheduling has been done according to the following 

constraints: Virtual machines are always available, 

Preemption is not allowed (i.e., no high priority tasks), 

each virtual machine can run only one task at a time 

and tasks cannot be processed on more than one virtual 

machine at a time.  

Traditional Heuristic Paradigms  

The objective of a heuristic is to produce a solution in 

a reasonable time structure that is good sufficient for 

solving given problem (Alworafi et al., 2016; 

Abdulhamid et al., 2015; Mondal et al., 2012; Banga and 

Rana, 2017; Seth and Singh, 2018). This solution cannot 

be the greatest of all the solutions to given problem, or it 

can obviously estimate the exact solution. But it is as yet 

useful in order to finding it does not demand a long-term 

period. Heuristic techniques include First Come First 

Serve (FCFS) and Shortest Job First (SJF).  

First Come First Serve (FCFS)  

The basic idea of FCFS algorithm is that tasks 

come first will be mapped to an available VM. If all 

VMs are busy, incoming tasks will be queued in the 

task queue. FCFS is a very simple algorithm and is 

being used as default TS algorithm in CloudSim 

simulator (Calheiros et al., 2011; Buyya et al., 2009). 

FCFS has been applied extensively by the research 

community to resolve TS in CC environment. Jamali et al. 

(2016) have applied FCFS algorithms for minimizing 

the makespan of assigned tasks to VMs. 

Moreover, Abdulhamid et al. (2015) has evaluated 

the performance of proposed LCA task scheduling 

algorithm and compared the LCA with three other 

existing algorithms including the FCFS, Best Effort First 

(BEF) and Last Job First (LJF). Also, Mondal et al. 

(2012) has proposed the Stochastic Hill Climbing 

technique and compared it with FCFS for optimizing 

load balancing in CC environment.  

Shortest Job First Scheduling Algorithm 

(SJF) 

In SJF algorithm, the task has the lowest number of 

instructions get a high priority and will be execute first 

on the existing VMs. If two tasks have same length, 

FCFS algorithm is executed instead of SJF algorithm. 

Nehru et al. (2015) suggested a priority-based 

algorithm. They compared this algorithm with FCFS 

scheduling algorithm and SJF in term of average 

waiting time. They compared this algorithm with FCFS 

scheduling algorithm and SJF in term of average 

waiting time. The result presented that SJF scheduling 

algorithm is more efficient than the FCFS algorithm. 

Also, Yeboah et al. (2015) suggested an integration of 

Round Robin with SJF Algorithm for CC environment. 

The result yielded a better performance of the integrated 

algorithm than Round Robin in terms of context 

switches, Average Waiting Time and Average 

Turnaround Time. Alworafi et al. (2016) presented an 

 Task queue Scheduling algorithms 

Scheduler 

T1 
 

T2 
 

Tn 

Traditional heuristic algorithms Metaheuristic algorithms 

FCFS SJF PSO GA 

Optimization metrics 

Choose appropriate algorithm 
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improved SJF scheduling algorithm for CC environment. 

Makespan, average response time and resources 

utilization have been enhanced.  

Metaheuristic Algorithms Paradigms  

Many classification standards may be used for 

metaheuristics. For a more illustration to classification of 

metaheuristics, we suggest the reader to (Tsai and 

Rodrigues, 2014; Talbi, 2009; Dhaenens and Jourdan, 

2016; BoussaïD et al., 2013; Alba et al., 2013) for 

getting more reviews. Metaheuristics are divided into two 

major categories: Local search methods and population-

based methods (Dhaenens and Jourdan, 2016). The main 

difference between these methods depends on two 

different characteristics. The first characteristic is the 

number of empirical solutions that used in each iteration 

of the algorithm. In local search algorithms, we start 

with a single initial solution and at each step of the 

search; the current solution is exchanged with others. On 

the other hand, population-based algorithms depend on 

using a set (i.e., a population) of solutions. In this state, 

the initial population is randomly produced and then 

enhanced within an iterative process by replacing the 

current individuals with newly produced individuals of 

better quality. The other characteristic of metaheuristic 

algorithms is the paradigms used to replace the 

information at each iteration which is called the 

experience. Local search metaheuristic enables finding a 

locally optimal solution quickly; therefore they are called 

exploitation-oriented methods in the search space. 

On the other hand, population-based depends on the 

ability of diversification in the search space, so they are 

called exploration-oriented methods (Tsai and 

Rodrigues, 2014). Population-based methods are based 

on analogues of natural concepts. Examples of these 

methods include Evolutionary Computation (EC) and 

Swarm Intelligence (SI). EC algorithms are inspired by 

the Darwinian principles of nature, where a population of 

individuals is modified through recombination and 

mutation operators like GA. SI algorithms can be 

utilized to solve optimization algorithms inspired by the 

collective behavior of social insect colonies such as ants 

and other animal societies such as fishes, birds, etc., 

rather than individual abilities (Alba et al., 2013). GA 

and PSO are metaheuristic algorithms that have been 

proposed for resolving the task scheduling problem in a 

feasible time by applying iterative strategies to find 

optimal or near-optimal solutions.  

Genetic Algorithm (GA)  

GA was first introduced by Holland in 1975. It is 

based on the biological concept of generation of the 

population (Jang et al., 2012). GA is flexible and 

produces good solution near optimal results when the 

search space is large. In GA, each chromosome 

represents a feasible solution to a problem and is 

composed of a string of genes. The length of each 

chromosome consists of the total number of all the 

tasks and the value of each gene presents the VM’s 

number at the same position. Initial population (Tasks 

reach to the VM) is generated randomly and 

consisting of chromosomes where population size P 

equals the length of each chromosome N. Each 

chromosome (feasible solution) encodes by binary 

encoding types and is composed of a string of genes 

(the VM’s number). For example: L = 10, the value 

range of each gene (VM’s number) is from 1 to 3 so 

the chromosome {1,3,2,3,1,3,2,3,1,2} means that the 

first task is executed on the first VM. Therefore, three 

tasks have been sent to the first virtual machine to be 

carried out. And, three tasks have been sent to the 

second virtual machine and four tasks have been sent 

to the third virtual machine to be carried out. Then, 

GA produces new solution and then evaluates the 

solution by the fitness function. A fitness function, 

objective function, is defined as an evaluation 

function that evaluates the quality of CC environment. 

In this paper, it is based on a lot of metrics such as 

makespan, flow time, response time, resource 

utilization, throughput time and degree of imbalance. 

Based on fitness value, chromosomes are selected and 

crossover and mutation operations are performed on 

them to produce offsprings for the new population 

(new solution). The production offspring process is 

iterated until sufficient offsprings are created. Then, 

the final step is decoding of  procuration chromosome. 

GAs has many  advantages  like simple  structure, 

very easy to understand and reducing the scheduling 

time (TarunGoyal, 2013). Pseudo code of GA 

algorithm for optimization of TS problem in CC is 

proposed and shown in Fig. 2. 

Particle Swarm Optimization (PSO) 

PSO is a population-based global search swarm 

intelligence metaheuristic technique and the notion is 

developed by Eberhart and Kennedy (1995). It is 

originally was inspired from the behavior of the 

movement of bird and fish herd. The standard PSO 

merges local search methods (through self-

experience) with global search methods (through 

neighboring experience). PSO consists of a population 

called swarm and each member of the swarm is called 

a particle, with each particle representing a possible 

solution (Kalra and Singh, 2015). Figure 3 shows a 

proposed pseudo code of implementing the PSO 

algorithm for optimizing TS in CC.  
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Fig. 2: Illustrates Pseudo code of GA algorithm for optimization of TS problem in CC 

 

 
 

Fig. 3: Pseudo Code of PSO algorithm for optimizing TS in CC 

Input: List of cloudlets (tasks), List of VMs  
 
 1. Initialization: initial population (Tasks reach to the VM) is generated randomly and consisting of 

chromosomes where population size P = L (length of each chromosome)* N (number of all 
chromosomes). Each chromosome (feasible solution) is encoded by binary codes and is composed of a 

string of genes (the VM’s number).  
 2. Fitness: evaluate the performance of each chromosome using fitness function. It is calculated using a set 

of metrics such as makespan, flow time, response time, resource utilization, throughput time and degree 
of imbalance  

  2.1 Calculate �������� as Equation (1)  

  2.2 Calculate �	
� ��� as Equation (2)  

  2.3 Calculate ����
��� ��� (��) as Equation (3)  

  2.4 Calculate ������� ���
���� ��	���
� as Equation (4)  

  2.5 Calculate �.�
��.��� ��� as Equation (5)  
  2.6 Calculate degree of imbalance as Equation (6)  
 3. Operators: based on fitness value retrieved from each metric, chromosomes are selected and then are 

feed to a crossover and mutation operations. While (number of iteration <max. No. of iterations or 
optimum solution is found) Do:  

  3.1 Selection: Select the chromosomes for producing next generation (new solution) using selection 
operator based on Roulette Wheel.  

  3.2 Crossover: Implement the crossover operation on the pair of chromosomes obtained in step 3.1.  
  3.3 Mutation: Implement the mutation operation on the chromosomes.  
 4. Update: Update the population P by replacing bad solutions with better chromosomes from Offsprings.  

 5. Repeat steps 3 to 4 until stopping condition is met. Stopping condition may be the maximum number of 
iterations or no change in fitness value of chromosomes for sequential iterations.  

 6. Decoding: Decode the procuration chromosome (feasible solution).  
 7. Output: the best chromosome as the final solution for tasks allocation on VMS.  
 

End 

PSO ( )  

Input: List of cloudlets (tasks), List of VMs 
 
1. Encoding: Initialize a population of particles where each particle representing a possible solution represents by 1× n 

vector encoding types where n is the no. of tasks. The entries of this vector are the VM id executing this task. The 
mapping of tasks to VMs is done randomly. Each particle is assigned a random velocity in the swarm. 

 

2. Initialize best_position, F_best and Global_Best: Calculate the fitness value of each particle using a fitness function 
(performance metrics). Each particle is assigned an initial pbest value as its existing position. The maximum fitness 

value of all particles is considered the Global_Best value.  

 For particle i =1 to population size (N) do  
 Particle[i].best_position = existing position  

 Particle[i].F_best = existing fitness  

 End for  

 Global_Best = particle.best with lowest fitness  
 
3. Iterate and Update: Update each particle’s position and velocity vector. Each particle is assigned value is better 
than particle’s pbest, then replace pbest with current position value.  

 For k = 1 to N  

 For i = 1 to population size 

( ) ( )1

1 1 2 2

1 1

k k k k k k

id id id id gd id

k k k

id id id

v c r p x c r p x

x x v

ω
+

+ +

= + × − + × −

= +

 

 If existing fitness < particle[i].F_best Then  
 Particle[i].best_position = existing position  

 Particle[i].F_best = existing fitness  

 End if  

 End for  

 Global_Best = particle.best with lowest fitness  

 End for  

4. Output: Global_Best value 
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Performance Metrics 

Six performance metrics (makespan, flow time, 

response time, resource utilization, throughput time and 

degree of imbalance) have been used in this work to 

evaluate the performance of previously mentioned 

algorithms. They can be defined as follows: 
 

• Makespan: It indicates the finishing time of the 

latest task when all tasks are scheduled. Makespan is 

defined in the following equation: 
 

max
i

i tasks

Makespan Fn
∈

=   (1)  

 
where, Fni indicate the finishing time of task i.  

• Flow Time: It is the total of finishing times of all 

the tasks when all tasks are scheduled: 
 

ii tasks
FlowTime Fn

∈

=∑   (2)  

 
where, Fni indicate the finishing time of task i. Flow 

time indicates the response time to the tasks 

submitted by users. When the value of flow time 

minimized, that means the average response time 

reduced (Kalra and Singh, 2015).  

• Response Time (RT): It is the amount of time 

required to respond by the load balancing algorithms 

in cloud computing (Alworafi et al., 2016) or it is 

the difference between task’s completion time and 

task’s submission time (Seth and Singh, 2018). And 

it is defined in the following equation: 
 

( )
1

n

i ii
RT CT SB

=

= −∑   (3)  

 
where, CT: Task’s completion time. SB: Task’s 

submission time.  

• Resource Utilization: It is preserving resources 

as busy as possible when all tasks are scheduled 

(Kalra and Singh, 2015): 
 

1

n

j

AverageResource Utilization

TimetakenbyVM j to finishall tasks

Makespan n

=

=

×

∑   (4)  

 
where, n indicate the no. of VMs.  

• Throughput Time: It is the total execution time of 

all tasks that complete in a certain time period. In 

CC, Minimum throughput is required for task 

scheduling (Mustafa et al., 2015) and it is defined in 

the following equation: 
 

( )
ii tasks

Throughput time Exetime
∈

=∑   (5)  

 
where, (Exe time)i indicate the execution time of task i.  

• Degree of Imbalance (DI): It describes the amount 

of load distribution amongst the VMs according to 

their execution efficiency (Madni et al., 2017). It is 

defined in the following equation.  
 

max min

avg

T T
DI

T

−

=   (6)  

 
where, Tmax, Tmin and Tavg indicates the maximum, 

minimum and average overall execution time of task 

among total VMs. 
 

Results 

In this paper, the execution time of each task 

basically depends on the size of the task and the 

specifications of the virtual machine. The task size is 

expressed as Million Instructions (MI) and the 

computing power of the virtual machines is represented 

as the number of Millions of Instructions Per Second 

(MIPS) that can be processed.  

The expected execution time of task Ti running on 

virtual machine VMj (Sarathambekai and Umamaheswari, 

2017) can be expressed as: 
 

[ ], /ETC i j MITi MIPSVMi=   (8)  

 

where, i ∈{1,2… n}, j∈{1,2… m}. 

We have used an open source tool, CloudSim Tool 

(Calheiros et al., 2011), for implementing and testing the 

proposed TS algorithms for symmetric and asymmetric 

environment. Through the CloudSim simulator, the 

proposed TS algorithms have been written by java 

programming language using eclipse program in Intel(R) 

Core(TM) 5i CPU in 2.5 GHZ of processor and 6.00 GB 

of RAM. Datacenter, VMs, host, cloudlets (tasks) and 

cloud users specification are presented in Table 1 for 

symmetric and asymmetric environments respectively. 

The performance of algorithms was investigated on 

synthetic traces or real workload traces. We have 

generated the workload traces from High Performance 

Computing Center North, HPC2N. HPC2N is one of six 

national centers funded by the Swedish National 

Infrastructure for Computing (SNIC); Cloudlets were 

generated from a standard formatted workload of a High 

performance computing center as a benchmark (U. 

University, 2006). According to HPC2N workload (U. 

University, 2006), workload traces contains some 

scheduling aspects of each task including required 

resources such as number of requested processors and 

the job execution time. The generated traces from 

HPC2N (Xhafa and Abraham, 2010) contains 

527371cloudlets. However, we have reduced this 

number into only 1000 cloudlets due to the complexity 

that we may get from running metaheuristic algorithms 

on such huge amount of tasks.  
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The algorithms have been implemented as part of the 

cloud broker in symmetric and asymmetric environment. 

Two scenarios have been tested in this work. The first 

scenario is testing the performance of metaheuristic (PSO 

and GA) versus traditional heuristic scheduling in 

symmetric environment on the synthetic traces and real 

workload traces. The other scenario is testing the 

performance of metaheuristic (PSO and GA) versus 

traditional heuristic scheduling in asymmetric environment 

on the synthetic traces and real workload traces. 

PSO and GA Specifications  

There are five input parameters should be specified 

for PSO including the number of particles (swarm size), 

maximum velocity, inertia weights (ω), Self-recognition 

coefficient c1 and Social coefficient c2. Based on work 

done in Deep and Madhuri (2012), the best performance 

for PSO is achieved using the setting values shown in 

Table 2 for the number of chromosomes, crossover 

probability and mutation probability. We have gained 

stable performance for PSO and GA algorithms after 800 

iterations as shown in Fig. 4. In this figure we can see 

that the makespan is almost constant after 600 iterations. 

Symmetric Environment  

In the first scenario, the numbers of cloudlets, 

synthetic traces and real workload traces, submitted to 

the CC symmetric environment are gradually increased 

from 100 to 1000 as shown in Table 1. The simulation 

has been repeated ten times and the mean values have 

been considered for each performance metric. Figure 5-

10 illustrate the mean makespan, flow time, degree of 

imbalance, response time, throughput time and best 

resource utilization for each TS algorithm being 

investigated in the scope of this study. The result show 

that SJF and FCFS algorithms attained the same 

performance metric values in symmetric environment 

using synthetic traces.   

 
Table 1: The simulation parameters of symmetric and asymmetric environment  

  Symmetric environment  Asymmetric environment  

Entities  Parameters  Values  Values  
Data Center  No of Data Centers  1  1  
Virtual Machine  No of VMs  5  5  
 Type of Policy  Time Share  Time Share  
 RAM  512 MB  128 to 20480 MB  
 Bandwidth  1024 MB/s  128 to 20480 MB/s  
 MIPS  1000  256 to 40000  
 Size  10 GB  100 GB  
 VMM  Xen  Xen  
 Operating System  Linux  Linux  
 No of CPUs  1  1  
Host  No of Host  2  2  
 RAM  2 GB  20 GB  
 Storage  1 TB  4 TB  
 Bandwidth  10 GB/s  40 GB/s  
 PE configuration  Intel® Core™ i7-4960X Processor Intel® Core™ i7-4960X Processor 
  Extreme Edition # of Cores 6  Extreme Edition # of Cores 6  
  Intel® Core™ i5-7300HQ Intel® Core™ i5-7300HQ 
  Processor # of Cores 4 (PEs)  Processor # of Cores 4 (PEs)  
Cloudlet  No of cloudlets  100-1000  100-1000  
 Length  40000  40000  
User  No of users  1  1  

 
Table 2: The parameters of PSO and GA  

Algorithm  Parameter description  Parameter Value  

PSO  Size of Swarm  100  

 Self-recognition coefficient c1  1  

 Social coefficient c2  1  

 Weight ω  max = 0.9, min = 0.4  

 Max Velocity  1  

 number of iterations  800  

GA  Size of population  100  

 Probability of crossover  0.8  

 Probability of mutation  0.03  

 Scale for mutations  0.1  

 number of iterations  800  
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Fig. 4: Makespan value Vs. iteration 
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Fig. 5: Makespan with synthetic traces and real workload traces in symmetric environment 
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(a) 

 

 
(b) 

 
Fig. 6: Flow Time with synthetic traces and real workload traces in symmetric environment 
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In Fig. 9, GA, SJF and FCFS algorithms attained better 

throughput time than PSO algorithm in both synthetic and 

real workload traces. In Fig. 9a, GA, FCFS and SJF and 
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algorithms attained throughput time lessening of 38.44%, 
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with real workload traces. 
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over GA and PSO algorithms correspondingly using 
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saving ratio of 10.32%, 35.23% respectively 
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(a) 

 

 
(b) 

 
Fig. 7: Degree of imbalance with synthetic traces and real workload traces in symmetric environment 
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Fig. 8: Response time with synthetic traces and real workload traces in symmetric environment 
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(a) 

 

 
(b) 

 
Fig. 9: Throughput Time with synthetic traces and real workload traces in symmetric environment 
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Fig. 10: Resource utilization with synthetic traces and real workload traces in symmetric environment 
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Asymmetric Environment  

In the second scenario, the CC asymmetric 

environment has been simulated with the same 

parameters listed above in Table 1 and Table 2 with 

synthetic traces and real workload traces. The simulation 

has been recurrent ten times and the mean values have 

been measured for each performance metric. Figures 11-

16 illustrate the retrieved mean makespan, flow time, 

degree of imbalance, response time, throughput time and 

best resource utilization. 

In Fig. 11 the salvaged results show that the PSO 

algorithm produced superior makespan than other 

algorithms in both synthetic and real workload traces. In 

Fig. 11a, PSO algorithm accomplished makespan 

reduction of 52.79%, 48.30% and 59% over FCFS, GA 

and SJF algorithms respectively using synthetic traces. 

In addition to Fig. 11b, PSO algorithm achieved 

makespan saving of 70.33%, 70.65% and 63.77% over 

FCFS, GA and SJF algorithms correspondingly using 

real workload traces. 

In Fig. 12 the evaluation results show that the PSO 

algorithm gave better flow time than other algorithms in 

both synthetic and real workload traces. In Fig. 12a, PSO 

algorithm attained flow time lessening of 35.02%, 

27.59% and 44.22% over FCFS, GA and SJF algorithms 

correspondingly using synthetic traces. Besides Fig. 12b, 

PSO algorithm achieved flow time reduction of 51.69%, 

48.14% and 47.77% over FCFS, GA and SJF algorithms 

respectively using real workload traces.  

In Fig. 13 the estimation result show that the PSO 

algorithm generates improved throughput time than other 

algorithms in both synthetic and real workload traces. In 

Fig. 13a, PSO algorithm accomplished throughput time 

saving of 35.02%, 33.02% and 44.20% over FCFS, GA 

and SJF algorithms respectively using synthetic traces. 

In addition to Fig. 13b, PSO algorithm attained 

throughput time reduction of 49.93%, 48.14% and 

46.14% over FCFS, GA and SJF algorithms 

correspondingly using real workload traces. 

In Fig. 14, the association results show that the 

metaheuristic (PSO and GA) algorithms presented better 

response time than other traditional (FCFS and SJF) 

algorithms in both synthetic and real workload traces. In 

Fig. 14a, PSO and GA algorithms accomplished 

response time saving of 11.96%, 8.58% and over FCFS 

and SJF algorithms correspondingly where SJF 

algorithm values equal to FCFS algorithm values using 

synthetic traces. In addition to Fig. 14b, PSO and GA 

algorithms attained response time lessening of 9.78% 

and 10.10 % over FCFS and SJF algorithms respectively 

where SJF algorithm values equal to FCFS algorithm 

values using real workload traces.  
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Fig. 11: Makespan with synthetic traces and real workload traces in asymmetric environment 

FCFS 
 

PSO 
 

GA 

 

SJF 

 

100    200    300     400     500     600    700    800     900    1000 

Number of cloudlet 

9000 
 

8000 
 

7000 
 

6000 
 

5000 
 

4000 
 

3000 
 

2000 
 

1000 
 

0 

M
ak

es
p

an
 (

se
c)

 

FCFS 
 

PSO 
 

GA 

 

SJF 

 

100     200    300     400     500    600     700     800    900    1000 

Number of cloudlet 

35000 

 

30000 
 

25000 

 

20000 

 

15000 

 

10000 

 

5000 

 

0 

M
ak

es
p

an
 (

se
c)

 



Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611 

DOI: 10.3844/jcssp.2019.594.611 

 

606 

 
(a) 

 

 
(b) 

 
Fig. 12: Flow time with synthetic traces and real workload traces in asymmetric environment 
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Fig. 13: Throughput time with synthetic traces and real workload traces in asymmetric environment 
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(a) 

 

 
(b) 

 
Fig. 14: Response time with synthetic traces and real workload traces in asymmetric environment 
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Fig. 15: Degree of imbalance with synthetic traces and real workload traces in asymmetric environment 
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(a) 

 

 
(b) 

 
Fig. 16: Resource utilization with synthetic traces and real workload traces in asymmetric environment 

 
In Fig. 15, the evaluation result show that the PSO 

algorithm succeeded to enhance DI than other algorithms 
in both synthetic and real workload traces. In Fig. 15a, 
PSO and GA algorithms accomplished DI and PSO 
attained DI lessening of 76.03%, 76.16% and over FCFS 
and SJF algorithms respectively using synthetic traces. 
In addition to Fig. 15b, PSO algorithm achieved DI 
shrinking of 43.66%, 41.06% and 37.39% over FCFS, 
SJF and GA algorithms correspondingly using real 
workload traces.  

In Fig. 16, the results show that the SJF and FCFS 

algorithms succeeded to enhance resource utilization 

than PSO and GA in both synthetic and real workload 

traces. Figure 16a, SJF algorithm achieved best resource 

utilization reduction of 36.66%, 30.19% and 17.58% 

over PSO, GA and FCFS algorithms respectively using 

synthetic traces. In addition to Fig. 16b, SJF algorithm 

accomplished resource utilization lessening of 3.88%, 

25.32% and 11.87% over PSO, GA and FCFS 

algorithms correspondingly using real workload traces. 

Conclusion  

As noticed in the retrieved results of simulating of TS 

techniques in symmetric environment, FCFS and SJF 

algorithms provided the best performance in minimizing 

both of makespan and degree of imbalance and 

maximizing resource utilization using synthetic traces. In 

addition, they gave the lowest response time and 

throughput time in both of synthetic and real traces. SJF 

algorithm gave an enhancement of makespan, flow time, 

throughput time, response time and resource utilization 

in both of synthetic and real workload traces. For the 

metaheuristic methods, GA algorithm gave satisfactory 

performance comparable to the traditional heuristic 

techniques but the PSO attained the lowest presentation. 

In synthetic workload traces, GA retrieved a reasonable 

makespan time, flow time, throughput time and response 

time. And in real workload traces, it gave an adequate 

degree of imbalance and resource utilization.  

In the asymmetric environment, PSO algorithm 

achieved an amazing performance compared to FCFS, 

SJF and GA. In both of synthetic and real workload 

traces, PSO attained the lowest makespan, flow time, 

throughput time, response time and degree of imbalance. 

However, GA algorithm approximately gave a slightly 

different response time compared to the time retrieved 

using PSO in both of synthetic and real workload traces. 

In addition, SJF algorithm achieved the best resource 

utilization in both of synthetic and real workload traces.  
In both symmetric and asymmetric environment using 

synthetic traces and real workload traces, the performance 

of traditional heuristic algorithms were not sufficient in 
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obtaining the optimal makespan and throughput for TS. 

Hence, FCFS algorithm has executed poorly in terms of 

the degree of imbalance in symmetric environment with 

real workload traces and in asymmetric environment in 

both of synthetic and real workload traces. Also, SJF 

algorithm was not sufficient in obtaining the optimal 

makespan, throughput, response time, degree of imbalance 

and flow time for TS in asymmetric environment. 
To conclude, metaheuristic techniques are more 

efficient in real-world environment (asymmetric). PSO 
showed better performance in optimizing makespan, 
flow time, throughput time, response time and degree of 
imbalance in both of synthetic and real workload traces 
in asymmetric environment as a real environment, while 
it was not sufficient in obtaining the optimal in 
symmetric environment using synthetic traces and real 
workload traces. In addition it suffers from higher 
complexity compared to heuristic methods. GA 
algorithm only fulfilled the optimal degree of imbalance 
in symmetric environment with real workload traces. 
Otherwise, it gave sufficient performance in obtaining 
the optimal response time in asymmetric environment in 
both of synthetic traces and real workload traces.  
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