

 © 2019 Nagwan M. Abdel Samee, Sara Sayed Ahmed and Rania Ahmed Abdel Azeem Abul Seoud. This open access article

is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Metaheuristic Algorithms for Independent Task Scheduling in

Symmetric and Asymmetric Cloud Computing Environment

1,2,3
Nagwan M. Abdel Samee,

4
Sara Sayed Ahmed and

4
Rania Ahmed Abdel Azeem Abul Seoud

1Department of Information Technology,
Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
2Deanship of Scientific Research,
Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
3Department of Computer and Software Engineering, Misr University for Science &Technology, Egypt
4Department of Electronics and Communication Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt

Article history

Received: 18-01-2019
Revised: 24-03-2019
Accepted: 29-04-2019

Corresponding Author:
Sara Sayed Ahmed
Department of Electronics and
Communication Engineering,
Faculty of Engineering,
Fayoum University, Fayoum,
Egypt
Email: ss119@fayoum.edu.eg

Abstract: Cloud Computing (CC) is a recent technology in the

Information and Communication Technology (ICT) field. It provides an

on-demand access to the shared pool of resources via virtualization. Large

enterprises move toward CC due to its flexibility and scalability driven

from its elastic pay-per-use model. To provide ensured efficient

performance to users, tasks should be efficiently mapped to available

resources. Therefore, Task Scheduling (TS) is significant issue in the CC

technology. TS is a NP-complete optimization problem, so a deep

investigation of different metaheuristic and heuristic TS algorithms is

presented here. Particle Swarm Optimization (PSO) and Genetic

Algorithms (GA) as metaheuristic algorithms are implemented and their

performance have been compared to heuristic techniques (First Come First

Serve (FCFS) and Shortest Job First (SJF)) on symmetric and asymmetric

environment. The cloud service providers and users have different

performance requirements. Six performance metrics including makespan,

flow time, response time, resource utilization, throughput time and degree

of imbalance have been measured. For asymmetric environment, real

environment, metaheuristic TS algorithms surpassed the heuristic methods.

Keywords: Cloud Computing, Task Scheduling, Meta-Heuristic,

Performance Metrics, Asymmetric Environment

Introduction

Cloud computing, CC, applies distributed computing

techniques to deliver an on-demand access to a shared

virtual computing resources (ex. Networks, Servers,

Storage, Applications and Services) over the Internet

(Zhang et al., 2010; Singh et al., 2017).

Virtualization is an emerging technology for

efficient utilization of cloud resources. It is used to split

a single physical machine into multiple Virtual

Machines (VM) (Malhotra et al., 2014; Ahmad et al.,

2015a). Each VM can abstract and isolate the underlying

hardware and networking resources from each other

(Ahmad et al., 2015a). VM can be scaled up or down

according to the demanded services. It also can provide

resource sharing, high utilization of pooled resources,

rapid provisioning and workload isolation (Ahmad et al.,

2015b; Zhang et al., 2018).

Usually, a Cloud Service Provider (CSP), like

Google, presents these facilities using the pay per use

model (Arya and Verma, 2014). By the help of cloud

computing technology, users such as the individuals,

researchers and large businesses can access their data,

applications, on different platforms via the internet

without the need for buying costly computing resources.

To provide ensured proficient performance to users,

it is necessary that tasks should be mapped efficiently

to available resources. Task Scheduling (TS) is one of

the core challenges in CC environment. The main

features of competent TS in CC environment are

minimizing makespan, flow time, response time,

throughput time and degree of imbalance and

maximizing resource utilization (Widmer et al., 2008;

Tsai and Rodrigues, 2014). TS can be classified into

independent scheduling and dependent scheduling

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

595

(Masdari et al., 2017; Nagadevi et al., 2013). In

independent scheduling tasks are independent of each

other and can be scheduled in any sequence, however in

dependent scheduling, tasks are represented by a

Directed Acyclic Graph (DAG) (i.e., workflow

scheduling). DAG is a directed graph that comprises

group of edges and vertices. Where each vertex signifies

the task and every edge signifies the affiliation between

two nodes or vertices connected through that edge

(Singh et al., 2015). TS can also be classified into static

and dynamic task scheduling. In static scheduling, all

tasks or VMs are known a priori to scheduling. These

tasks are independent of the virtual machine's states and

their availability. So, it imposes less runtime overhead.

On the other hand, in dynamic scheduling, the

information about the tasks is unknown in advance. So,

the execution time of task may not be known and the

information about VMs is not obtained until it comes

into the scheduling stage (Nagadevi et al., 2013;

Mathew et al., 2014).

TS is an optimization problem belonging to the class

of NP-hard problems, so heuristic (Alworafi et al., 2016;

Abdulhamid et al., 2015; Mondal et al., 2012; Banga and

Rana, 2017; Seth and Singh, 2018) and metaheuristic

methods (Kalra and Singh, 2015; Mustafa et al., 2015;

Salman et al., 2002; Talbi, 2009; Poonam et al., 2016;

Ibrahim et al., 2016) can be applied to achieve near

optimal solution. In this paper, metaheuristic task

scheduling techniques are implemented using CloudSim

simulator and compared to the traditional heuristic

methods to solve the independent static TS problem in

CC environment. We have employed two different

environments: Symmetric and asymmetric environments.

In symmetric environment; the specifications of the VMs

are fixed. However, in the asymmetric environment, the

VMs are decided randomly according to various

specifications such as RAM, Bandwidth and MIPS.

Symmetric scheduling is unrealistic, because it does not

take full advantage of the asymmetric nature of VMs.

Related Work

TS in CC environment is an open issue and has a lot

of challenges so it has been recently addressed in many

studies. In this section, some of those studies are

reviewed. Tsai and Rodrigues (2014) reviewed the

literature about metaheuristic scheduling techniques for

CC and present the main issues and challenges of

metaheuristic algorithms.

Further, they provided an extensive discussion of

metaheuristics algorithms in cloud computing. Another

study was done by Kalra and Singh (2015) as a

comparative analysis of various metaheuristic scheduling

techniques for cloud and grid environments including

ACO, BAT algorithm, GA, League Championship

Algorithm (LCA) and PSO. Salman et al. (2002) showed

that the performance of PSO algorithm run faster than

GA in solving static TS problem for homogeneous

distributed computing systems. Sindhu and Mukherjee

(2013) has presented GA along with three heuristic

techniques for initialization of the population named

Largest Cloudlet Fastest Processor (LCFP), Smallest

Cloudlet Fastest Processor (SCFP) and Minimum

Completion Time (MCT). Their solution has minimized

the makespan and maximized the processor utilization.

He et al. (2013) presented a comparative

examination of five heuristic algorithms including

Sequence Scheduling (SS), FCFS, SJF, Balance

Scheduling (BS) and Greedy Scheduling (GS)

algorithms and they found that FCFS has the best

performances in scheduling independent tasks.

Madni et al. (2017) presented the comparative

study of six rule based heuristic algorithms in

homogeneous and heterogeneous environments with

and without using workload traces with the aim of

comparing their performance in terms of cost, degree

of imbalance, makespan and throughput for optimal

TS in CC environment.

Those heuristic algorithms are FCFS, MCT, Minimum

Execution Time (MET), Max-min, Min-min and

Sufferage. Their results showed that Min-min algorithm

enhanced the performance of TS problem. Moreover,

Dasgupta et al. (2013) compare the GA with FCFS,

Round Robin and Stochastic Hill Climbing algorithms for

load balancing in cloud computing for task scheduling.

However, all previously mentioned publications have

addressed different heuristic and metaheuristic

techniques for optimizing the TS problem in CC

environment, they were focused on the techniques

rather than the environment and its impact on the

performance of the algorithm. Consequently, we were

motivated to develop an extensive study for optimizing

TS problem in a symmetric and asymmetric, real, CC

environment using metaheuristic algorithms with a

synthetic and real workload traces.

Overview of Proposed System

In this work, we have implemented TS using two

metaheuristic algorithms (PSO, GA) and compared

their performance with two traditional techniques

(FCFS, SJF). The whole system framework is shown in

Fig. 1. In Fig. 1, let [T1,T2,…..,Tn] denote n independent

tasks submitted to the cloud and will be scheduled on

proper resources (virtual machine [VM1,VM2,….,VMm]).

Tasks are queued in a task queue, TQ. The scheduler is

responsible for distributing each task from the TQ to the

appropriate virtual machine (Sarathambekai and

Umamaheswari, 2017). We have implemented the using

two metaheuristic algorithms including PSO and GA.

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

596

Fig. 1: System architecture with task scheduling model in CC environment

The performance of PSO and GA is compared to two

traditional heuristic algorithms: FCFS (Jamali et al.,

2016) and SJF (Yeboah et al., 2015). We have applied

six performance metrics for comparing the investigated

algorithms with the aim to resolve TS problem and

suggest the appropriate solution for symmetric and

asymmetric CC environments. For optimizing the

performance (Ali et al., 2000; Yang et al., 2013), the

scheduling has been done according to the following

constraints: Virtual machines are always available,

Preemption is not allowed (i.e., no high priority tasks),

each virtual machine can run only one task at a time

and tasks cannot be processed on more than one virtual

machine at a time.

Traditional Heuristic Paradigms

The objective of a heuristic is to produce a solution in

a reasonable time structure that is good sufficient for

solving given problem (Alworafi et al., 2016;

Abdulhamid et al., 2015; Mondal et al., 2012; Banga and

Rana, 2017; Seth and Singh, 2018). This solution cannot

be the greatest of all the solutions to given problem, or it

can obviously estimate the exact solution. But it is as yet

useful in order to finding it does not demand a long-term

period. Heuristic techniques include First Come First

Serve (FCFS) and Shortest Job First (SJF).

First Come First Serve (FCFS)

The basic idea of FCFS algorithm is that tasks

come first will be mapped to an available VM. If all

VMs are busy, incoming tasks will be queued in the

task queue. FCFS is a very simple algorithm and is

being used as default TS algorithm in CloudSim

simulator (Calheiros et al., 2011; Buyya et al., 2009).

FCFS has been applied extensively by the research

community to resolve TS in CC environment. Jamali et al.

(2016) have applied FCFS algorithms for minimizing

the makespan of assigned tasks to VMs.

Moreover, Abdulhamid et al. (2015) has evaluated

the performance of proposed LCA task scheduling

algorithm and compared the LCA with three other

existing algorithms including the FCFS, Best Effort First

(BEF) and Last Job First (LJF). Also, Mondal et al.

(2012) has proposed the Stochastic Hill Climbing

technique and compared it with FCFS for optimizing

load balancing in CC environment.

Shortest Job First Scheduling Algorithm

(SJF)

In SJF algorithm, the task has the lowest number of

instructions get a high priority and will be execute first

on the existing VMs. If two tasks have same length,

FCFS algorithm is executed instead of SJF algorithm.

Nehru et al. (2015) suggested a priority-based

algorithm. They compared this algorithm with FCFS

scheduling algorithm and SJF in term of average

waiting time. They compared this algorithm with FCFS

scheduling algorithm and SJF in term of average

waiting time. The result presented that SJF scheduling

algorithm is more efficient than the FCFS algorithm.

Also, Yeboah et al. (2015) suggested an integration of

Round Robin with SJF Algorithm for CC environment.

The result yielded a better performance of the integrated

algorithm than Round Robin in terms of context

switches, Average Waiting Time and Average

Turnaround Time. Alworafi et al. (2016) presented an

 Task queue Scheduling algorithms

Scheduler

T1

T2

Tn

Traditional heuristic algorithms Metaheuristic algorithms

FCFS SJF PSO GA

Optimization metrics

Choose appropriate algorithm

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

597

improved SJF scheduling algorithm for CC environment.

Makespan, average response time and resources

utilization have been enhanced.

Metaheuristic Algorithms Paradigms

Many classification standards may be used for

metaheuristics. For a more illustration to classification of

metaheuristics, we suggest the reader to (Tsai and

Rodrigues, 2014; Talbi, 2009; Dhaenens and Jourdan,

2016; BoussaïD et al., 2013; Alba et al., 2013) for

getting more reviews. Metaheuristics are divided into two

major categories: Local search methods and population-

based methods (Dhaenens and Jourdan, 2016). The main

difference between these methods depends on two

different characteristics. The first characteristic is the

number of empirical solutions that used in each iteration

of the algorithm. In local search algorithms, we start

with a single initial solution and at each step of the

search; the current solution is exchanged with others. On

the other hand, population-based algorithms depend on

using a set (i.e., a population) of solutions. In this state,

the initial population is randomly produced and then

enhanced within an iterative process by replacing the

current individuals with newly produced individuals of

better quality. The other characteristic of metaheuristic

algorithms is the paradigms used to replace the

information at each iteration which is called the

experience. Local search metaheuristic enables finding a

locally optimal solution quickly; therefore they are called

exploitation-oriented methods in the search space.

On the other hand, population-based depends on the

ability of diversification in the search space, so they are

called exploration-oriented methods (Tsai and

Rodrigues, 2014). Population-based methods are based

on analogues of natural concepts. Examples of these

methods include Evolutionary Computation (EC) and

Swarm Intelligence (SI). EC algorithms are inspired by

the Darwinian principles of nature, where a population of

individuals is modified through recombination and

mutation operators like GA. SI algorithms can be

utilized to solve optimization algorithms inspired by the

collective behavior of social insect colonies such as ants

and other animal societies such as fishes, birds, etc.,

rather than individual abilities (Alba et al., 2013). GA

and PSO are metaheuristic algorithms that have been

proposed for resolving the task scheduling problem in a

feasible time by applying iterative strategies to find

optimal or near-optimal solutions.

Genetic Algorithm (GA)

GA was first introduced by Holland in 1975. It is

based on the biological concept of generation of the

population (Jang et al., 2012). GA is flexible and

produces good solution near optimal results when the

search space is large. In GA, each chromosome

represents a feasible solution to a problem and is

composed of a string of genes. The length of each

chromosome consists of the total number of all the

tasks and the value of each gene presents the VM’s

number at the same position. Initial population (Tasks

reach to the VM) is generated randomly and

consisting of chromosomes where population size P

equals the length of each chromosome N. Each

chromosome (feasible solution) encodes by binary

encoding types and is composed of a string of genes

(the VM’s number). For example: L = 10, the value

range of each gene (VM’s number) is from 1 to 3 so

the chromosome {1,3,2,3,1,3,2,3,1,2} means that the

first task is executed on the first VM. Therefore, three

tasks have been sent to the first virtual machine to be

carried out. And, three tasks have been sent to the

second virtual machine and four tasks have been sent

to the third virtual machine to be carried out. Then,

GA produces new solution and then evaluates the

solution by the fitness function. A fitness function,

objective function, is defined as an evaluation

function that evaluates the quality of CC environment.

In this paper, it is based on a lot of metrics such as

makespan, flow time, response time, resource

utilization, throughput time and degree of imbalance.

Based on fitness value, chromosomes are selected and

crossover and mutation operations are performed on

them to produce offsprings for the new population

(new solution). The production offspring process is

iterated until sufficient offsprings are created. Then,

the final step is decoding of procuration chromosome.

GAs has many advantages like simple structure,

very easy to understand and reducing the scheduling

time (TarunGoyal, 2013). Pseudo code of GA

algorithm for optimization of TS problem in CC is

proposed and shown in Fig. 2.

Particle Swarm Optimization (PSO)

PSO is a population-based global search swarm

intelligence metaheuristic technique and the notion is

developed by Eberhart and Kennedy (1995). It is

originally was inspired from the behavior of the

movement of bird and fish herd. The standard PSO

merges local search methods (through self-

experience) with global search methods (through

neighboring experience). PSO consists of a population

called swarm and each member of the swarm is called

a particle, with each particle representing a possible

solution (Kalra and Singh, 2015). Figure 3 shows a

proposed pseudo code of implementing the PSO

algorithm for optimizing TS in CC.

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

598

Fig. 2: Illustrates Pseudo code of GA algorithm for optimization of TS problem in CC

Fig. 3: Pseudo Code of PSO algorithm for optimizing TS in CC

Input: List of cloudlets (tasks), List of VMs

 1. Initialization: initial population (Tasks reach to the VM) is generated randomly and consisting of

chromosomes where population size P = L (length of each chromosome)* N (number of all
chromosomes). Each chromosome (feasible solution) is encoded by binary codes and is composed of a

string of genes (the VM’s number).
 2. Fitness: evaluate the performance of each chromosome using fitness function. It is calculated using a set

of metrics such as makespan, flow time, response time, resource utilization, throughput time and degree
of imbalance

 2.1 Calculate �������� as Equation (1)

 2.2 Calculate �	
� ��� as Equation (2)

 2.3 Calculate ����
��� ��� (��) as Equation (3)

 2.4 Calculate ������� ���
���� ��	���
� as Equation (4)

 2.5 Calculate �.�
��.��� ��� as Equation (5)
 2.6 Calculate degree of imbalance as Equation (6)
 3. Operators: based on fitness value retrieved from each metric, chromosomes are selected and then are

feed to a crossover and mutation operations. While (number of iteration <max. No. of iterations or
optimum solution is found) Do:

 3.1 Selection: Select the chromosomes for producing next generation (new solution) using selection
operator based on Roulette Wheel.

 3.2 Crossover: Implement the crossover operation on the pair of chromosomes obtained in step 3.1.
 3.3 Mutation: Implement the mutation operation on the chromosomes.
 4. Update: Update the population P by replacing bad solutions with better chromosomes from Offsprings.

 5. Repeat steps 3 to 4 until stopping condition is met. Stopping condition may be the maximum number of
iterations or no change in fitness value of chromosomes for sequential iterations.

 6. Decoding: Decode the procuration chromosome (feasible solution).
 7. Output: the best chromosome as the final solution for tasks allocation on VMS.

End

PSO ()

Input: List of cloudlets (tasks), List of VMs

1. Encoding: Initialize a population of particles where each particle representing a possible solution represents by 1× n

vector encoding types where n is the no. of tasks. The entries of this vector are the VM id executing this task. The
mapping of tasks to VMs is done randomly. Each particle is assigned a random velocity in the swarm.

2. Initialize best_position, F_best and Global_Best: Calculate the fitness value of each particle using a fitness function
(performance metrics). Each particle is assigned an initial pbest value as its existing position. The maximum fitness

value of all particles is considered the Global_Best value.

 For particle i =1 to population size (N) do
 Particle[i].best_position = existing position

 Particle[i].F_best = existing fitness

 End for

 Global_Best = particle.best with lowest fitness

3. Iterate and Update: Update each particle’s position and velocity vector. Each particle is assigned value is better
than particle’s pbest, then replace pbest with current position value.

 For k = 1 to N

 For i = 1 to population size

() ()1

1 1 2 2

1 1

k k k k k k

id id id id gd id

k k k

id id id

v c r p x c r p x

x x v

ω
+

+ +

= + × − + × −

= +

 If existing fitness < particle[i].F_best Then
 Particle[i].best_position = existing position

 Particle[i].F_best = existing fitness

 End if

 End for

 Global_Best = particle.best with lowest fitness

 End for

4. Output: Global_Best value

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

599

Performance Metrics

Six performance metrics (makespan, flow time,

response time, resource utilization, throughput time and

degree of imbalance) have been used in this work to

evaluate the performance of previously mentioned

algorithms. They can be defined as follows:

• Makespan: It indicates the finishing time of the

latest task when all tasks are scheduled. Makespan is

defined in the following equation:

max
i

i tasks

Makespan Fn
∈

= (1)

where, Fni indicate the finishing time of task i.

• Flow Time: It is the total of finishing times of all

the tasks when all tasks are scheduled:

ii tasks
FlowTime Fn

∈

=∑ (2)

where, Fni indicate the finishing time of task i. Flow

time indicates the response time to the tasks

submitted by users. When the value of flow time

minimized, that means the average response time

reduced (Kalra and Singh, 2015).

• Response Time (RT): It is the amount of time

required to respond by the load balancing algorithms

in cloud computing (Alworafi et al., 2016) or it is

the difference between task’s completion time and

task’s submission time (Seth and Singh, 2018). And

it is defined in the following equation:

()
1

n

i ii
RT CT SB

=

= −∑ (3)

where, CT: Task’s completion time. SB: Task’s

submission time.

• Resource Utilization: It is preserving resources

as busy as possible when all tasks are scheduled

(Kalra and Singh, 2015):

1

n

j

AverageResource Utilization

TimetakenbyVM j to finishall tasks

Makespan n

=

=

×

∑ (4)

where, n indicate the no. of VMs.

• Throughput Time: It is the total execution time of

all tasks that complete in a certain time period. In

CC, Minimum throughput is required for task

scheduling (Mustafa et al., 2015) and it is defined in

the following equation:

()
ii tasks

Throughput time Exetime
∈

=∑ (5)

where, (Exe time)i indicate the execution time of task i.

• Degree of Imbalance (DI): It describes the amount

of load distribution amongst the VMs according to

their execution efficiency (Madni et al., 2017). It is

defined in the following equation.

max min

avg

T T
DI

T

−

= (6)

where, Tmax, Tmin and Tavg indicates the maximum,

minimum and average overall execution time of task

among total VMs.

Results

In this paper, the execution time of each task

basically depends on the size of the task and the

specifications of the virtual machine. The task size is

expressed as Million Instructions (MI) and the

computing power of the virtual machines is represented

as the number of Millions of Instructions Per Second

(MIPS) that can be processed.

The expected execution time of task Ti running on

virtual machine VMj (Sarathambekai and Umamaheswari,

2017) can be expressed as:

[], /ETC i j MITi MIPSVMi= (8)

where, i ∈{1,2… n}, j∈{1,2… m}.

We have used an open source tool, CloudSim Tool

(Calheiros et al., 2011), for implementing and testing the

proposed TS algorithms for symmetric and asymmetric

environment. Through the CloudSim simulator, the

proposed TS algorithms have been written by java

programming language using eclipse program in Intel(R)

Core(TM) 5i CPU in 2.5 GHZ of processor and 6.00 GB

of RAM. Datacenter, VMs, host, cloudlets (tasks) and

cloud users specification are presented in Table 1 for

symmetric and asymmetric environments respectively.

The performance of algorithms was investigated on

synthetic traces or real workload traces. We have

generated the workload traces from High Performance

Computing Center North, HPC2N. HPC2N is one of six

national centers funded by the Swedish National

Infrastructure for Computing (SNIC); Cloudlets were

generated from a standard formatted workload of a High

performance computing center as a benchmark (U.

University, 2006). According to HPC2N workload (U.

University, 2006), workload traces contains some

scheduling aspects of each task including required

resources such as number of requested processors and

the job execution time. The generated traces from

HPC2N (Xhafa and Abraham, 2010) contains

527371cloudlets. However, we have reduced this

number into only 1000 cloudlets due to the complexity

that we may get from running metaheuristic algorithms

on such huge amount of tasks.

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

600

The algorithms have been implemented as part of the

cloud broker in symmetric and asymmetric environment.

Two scenarios have been tested in this work. The first

scenario is testing the performance of metaheuristic (PSO

and GA) versus traditional heuristic scheduling in

symmetric environment on the synthetic traces and real

workload traces. The other scenario is testing the

performance of metaheuristic (PSO and GA) versus

traditional heuristic scheduling in asymmetric environment

on the synthetic traces and real workload traces.

PSO and GA Specifications

There are five input parameters should be specified

for PSO including the number of particles (swarm size),

maximum velocity, inertia weights (ω), Self-recognition

coefficient c1 and Social coefficient c2. Based on work

done in Deep and Madhuri (2012), the best performance

for PSO is achieved using the setting values shown in

Table 2 for the number of chromosomes, crossover

probability and mutation probability. We have gained

stable performance for PSO and GA algorithms after 800

iterations as shown in Fig. 4. In this figure we can see

that the makespan is almost constant after 600 iterations.

Symmetric Environment

In the first scenario, the numbers of cloudlets,

synthetic traces and real workload traces, submitted to

the CC symmetric environment are gradually increased

from 100 to 1000 as shown in Table 1. The simulation

has been repeated ten times and the mean values have

been considered for each performance metric. Figure 5-

10 illustrate the mean makespan, flow time, degree of

imbalance, response time, throughput time and best

resource utilization for each TS algorithm being

investigated in the scope of this study. The result show

that SJF and FCFS algorithms attained the same

performance metric values in symmetric environment

using synthetic traces.

Table 1: The simulation parameters of symmetric and asymmetric environment

 Symmetric environment Asymmetric environment

Entities Parameters Values Values
Data Center No of Data Centers 1 1
Virtual Machine No of VMs 5 5
 Type of Policy Time Share Time Share
 RAM 512 MB 128 to 20480 MB
 Bandwidth 1024 MB/s 128 to 20480 MB/s
 MIPS 1000 256 to 40000
 Size 10 GB 100 GB
 VMM Xen Xen
 Operating System Linux Linux
 No of CPUs 1 1
Host No of Host 2 2
 RAM 2 GB 20 GB
 Storage 1 TB 4 TB
 Bandwidth 10 GB/s 40 GB/s
 PE configuration Intel® Core™ i7-4960X Processor Intel® Core™ i7-4960X Processor
 Extreme Edition # of Cores 6 Extreme Edition # of Cores 6
 Intel® Core™ i5-7300HQ Intel® Core™ i5-7300HQ
 Processor # of Cores 4 (PEs) Processor # of Cores 4 (PEs)
Cloudlet No of cloudlets 100-1000 100-1000
 Length 40000 40000
User No of users 1 1

Table 2: The parameters of PSO and GA

Algorithm Parameter description Parameter Value

PSO Size of Swarm 100

 Self-recognition coefficient c1 1

 Social coefficient c2 1

 Weight ω max = 0.9, min = 0.4

 Max Velocity 1

 number of iterations 800

GA Size of population 100

 Probability of crossover 0.8

 Probability of mutation 0.03

 Scale for mutations 0.1

 number of iterations 800

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

601

Fig. 4: Makespan value Vs. iteration

(a)

(b)

Fig. 5: Makespan with synthetic traces and real workload traces in symmetric environment

According to Fig. 5a, However, FCFS, SJF and GA

algorithms accomplished makespan saving of 53.55%,

45.35% over PSO algorithm approximately using

synthetic. In addition, as shown in Fig. 5b, SJF

algorithm attained the minimum mean makespan time

using real workload traces makespan saving percentage

of 10.20%, 8.35% and 43.93% over FCFS, GA and

PSO algorithms respectively.

16600

16400

16200

16000

15800

15600

15400

15200

15000

M
ak

es
p

an
 (

se
c)

0 200 400 600 800 1000

PSO

GA

Number of iteration

20000

18000

16000

14000

12000

10000

8000

6000

4000

200

0

M
ak

es
p

an
 (

se
c)

100 200 300 400 500 600 700 800 900 1000

FCFS

PSO

GA

SJF

Number of cloudlet

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

M
ak

es
p

an
 (

se
c)

100 200 300 400 500 600 700 800 900 1000

FCFS

PSO

GA

SJF

Number of cloudlet

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

602

(a)

(b)

Fig. 6: Flow Time with synthetic traces and real workload traces in symmetric environment

In Fig. 6, the retrieved results show that the FCFS,

SJF and GA algorithms attained better flow time than

PSO algorithm in both synthetic and real workload

traces. In Fig. 6a, FCFS, SJF and GA algorithms

achieved flow time saving of 36.73%, 35.64% over

PSO algorithms respectively with synthetic traces. In

addition to Fig. 6b, SJF, FCFS and GA algorithms

achieved flow time lessening of 38.44%, 36.95% and

36.35% over PSO algorithms respectively with real

workload traces.

In Fig. 7a, FCFS and SJF algorithms surpassed GA and

PSO with a saving ratio of 100%, 72.04% correspondingly

to enhance DI with synthetic traces. However, as shown in

Fig. 7b, when the numbers of cloudlets are less than 500

cloudlets, PSO algorithm retrieved the least DI. On the

other hand, when the number of cloudlets is increased, GA

algorithm gave enhanced DI with real workload traces. GA

attained DI saving of 10.40%, 2.17% and 3.46% over

FSFC, SJF and PSO algorithms correspondingly.

In Fig. 8, there was a slight variation in the retrieved

mean value of response time in both synthetic and real

workload traces.

In Fig. 9, GA, SJF and FCFS algorithms attained better

throughput time than PSO algorithm in both synthetic and

real workload traces. In Fig. 9a, GA, FCFS and SJF and

algorithms achieved throughput time saving of 36.74%,

35.64% over PSO algorithms correspondingly with

synthetic traces. In addition to Fig. 9b, SJF, FCFS and GA

algorithms attained throughput time lessening of 38.44%,

36.95% and 36.86% over PSO algorithms respectively

with real workload traces.

In Fig. 10a, FCFS and SJF algorithms accomplished

best resource utilization improvement of 7.20%, 51.44%

over GA and PSO algorithms correspondingly using

synthetic traces. In addition to Fig. 10b, SJF and GA

algorithms surpassed FCFS and PSO algorithms with a

saving ratio of 10.32%, 35.23% respectively

approximate using real workload traces.

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

F
lo

w
 t

im
e

(s
ec

)

100 200 300 400 500 600 700 800 900 1000

FCFS

PSO

GA

SJF

Number of cloudlet

18000000

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

F
lo

w
 t

im
e

(s
ec

)

100 200 300 400 500 600 700 800 900 1000

FCFS

PSO

GA

SJF

Number of cloudlet

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

603

(a)

(b)

Fig. 7: Degree of imbalance with synthetic traces and real workload traces in symmetric environment

(a)

(b)

Fig. 8: Response time with synthetic traces and real workload traces in symmetric environment

1.4

1.2

1

0.8

0.6

0.4

0.2

0

D
eg

re
e

o
f

im
b
al

an
ce

100 200 300 400 500 600 700 800 900 1000

FCFS

PSO

GA

SJF

Number of cloudlet

6

5

4

3

2

1

0

D
eg

re
e

o
f

im
b
al

an
ce

100 200 300 400 500 600 700 800 900 1000

FCFS

PSO

GA

SJF

Number of cloudlet

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

R
es

p
o

n
se

 t
im

e
(s

ec
)

120

100

80

60

40

20

0

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

R
es

p
o

n
se

 t
im

e
(s

ec
)

120

100

80

60

40

20

0

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

604

(a)

(b)

Fig. 9: Throughput Time with synthetic traces and real workload traces in symmetric environment

(a)

(b)

Fig. 10: Resource utilization with synthetic traces and real workload traces in symmetric environment

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

T
h

ro
u
g
h

p
u
t

ti
m

e
(s

ec
)

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

18000000

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

T
h

ro
u
g
h

p
u
t

ti
m

e
(s

ec
)

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

6

5

4

3

2

1

0

R
es

o
u

rc
e

u
ti

li
za

ti
o

n

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

6

5

4

3

2

1

0

R
es

o
u

rc
e

u
ti

li
za

ti
o

n

Number of cloudlet

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

605

Asymmetric Environment

In the second scenario, the CC asymmetric

environment has been simulated with the same

parameters listed above in Table 1 and Table 2 with

synthetic traces and real workload traces. The simulation

has been recurrent ten times and the mean values have

been measured for each performance metric. Figures 11-

16 illustrate the retrieved mean makespan, flow time,

degree of imbalance, response time, throughput time and

best resource utilization.

In Fig. 11 the salvaged results show that the PSO

algorithm produced superior makespan than other

algorithms in both synthetic and real workload traces. In

Fig. 11a, PSO algorithm accomplished makespan

reduction of 52.79%, 48.30% and 59% over FCFS, GA

and SJF algorithms respectively using synthetic traces.

In addition to Fig. 11b, PSO algorithm achieved

makespan saving of 70.33%, 70.65% and 63.77% over

FCFS, GA and SJF algorithms correspondingly using

real workload traces.

In Fig. 12 the evaluation results show that the PSO

algorithm gave better flow time than other algorithms in

both synthetic and real workload traces. In Fig. 12a, PSO

algorithm attained flow time lessening of 35.02%,

27.59% and 44.22% over FCFS, GA and SJF algorithms

correspondingly using synthetic traces. Besides Fig. 12b,

PSO algorithm achieved flow time reduction of 51.69%,

48.14% and 47.77% over FCFS, GA and SJF algorithms

respectively using real workload traces.

In Fig. 13 the estimation result show that the PSO

algorithm generates improved throughput time than other

algorithms in both synthetic and real workload traces. In

Fig. 13a, PSO algorithm accomplished throughput time

saving of 35.02%, 33.02% and 44.20% over FCFS, GA

and SJF algorithms respectively using synthetic traces.

In addition to Fig. 13b, PSO algorithm attained

throughput time reduction of 49.93%, 48.14% and

46.14% over FCFS, GA and SJF algorithms

correspondingly using real workload traces.

In Fig. 14, the association results show that the

metaheuristic (PSO and GA) algorithms presented better

response time than other traditional (FCFS and SJF)

algorithms in both synthetic and real workload traces. In

Fig. 14a, PSO and GA algorithms accomplished

response time saving of 11.96%, 8.58% and over FCFS

and SJF algorithms correspondingly where SJF

algorithm values equal to FCFS algorithm values using

synthetic traces. In addition to Fig. 14b, PSO and GA

algorithms attained response time lessening of 9.78%

and 10.10 % over FCFS and SJF algorithms respectively

where SJF algorithm values equal to FCFS algorithm

values using real workload traces.

(a)

(b)

Fig. 11: Makespan with synthetic traces and real workload traces in asymmetric environment

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

M
ak

es
p

an
 (

se
c)

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

35000

30000

25000

20000

15000

10000

5000

0

M
ak

es
p

an
 (

se
c)

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

606

(a)

(b)

Fig. 12: Flow time with synthetic traces and real workload traces in asymmetric environment

(a)

(b)

Fig. 13: Throughput time with synthetic traces and real workload traces in asymmetric environment

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

14000000

35000000

30000000

25000000

20000000

15000000

10000000

500000

0

F
lo

w
 t

im
e

(s
ec

)

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0

F
lo

w
 t

im
e

(s
ec

)

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

14000000

35000000

30000000

25000000

20000000

15000000

10000000

500000

0

T
h

ro
u
g
h

o
u
t

ti
m

e
(s

ec
)

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0

T
h

ro
u
g
h

o
u
t

ti
m

e
(s

ec
)

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

607

(a)

(b)

Fig. 14: Response time with synthetic traces and real workload traces in asymmetric environment

(a)

(b)

Fig. 15: Degree of imbalance with synthetic traces and real workload traces in asymmetric environment

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

120

100

80

60

40

20

0

R
es

p
o

n
se

 t
im

e
(s

ec
)

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

120

100

80

60

40

20

0

R
es

p
o

n
se

 t
im

e
(s

ec
)

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

D
eg

re
e

o
f

im
b

al
an

ce

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

10

9

8

7

6

5

4

3

2

1

0

D
eg

re
e

o
f

im
b

al
an

ce

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

608

(a)

(b)

Fig. 16: Resource utilization with synthetic traces and real workload traces in asymmetric environment

In Fig. 15, the evaluation result show that the PSO

algorithm succeeded to enhance DI than other algorithms
in both synthetic and real workload traces. In Fig. 15a,
PSO and GA algorithms accomplished DI and PSO
attained DI lessening of 76.03%, 76.16% and over FCFS
and SJF algorithms respectively using synthetic traces.
In addition to Fig. 15b, PSO algorithm achieved DI
shrinking of 43.66%, 41.06% and 37.39% over FCFS,
SJF and GA algorithms correspondingly using real
workload traces.

In Fig. 16, the results show that the SJF and FCFS

algorithms succeeded to enhance resource utilization

than PSO and GA in both synthetic and real workload

traces. Figure 16a, SJF algorithm achieved best resource

utilization reduction of 36.66%, 30.19% and 17.58%

over PSO, GA and FCFS algorithms respectively using

synthetic traces. In addition to Fig. 16b, SJF algorithm

accomplished resource utilization lessening of 3.88%,

25.32% and 11.87% over PSO, GA and FCFS

algorithms correspondingly using real workload traces.

Conclusion

As noticed in the retrieved results of simulating of TS

techniques in symmetric environment, FCFS and SJF

algorithms provided the best performance in minimizing

both of makespan and degree of imbalance and

maximizing resource utilization using synthetic traces. In

addition, they gave the lowest response time and

throughput time in both of synthetic and real traces. SJF

algorithm gave an enhancement of makespan, flow time,

throughput time, response time and resource utilization

in both of synthetic and real workload traces. For the

metaheuristic methods, GA algorithm gave satisfactory

performance comparable to the traditional heuristic

techniques but the PSO attained the lowest presentation.

In synthetic workload traces, GA retrieved a reasonable

makespan time, flow time, throughput time and response

time. And in real workload traces, it gave an adequate

degree of imbalance and resource utilization.

In the asymmetric environment, PSO algorithm

achieved an amazing performance compared to FCFS,

SJF and GA. In both of synthetic and real workload

traces, PSO attained the lowest makespan, flow time,

throughput time, response time and degree of imbalance.

However, GA algorithm approximately gave a slightly

different response time compared to the time retrieved

using PSO in both of synthetic and real workload traces.

In addition, SJF algorithm achieved the best resource

utilization in both of synthetic and real workload traces.
In both symmetric and asymmetric environment using

synthetic traces and real workload traces, the performance

of traditional heuristic algorithms were not sufficient in

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

R
es

o
u

rc
e

u
ti

li
za

ti
o

n

FCFS

PSO

GA

SJF

100 200 300 400 500 600 700 800 900 1000

Number of cloudlet

7

6

5

4

3

2

1

0

R
es

o
u

rc
e

u
ti

li
za

ti
o

n

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

609

obtaining the optimal makespan and throughput for TS.

Hence, FCFS algorithm has executed poorly in terms of

the degree of imbalance in symmetric environment with

real workload traces and in asymmetric environment in

both of synthetic and real workload traces. Also, SJF

algorithm was not sufficient in obtaining the optimal

makespan, throughput, response time, degree of imbalance

and flow time for TS in asymmetric environment.
To conclude, metaheuristic techniques are more

efficient in real-world environment (asymmetric). PSO
showed better performance in optimizing makespan,
flow time, throughput time, response time and degree of
imbalance in both of synthetic and real workload traces
in asymmetric environment as a real environment, while
it was not sufficient in obtaining the optimal in
symmetric environment using synthetic traces and real
workload traces. In addition it suffers from higher
complexity compared to heuristic methods. GA
algorithm only fulfilled the optimal degree of imbalance
in symmetric environment with real workload traces.
Otherwise, it gave sufficient performance in obtaining
the optimal response time in asymmetric environment in
both of synthetic traces and real workload traces.

Acknowledgement

Authors would like to thank the Deanship of

Scientific Research, Princess Nourah Bint Abdulrahman

University for supporting our research. In addition, we

would like to thank Walaa Al-Ayed, Manal Al-Otaybe,

Maha Al-Madyan, Anwar Al-Anzy, Haneen Al-Jaloud

and Mashael Al-Mashal for their participation in the

implementation of this work.

Funding Information

This research was funded by Deanship of Scientific

Research, Princess Nourah Bint Abdulrahman University

(Grant No# DKG /50070).

Authors contributions

Sara Sayed Ahmed: Contributed in theoretical aspect

of this study, performed data collection, data analysis,

implemented the research results and contributed to the

writing of the manuscript.

Nagwan M. Abdel Samee and Rania Ahmed Abdel

Azeem Abul Seoud: Contributed to the design and

implementation of the research, to the analysis of the

results and to the writing of the manuscript.

References

Abdulhamid, S.M., M.S.A. Latiff and I. Idris, 2015.

Tasks scheduling technique using league

championship algorithm for makespan minimization

in IAAS cloud. ArXiv preprint arXiv: 1510.03173.

Ahmad, R.W., A. Gani, S.H.A. Hamid, M. Shiraz and A.

Yousafzai et al., 2015a. A survey on virtual machine

migration and server consolidation frameworks for

cloud data centers. J. Netw. Comput. Applic., 52:

11-25. DOI: 10.1016/j.jnca.2015.02.002

Ahmad, R.W., A. Gani, S.H.A. Hamid, M. Shiraz and F.

Xia et al., 2015b. Virtual machine migration in

cloud data centers: A review, taxonomy and open

research issues. J. Supercomput., 71: 2473-2515.

DOI: 10.1007/s11227-015-1400-5

Alba, E., G. Luque and S. Nesmachnow, 2013. Parallel

metaheuristics: Recent advances and new trends. Int.

Trans. Op. Res., 20: 1-48.

 DOI: 10.1111/j.1475-3995.2012.00862.x

Ali, S., H.J. Siegel, M. Maheswaran and D. Hensgen,

2000. Task execution time modeling for

heterogeneous computing systems. Proceedings of

9th Heterogeneous Computing Workshop, May 1-1,

IEEE Xplore Press, Cancun, Mexico, pp: 185-199.

DOI: 10.1109/HCW.2000.843743

Alworafi, M.A., A. Dhari, A.A. Al-Hashmi and A.B.

Darem, 2016. An improved SJF scheduling

algorithm in cloud computing environment.

Proceedings of the International Conference on

Electrical, Electronics, Communication, Computer

and Optimization Techniques, Dec. 9-10, IEEE
Xplore Press, Mysuru, India, pp: 208-212.

 DOI: 10.1109/ICEECCOT.2016.7955216

Arya, L.K. and A. Verma, 2014. Workflow scheduling

algorithms in cloud environment-A survey.

Proceedings of the Recent Advances in Engineering

and Computational Sciences, Mar. 6-8, IEEE Xplore

Press, Chandigarh, India, pp: 1-4.

 DOI: 10.1109/RAECS.2014.6799514

Banga, P. and S. Rana, 2017. Heuristic based independent

task scheduling techniques in cloud computing: A

review. Int. J. Comput. Applic., 166: 27-32.

BoussaïD, I., J. Lepagnot and P. Siarry, 2013. A survey

on optimization metaheuristics. Inform. Sci., 237:

82-117. DOI: 10.1016/j.ins.2013.02.041

Buyya, R., R. Ranjan and R.N. Calheiros, 2009.

Modeling and simulation of scalable cloud

computing environments and the CloudSim toolkit:

Challenges and opportunities. Proceedings of the

International Conference on High Performance

Computing and Simulation. Jun. 21-24, IEEE

Xplore Press, Leipzig, Germany, pp: 23-27.

 DOI: 10.1109/ICCCT.2013.6749597

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A. De

Rose and R. Buyya, 2011. CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms. Software: Pract. Exp., 41:

23-50. DOI: 10.1002/spe.995

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

610

Dasgupta, K., B. Mandal, P. Dutta, J.K. Mandal and S.

Dam, 2013. A genetic algorithm (ga) based load

balancing strategy for cloud computing. Proc.

Technol., 10: 340-347.

 DOI: 10.1016/j.protcy.2013.12.369

Deep, K. and Madhuri, 2012. Application of Globally

Adaptive Inertia Weight PSO to Lennard-Jones

Problem. In: Advances in Intelligent and Soft

Computing, Deep, K., A. Nagar, M. Pant and J.

Bansal (Eds.), Springer, India,

 ISBN13: 978-81-322-0486-2, pp: 31-38.

Dhaenens, C. and L. Jourdan, 2016. Metaheuristics – A

Short Introduction. In: Metaheuristics for Big Data,

Dhaenens, C.C. and L. Jourdan (Eds.), John Wiley

and Sons, Inc, Hoboken, USA,

 ISBN-13: 9781848218062, pp: 23-52.

Eberhart, R. and J. Kennedy, 1995. A new optimizer

using particle swarm theory. Proceedings of the 6th

International Symposium on Micro Machine and

Human Science, Oct. 4-6, IEEE Xplore Press,

Nagoya, Japan, pp: 39-43.

 DOI: 10.1109/MHS.1995.494215

He, Z.T., X.Q. Zhang, H.X. Zhang and Z.W. Xu, 2013.

Study on new task scheduling strategy in cloud

computing environment based on the simulator

CloudSim. Adv. Mater. Res., 651: 829-834.

 DOI: 10.4028/www.scientific.net/AMR.651.829

Ibrahim, E., N.A. El-Bahnasawy and F.A. Omara, 2016.

Task scheduling algorithm in cloud computing

environment based on cloud pricing models.

Proceedings of the World Symposium on Computer

Applications and Research, Mar. 12-14, IEEE

Xplore Press, Cairo, Egypt, pp: 65-71.

 DOI: 10.1109/WSCAR.2016.20

Jamali, S., F. Alizadeh and S. Sadeqi, 2016. Task

scheduling in cloud computing using particle swarm

optimization. The Book of Extended Abstracts.

Jang, S.H., T.Y. Kim, J.K. Kim and J.S. Lee, 2012. The

study of genetic algorithm-based task scheduling for

cloud computing. Int. J. of Control Automat., 5:

157-162.

Kalra, M. and S. Singh, 2015. A review of metaheuristic

scheduling techniques in cloud computing. Egyptian

Inform. J., 16: 275-295.

 DOI: 10.1016/J.EIJ.2015.07.001

Madni, S.H.H., M.S.A. Latiff and Y. Coulibaly, 2017.

Recent advancements in resource allocation

techniques for cloud computing environment: A

systematic review. Cluster Comput., 20: 2489-2533.

DOI: 10.1007/s10586-016-0684-4

Malhotra, L., D. Agarwal and A. Jaiswal, 2014.

Virtualization in cloud computing. J. Inform. Tech.

Softw. Eng., 4: 136-136.

 DOI:10.4172/2165-7866.1000136

Masdari, M., F. Salehi, M. Jalali and M. Bidaki, 2017. A

survey of PSO-based scheduling algorithms in cloud

computing. J. Netw. Syst. Manage., 25: 122-158.

DOI: 10.1007/s10922-016-9385-9

Mathew, T., K.C. Sekaran and J. Jose, 2014. Study and

analysis of various task scheduling algorithms in the

cloud computing environment. Proceedings of the

International Conference on Advances in

Computing, Communications and Informatics, Sept.

24-27, IEEE Xplore Press, New Delhi, India, pp:

658-664. DOI: 10.1109/ICACCI.2014.6968517

Mondal, B., K. Dasgupta and P. Dutta, 2012. Load

balancing in cloud computing using stochastic hill

climbing-a soft computing approach. Proc. Technol.,

4: 783-789. DOI: 10.1016/j.protcy.2012.05.128

Mustafa, S., B. Nazir, A. Hayat and S.A. Madani, 2015.

Resource management in cloud computing:

Taxonomy, prospects and challenges. Comput.

Electr. Eng., 47: 186-203.

 DOI: 10.1016/j.compeleceng.2015.07.021

Nagadevi, S., K. Satyapriya and D. Malathy, 2013. A

survey on economic cloud schedulers for optimized

task scheduling. Int. J. Adv. Eng. Tech., 4: 58-62.

Nehru, E.I., S. Mukherjee and A. Kumar, 2015.

Deadline-based Priority Management in Cloud. In:

Artificial Intelligence and Evolutionary Algorithms

in Engineering Systems, Suresh, L., S. Dash and B.

Panigrahi (Eds.), Springer, New Delhi,

 ISBN-13: 9788132221340, pp: 745-751.

Poonam, M. Dutta and N. Aggarwal, 2016. Meta-

Heuristics Based Approach for Workflow Scheduling

in Cloud Computing: A Survey. In: Artificial

Intelligence and Evolutionary Computations in

Engineering Systems, Dash, S., M. Bhaskar, B.

Panigrahi and S. Das (Eds.), Springer, New Delhi,

ISBN-13: 9788132226543, pp: 1331-1345.

Salman, A., I. Ahmad and S. Al-Madani, 2002. Particle

swarm optimization for task assignment problem.

Microprocessors Microsyst., 26: 363-371.

 DOI: 10.1016/S0141-9331(02)00053-4

Sarathambekai, S. and K. Umamaheswari, 2017. Task

scheduling in distributed systems using heap intelligent

discrete particle swarm optimization. Comput. Intell.,

33: 737-770. DOI: 10.1111/coin.12113

Seth, S. and N. Singh, 2018. Dynamic Heterogeneous

Shortest Job First (DHSJF): A task scheduling

approach for heterogeneous cloud computing syst. Int.

J. Inform. Tech. DOI: 10.1007/s41870-018-0156-6

Sindhu, S. and S. Mukherjee, 2013. A genetic algorithm

based scheduler for cloud environment. Proceedings

of 4th International Conference on Computer and

Communication Technology, Sept. 20-22, IEEE

Xplore Press, Allahabad, India, pp: 23-27.

 DOI: 10.1109/ICCCT.2013.6749597

Nagwan M. Abdel Samee et al. / Journal of Computer Science 2019, 15 (4): 594.611

DOI: 10.3844/jcssp.2019.594.611

611

Singh, K., M. Alam and S.K. Sharma, 2015. A survey of

static scheduling algorithm for distributed

computing system. Int. J. Comput. Applic., 129:

25-30. DOI: 10.5120/ijca2015906828

Singh, P., M. Dutta and N. Aggarwal, 2017. A review of

task scheduling based on meta-heuristics approach

in cloud computing. Knowl. Inform. Syst., 52: 1-51.

DOI: 10.1007/s10115-017-1044-2

Talbi, E.G., 2009. Metaheuristics: From Design to

Implementation. 1st Ed. John Wiley and Sons Inc,

Hoboken, NJ, USA, ISBN-13: 9780470278581,

pp: 500.

TarunGoyal, A., 2013. Host scheduling algorithm using

genetic algorithm in cloud computing environment.

Int. J. Res. Eng. Tech., 1: 7-12.

Tsai, C.W. and J.J. Rodrigues, 2014. Metaheuristic

scheduling for cloud: A survey. IEEE Syst. J., 8:

279-291. DOI: 10.1109/JSYST.2013.2256731

U. University, 2006. The HPC2N Seth log. A Linux

cluster located in Sweden.

Widmer, M., A. Hertz and D. Costa, 2008.

Metaheuristics and Scheduling. In: Production

Scheduling, Lopez, C.P. and F. Roubellat (Eds.),

John Wiley and Sons, Inc, Hoboken, USA,

 ISBN-13: 9781848210172, pp: 33-68.

Xhafa, F. and A. Abraham, 2010. Computational models

and heuristic methods for Grid scheduling problems.

Future Generat. Comput. Syst., 26: 608-621.

 DOI: 10.1016/j.future.2009.11.005

Yang, Y., Y. Zhou, Z. Sun and H. Cruickshank, 2013.

Heuristic scheduling algorithms for allocation of

virtualized network and computing resources. J.

Software Eng. Applic., 6: 1-13.

 DOI: 10.4236/jsea.2013.61001

Yeboah, T., I. Odabi and K.K. Hiran, 2015. An

integration of round robin with shortest job first

algorithm for cloud computing environment.

Proceedings of the International Conference on

Management, Communication and Technology,

(MCT’ 15), pp: 1-5.

Zhang, F., G. Liu, X. Fu and R. Yahyapour, 2018. A

survey on virtual machine migration: Challenges,

techniques and open issues. IEEE Commun. Surveys

Tutorials, 20: 1206-1243.

 DOI: 10.1109/COMST.2018.2794881

Zhang, Q., L. Cheng and R. Boutaba, 2010. Cloud

computing: State-of-the-art and research challenges.

J. Internet Services Applic., 1: 7-18.

 DOI: 10.1007/s13174-010-0007-6

