
 

 

© 2018 Mohamed Rasslan, Mahmoud Nasreldin, Ghada Elkabbany and Aya Elshobaky. This open access article is 

distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

Journal of Computer Science 

 

 

 

Original Research Paper 

On the Security of the Sensor Cloud Security Library (SCSlib) 
 

1
Mohamed Rasslan, 

1
Mahmoud Nasreldin, 

1
Ghada Elkabbany and 

2
Aya Elshobaky

 

 
1Electronics Research Institute, Ministry of Higher Education and Scientific Research, Cairo, Egypt 
2Alexandria University, Alexandria, Egypt 

 
Article history 

Received: 08-02-2018 

Revised: 02-05-2018 

Accepted: 21-05-2018 

 

Corresponding Author: 

Mohamed Rasslan 

Electronics Research 

Institute/Ministry of Higher 

Education and Scientific 

Research, Cairo, Egypt 

Email: mohamed@eri.sci.eg 

Abstract: Nowadays, cloud computing has experienced remarkable 

growth. Indeed, one of the main challenges of cloud computing is to protect 

data from different sensor devices during processing and storing. In 2014, 

Henze et al. proposed the Sensor Cloud Security library (SCSlib) which 

allows cloud developer to access encrypted sensor data stored in the cloud. 

SCSLib drawback is that it allows a dishonest referee, dealing with a 

dispute, to decrypt all the future and past authenticated cipher-text between 

parties. In this study, we proposed an improved scheme for the SCSlib that 

prevent the users of the library from such attacks. In addition, the proposed 

scheme fulfils the following security requirements: Integrity, authenticity, 

confidentiality and availability. Moreover, security analysis in the cloud-

computing environment is presented.  

 

Keywords: Cloud Computing, Sensor Networks, Sensor Cloud Security 

Library (SCSlib), Integrity, Authenticity, Confidentiality 

 

Introduction  

Recently, Wireless Sensor Networks (WSNs) are 

known by their ability to enable new solutions in many 

applications such as health-care, environmental 

monitoring, transportation business and industrial 

automation. With the growth of sensor networks, many 

challenges have appeared in terms of flexibility, 

scalability and heterogeneous information services. The 

integration of WSNs with cloud provides better 

flexibility, unlimited resources, immense processing 

power and the capability to provide quick response to the 

user (Calik et al., 2004). Cloud computing has a 

distributed design and encloses a computational model 

which enables it to improve availability, scalability, 

agility, collaboration and adaptability of the system. 

Cloud computing which is an extension of grid 

computing is a highly developing field in IT industry. 

This has led to significant advantages to other fields such 

as: Research, education, banking, medicine and 

entertainment. Cloud computing technology allows 

reducing the rates spent on computing infrastructure, 

increasing performance and rising efficiency of an 

organization (Hu et al., 2017). With the rapid 

development of the Internet of Things (IoT) and its 

integration with the cloud and due to their powerful 

processing and storage abilities of cloud computing for 

sensing data, they have received significant interest from 

industry and academia fields (Khan and Al-Yasiri, 

2016). In the IoT-cloud, physical sensors are represented 

as virtual sensors. The main functions of these sensors 

are to sense and forward their sensing data to the cloud. 

The IoT-cloud offers sensing services directly to various 

nodes/applications through virtual sensors. Nodes and 

applications request on demand sensing services from 

the IoT-cloud (Khan and Al-Yasiri, 2016).  

Cloud computing main objective is to provide secure, 
quick and convenient data storage with all services 

delivered over the internet. There are several advantages 
and benefits of sensor cloud infrastructure such as, better 
analysis of data, scalability, collaboration, visualization, 
free provisioning of increased data storage, processing 
power, dynamic provisioning of services, automation, 
flexibility, agility of services, resource optimization and 

quick response time. There are many applications of 
sensor networks such as, emergency response 
information (sensor networks will collect information 
about the status of buildings, people and transportation 
pathways), energy management (energy distribution will 
be better managed when we begin to use remote 

sensors), medical monitoring (instant release of 
emergency medication to the bloodstream), logistics and 
inventory management and battlefield management 
(remote sensors can help eliminate some of the 
confusion associated with combat). In this study, we give 
a detailed description of Sensor Cloud Security library 

(SCSlib) proposed by Henze et al., which allows cloud 
developer to access encrypted sensor data stored in the 
cloud. We show that SCSlib do not protect sensor data in 
the cloud from authenticity attacks such as, replay attack. 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

794 

The remainder of this paper is organized as follows. In 
the next section, we briefly review the details of security 
requirements and types of authentication attacks in cloud 
environment. Then, the details of Burrows-Abadi-

Needham logic (BAN logic) main rules are presented. In 
addition, we describe SCSLib library and its expected 
attacks. Then, in the next section, the improved scheme 
of SCSlib to protect data in the cloud is proposed. Latter, 
logical analysis of SCSlib and its proposed modification 
using BAN-logic are presented. Finally, the paper 

concludes in the last section.  

Background 

Wireless Sensor Networks Security 

Availability, data integrity, data confidentiality, data 

freshness, time synchronization, secure localization, 

authentication and self-organization are the security 

requirements in Wireless Sensor Networks (WSN) 

(Finogeev and Finogeev, 2017). Availability guarantees 

that services are functioning even under attacks. Data 

integrity means that received message is identical to the 

sent message. Data confidentiality implies that legitimate 

nodes only understand messages. Data freshness deploys 

nonce or time-stamp in order to resist reply attacks. 

Secure mechanisms in WSNs need time 

synchronization. Secure localization aims to accurately 

and automatically locate each sensor node in a WSNs 

(e.g., locate a fault). Authentication ensures that 

communicating node is the one that it claims to be. In 

WSNs, nodes have to be self-organizing and self-healing. 

Cryptographic mechanisms protect the confidentiality and 

authenticity of communication channels in WSN against 

outsider attacks such as, eavesdropping, replay, 

modification, or spoofing of packets. Denial-of-Service 

(DoS) attacks against networks (disrupt, subvert, or 

destroy a network) availability in physical layer 

(jamming attack) can be prevented by deploying spread-

spectrum communication such as, frequency hopping 

and code spreading. Moreover, DoS in data link layer 

can be prevented by using error-correcting codes. 

Message Authentication Code (MAC) is used against 

spoofing, alteration and stealthy attack (in which the 

attacker compromises a sensor node and injects false 

data through that sensor node). DoS attacks against 

WSNs could damage the safety of people. 

Security in Cloud 

Cloud security is one of the main inhibitors for cloud 

adoption nowadays: Transferring resources and data to 

the cloud has the result of a loss of control that makes 

risk analysis and mitigation more difficult and avoids 

potential customers from using cloud computing in their 

applications. In order to overcome this problem, cloud-

application's developers should take into account the 

possible security problems from the beginning and 

should try to make most benefits of the flexibility 

offered by the cloud standard. Also, they should consider 

the security restrictions by cloud customers (Dinh et al., 

2017). There is a great concern about legality and 

confidentiality of data while developing a secure cloud 

(Casola et al., 2016). According to Potey et al. (2016) 

cloud computing security can be classified as the 

following main objectives: Availability, confidentiality, 

integrity, authenticity and accountability: 

 

• Availability ensures that data and services are always 

available for its users at any time, at any place 

• Confidentiality means that user’s data are only 

available to authorized users, which keeps their data 

secret 

• Integrity assures that data has not been changed 

during storage and transmission over the network 

• Authenticity is a core security requirement in cloud 

computing systems, which requires mutual trust 

between the parties (Abbas and Khan, 2014; Abbas 

et al., 2017). In addition, it is important for 

authenticity to validate that both parties involved are 

who they claim to be 

• Accountability assures that no entity can deny its 

participation in a data transfer between them 

 

Examples on WSN Security in Cloud Environment 

To securely control sensor data storage and process 

sensor data effectively in the cloud environment, there 

are different techniques such as, OAuth-protocol 

(establish a secure connection between the data 

owner/cloud-platform and Trust Point), Object security 

from trust point to Service (provides security to the 

individual data fields and integrity checksum covering 

the complete data item), Service assurance and Data 

access Granting (the data owner looks up a service and 

its service description in the cloud service marketplace, 

then instructs her trust point to encrypt her data for the 

selected service). Furthermore, some of the important 

security concepts in sensor clouds are classified follow: 

Secure Sensor Information System 

Cloud must ensure the strengthen of the security 

issue in sensor-cloud while sensing data under sensing as 

a service, the secure cloud architecture has a dedicated 

layer to deal the security issue, the security management 

layer (has three parts: Identity authentication unit, 

resource access control and data encryption unit). 

Enhance Security in Multicasting 

Secure multicasting method is not only ensuring 

secure data transmission but also enhance the resistance 

of the system against introducers, by using a key 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

795 

exchange algorithm while transferring data between tiers 

in a secure manner. 

Multilevel Authentication System 

Users should successfully own passwords at all levels 

to access the cloud services (Saha et al., 2016). 

Types of Authentication Attacks 

Authentication is a major challenge in cloud computing 
services. This is due to the fact that it is frequently targeted 
by an attacker (Sumitra et al., 2014; Pawar and Anuradha, 
2015; Chouhan and Singh, 2016). A primitive way to 
provide authentication is the use of simple username and 
password. Other advanced methods use various forms of 
secondary authentication such as: Shared secret questions, 
site keys and virtual keyboards. According to (Chouhan and 
Singh, 2016) some of the authentication attacks are: 
 

• Brute force attacks: This attack is conducted by 

trying all possible combinations of password to 

break it. This attack is generally applied to crack the 

encrypted passwords 

• Dictionary attack: This attack is relatively faster than 

brute force attack. While brute force attack checks all 

encrypted passwords, the dictionary attack tries to 

match the password with most occurring words 

• Shoulder surfing/spying attack: In this type of 

attack, the attacker spies the user’s movements to 

deduce the password 

• Phishing attacks: In this attack, the attacker uses the 

web to redirect the user to the fake website to obtain 

its passwords/pin codes 

• Key loggers: They are software programs which 

observe the user actions by recording each key 

pressed by the user 

• Replay/Reflection attacks: It is a type of network attack 

where a valid data is repeated or delayed maliciously 
 

Replay attack is a major violation of security where 
information is stored without authorization. Then, stored 
information is retransmitted to force the receiver into 
unauthorized operations such as: False identification, 
false authentication, or a duplicate transaction. Although 
the replay messages may be ciphered, in addition, the 
attacker may not know the actual keys and passwords, 
the retransmission of valid logon messages is sufficient 
to gain access to the network. 

Burrows-Abadi–Needham logic (BAN logic) 

Authentication protocols are the main security 
component in cloud computing and it is necessary to 
ensure the correctness of these protocols. In literature, 
many protocols contain redundancies or security flaws. 
Burrows et al. (1989) proposed a logic method called 
BAN logic to analyze authentication protocols. With the 
logic, all public - and shared key primitives are 

formalized. BAN logic is a set of rules that define and 
analyze information exchange protocols. In particular, 
BAN logic aids its users to determine the trustworthiness 
and the security of the exchanged information. BAN 
logic begins with the assumption that the exchanged 
information is on media exposed to tampering and public 
monitoring. The BAN logic makes it possible to reason 
in a simple way over cryptographic protocols in a formal 
way. The basis for the BAN logic is the belief of a party 
in the truth of a formula. A formula does not necessarily 
be true in the general sense of truth (Wessels, 2001). 

BAN logic uses the logic to describe the authentication 
protocols. They transformed each message into a logical 
formula which is an idealized version of the original 
message. For a successful verification, the belief state of 
communicating parties should satisfy the protocol goals. 
They consider that the authentication check is completed 
between principals Alice and Bob, if there is a data packet 
“X” which the recipient Bob believes is sent by the sender 
(signer), Alice. Thus, authentication between Alice and 
Bob will be completed if Bob |≡ Alice |≡ X and Bob |≡ X, 
where the symbol |≡ means believe. 

First, the basic rules of the BAN logic are listed below: 

The Interpretation Rule: 
 

( )( )
( ) ( )

| |~ ,

| |~ , | |~

Bob Alice X Y

Bob Alice X Bob Alice Y

≡
≡ ≡

 

 
The above rule means that if Bob believes that Alice 

once said a message containing both X and Y, therefore he 

believes that Alice once said each statement separately. 

Message Meaning Rule: 
 

| , [ ]
,

| | ~
S Alice

Q - Alice
Bob Alice Bob X

Alice Bob
Bob Alice X

−→≡
≠

≡
<

 
 

This means that if Bob believes that Q-Alice is the 

public key of Alice and Bob sees a message X signed by 

Alice’s secret key S-Alice, this implies that Bob believes 

that Alice once said X.  

Nonce Verification Rule: 
 

( )| , | ~

| |

Bob X Bob Alice X

Bob Alice X

≡ # ≡
≡ ≡

 

 
The above rule means that if Bob believes that X is a 

recent message and Alice once said X, therefore it 

believes that Alice believes in X. 

Jurisdiction Rule: 
 

| , | |

|

Bob Alice X Bob Alice X

Bob X

≡ ⇒ ≡ ≡
≡

 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

796 

This rule means that if Bob believes that Alice has 

jurisdiction over X and Bob believes that Alice believes 

in X, then Bob believes in X. 

Freshness Rule: 
 

( )
( )

|

| ,

Bob X

Bob X Y

≡ #
≡ #

 

 

The above rule means that if Bob believes in the 

freshness of X and Y, therefore it believes in the 

freshness of each statement separately. The analysis is 

undertaken for the message exchanged between the 

sender, Alice and recipient, Bob. In this study, BAN 

logic is used to check the correctness of SCSlib library 

and its proposed modification.  

Overview of SCSlib Library Henze et al. (2014) 

In their paper, Henze et al. (2014) proposed a library 

that permits cloud service developers to manipulate 

secure sensor information in the cloud without the need 

to deal with cryptographic operations details. The library 

is called Sensor Cloud Security Library (SCSlib). SCSlib 

is implemented as a “C” library which uses the 

encryption algorithms of the OpenSSL library. The main 

functions of SCSlib are given below: 

 

• Interfacing with the cloud 

• Processing of sensor data items (verification and 

decryption) 

• Caching of cryptographic keys for performance 

improvement 

 

At the receiver side, which is the sensor cloud, 

SCSlib library main objectives are to check the integrity 

and authenticity of the sensor data. SCSlib gets the data 

source public key using the corresponding callback 

function Sc_process_data_item(). Then, it verifies the 

digital signature in the JSON Web Signature (JWS) 

using the retrieved public key. For decryption of sensor 

information, SCSlib searches JSON Web Encryption 

(JWE) objects which represent the encrypted sensor data 

as shown in Fig. 1. This is done through recursive 

iterations over the JSON-serialized object. For each 

JWE, the decryption key is obtained using the above-

mentioned call back function. Finally, to get the original 

information, the encrypted sensor value is decrypted 

using the decryption key. 

Methods 

Henze et al. (2014) proposed an “encryption-then-

blind signature with designated verifier” scheme to prove 

the authenticity and integrity of the evidence in cloud 

environment. Encrypt-then-sign scenario has a potential 

draw back which is the susceptibility to replay attack, as 

shown in Fig. 2.  

In the next sub-section, the BAN logic security 

analysis of Henze et al.’ scheme used in SCSlib is 

presented. Then, the scenario of the proposed attack is 

given. Next, the proposed modification to SCSlib 

library to overcome the replay attack problem is 

illustrated. Finally, our proposed modification is 

analyzed using BAN logic. 

Logical Analysis of SCSlib Library using BAN 

Logic 

Assume that Alice has discovered a breakthrough 

business idea and wants to inform her boss, Bob, 

about her discovery. Then, Alice will encrypt the 

message “M” using Bob’s public key (Q-Bob) and 

then sign the result using her secret key (S-Alice). 

Next, Alice sends the following message: [{M}Q-Bob]S-

Alice to Bob. However, Eve can set herself as a man-in-

the middle and intercept the messages from Alice to 

Bob. Eve can then use Alice’s public key to compute 

{M}Q-Bob. Then, Eve signs using S-Eve it and sends 

[{M}Q-Bob]S-Eve to Bob. When Bob receives [{M}Q-

Bob]S-Eve and verifies Eve’s signature on it, Bob will 

assume that Eve has made this astonishing discovery 

and Alice cannot disprove Eve’s claim, as shown in 

Fig. 3 and 4. 

 

 
 

Fig. 1: Overview of the process of protecting a sensor data item according to (Henze et al., 2014) 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

797 

 
 

Fig. 2: Encrypt-then-sign scheme 
 

 
 

Fig. 3: Cryptanalysis - Step 1 

 

 
 

Fig. 4: Cryptanalysis-step 2 

Alice Bob 

Bob’s 

public key 

Encryption 

Signing 

algorithm 

Bob’s 

private key 

Decryption 

Verifying 

algorithm Alice’s 

private key 
Alice’s 

public key 

M M 

M: Message 

C: Cipher text 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

798 

To achieve complete authentication between Alice 

and Bob, the following goals must be achieved: 

 

 1: | |

 2 : |

i

i

Goal Bob Alice M

Goal Bob M

≡ ≡

≡
 

 

where, Mi represents the message sent by Alice. 

In order to complete the analysis, the following 

assumptions are made: 

 

|
Q - Bob

Alice Bob≡ →  (1) 

 

|
Q - Alice

Bob Alice≡ →  (2) 

 

|
i

Bob Alice M≡ ⇒  (3) 

 
Equation 1 indicates that Alice believes that Q-Bobis the 

public key of Bob. Then, Equation 2 indicates that Bob 

believes that Q-Alice is the public key of Alice. Equation 3 

indicates that Bob believes that Alice has jurisdiction over 

Mi. After making these assumptions, the messages 

exchanged in the initial phase are transformed into logical 

formulas. Finally, the basic rules of BAN logic will be 

applied to these formulas. Following is the transformation 

of the proposed attack into logical formulas: 
 

 : { }Q Bob S Alice
Alice Bob M − −

    (4) 

 

The analysis of the protocol can now be performed. 

By applying message meaning rule to Equation 4 and 

using Equation 1, the following can be deduced: 
 

| |~
i

Bob Alice M≡  (5) 

 
But, there is no timestamp or nonce. Thus, Bob does 

not believe in the freshness of Mi (Equation 4). From 

Equation 5, one can deduce that Henze et al. (2014) do 

not achieve the goals of authenticity and that the sent 

message could be intercepted by a man-in-the-middle. 

The Proposed Attack 

Here we will focus on the encryption/signature at the 

sensor node and decryption/verification at the sensor 

cloud. Since the invention of the public key 

cryptography, the cryptographers have known that the 

combination of encryption and signature tends to 

insecure results. The simple “`Encrypt and Sign” 

recipient knows only who wrote the message and has no 

assurance about who encrypted it.  

In this section, we introduce the suggested attack on 

SCSlib library. The proposed attack shows that man-in-

the-middle can intercept the traffic between the sensor-

node and the cloud as shown in Fig. 5: 

• The attacker intercepts the traffic between sensor-

node and the cloud 

• The attacker verifies the digital signature of the 

sensor-node (SNsig) on the encrypted data using the 

sensor-node public-key (SNpuk) 

• The attacker signs the encrypted data using the 

attacker's private-key (Attackerpuk) 

• The attacker sends it again to the cloud but with 

her/his signature (Attackersig) 

 

As demonstrated above, the attacker gets a copy of 

the signed-encrypted data and could forge all future and 

past traffic between the contented parties. This scenario 

shows the absence of integrity and authenticity 

properties in SCSlib library.  

The Proposed Modification of the SCSlib Library 

In this section, the security mitigation to SCSlib 

library is proposed. This modification overcomes the 

drawback mentioned earlier. In order to detect the replay 

attacks, SCSlib needs to add additional information to 

the message, which enables the receiver to verify the 

freshness of the message. We propose an enhanced 

SCSlib library that protects the cloud from replay 

attacks. There are two possible scenarios: Sign-Encrypt-

Sign and Encrypt-Sign-Encrypt (shown in Fig. 6). In this 

study, we use the “Sign-Encrypt-Sign” approach 

(Nasreldin et al., 2015).  

The following tasks are done at the sensor side: 

 

• Generate a hash value of the plaintext, then sign it 

with the sensor private-key (SNprv) as the first 

signature and include it with the plain text 

• Encrypt both the plain text and the first signature 

using the cloud public key (Cpuk) 

• Generate a hash value for the encrypted data and sign 

it using the private-key of the sensor node (SNprv) as 

the second signature and send it to the cloud 

 

The following tasks are done at the sensor cloud side: 

 

• Verify the second signature of the protected data 

• Decrypt the protected signed data in order to 

generate the original signed plain text 

• Verify the first signature with the original plain text. 

If it verifies, the integrity, authentication, 

confidentiality and availability features of SCSlib 

are achieved. The Block diagram of the modified 

library is shown in Fig. 7 

 

Logical Analysis of the Modified SCSlib Library 

using BAN Logic 

There are two possible scenarios: Sign-Encrypt-

Sign and Encrypt-Sign-Encrypt. Both scenarios can 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

799 

resist the cipher-text forwarding attack and its 

consequences. To ensure confidentiality and chain of 

custody at the sender side, another signature step is 

needed before the encryption step. Moreover, at the 

recipient side, another encryption step is executed 

after the message decryption. That is to say, these are 

two extra steps (one block for signature at the sender 

side and one block for encryption at the recipient side) 

are added to overcome the plaintext-subsection and 

cipher text stealing attacks. 
 

 
 

Fig. 5: Cloud security attack 
 

 
(a) 

 

 
(b) 

 

Fig. 6: Sign-encrypt-sign and encrypt-sign-encrypt (a) sign-encrypt-sig (b) encrypt-sign-encrypt 

Sensor SNsig Attackersig Cloud 

Attacker 

Alice Bob 

M M 

Alice’s 

private key 

Alice’s 
private key 

Bob’s 

private key 
Bob’s 

public key 

Alice’s 
public key 

Alice’s 
public key 

Signing 

algorithm 
Verifying 

algorithm 

Encryption Decryption 

Signing 
algorithm 

Verifying 
algorithm 

Signed (encryption (M,S)) 

M: Message 

C: Ciphertext 

S: Signature 

Signing 

algorithm 

Verifying 

algorithm 

Encryption Decryption 

Decryption Encryption 

M M 

Alice’s 

private key 

Bob’s 
private key 

Bob’s 
private key 

Alice’s 

public key 

Bob’s 

public key 

Bob’s 

public key 
M: Message 

C: Cipher text 

Alice Bob 

Encrypted (signed (C)) 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

800 

 

 
Fig. 7: Flowchart verify/decrypt/verify of data at the cloud 

 

In the following, we present the analysis for the 

message exchanged between the sender, Alice and 

recipient, Bob. The authentication is considered 

complete between Alice and Bob, if the following goals 

are achieved: 

 

 1: | |

 2 : |

i

i

Goal Bob Alice M

Goal Bob M

≡ ≡

≡
 

 

where, Mi represents the message sent by Alice: 

 

• Alice, first, signs the message Mi using its secret 

key. Then, it encrypts both the message and the 

signature using Bob’s public key. Finally, the output 

of encryption is signed using her secret key.  

• Alice sends {[{Mi, T}S-Alice]Q-Bob}S-Alice to Bob, where 

T is the timestamp generated by Alice. 

 

In order to complete the analysis, the following 

assumptions are made:  

 

|Alice
Q - Bob

Bob≡ →  (6) 

 

|Alice
Q - Alice

Alice≡ →  (7) 

|Bob
Q - Alice

Alice≡ →  (8) 

 

|
Q - Bob

Bob Bob≡ →  (9) 

 

|
i

Bob Alice M≡ ⇒  (10) 

 

| #Alice T≡  (11) 

 
| #Bob T≡  (12) 

 

Equation 6 indicates that Alice believes that Q-Bob 

is the public key of Bob. Equation 7 indicates that 

Alice believes that Q-Alice is the public key of 

herself. Then, Equation 8 indicates that Bob believes 

that Q-Alice is the public key of Alice. Equation 9 

indicates that Bob believes that Q-Bob is the public 

key of himself. Then, Equation 10 indicates that Bob 

believes that Alice has jurisdiction over the block 

sent. Finally, Equation 11 and 12 indicate that Alice 

and Bob believe in the freshness of T (since it is 

changed for each message). After making the 

assumptions, the messages transferred in the initial 

phase are transformed into logical formulas. Finally, 

the basic rules of the BAN logic will be applied to the 

logical formulas. 

Using the message {[{Mi, T}S-Alice]Q-Bob}S-Alice, 

Equation 8 and message meaning rule: 

 

( )| |~ , iBob Alice T M≡  

 

But, Alice and Bob believe in the freshness of Ti 

(Equation 11 and 12). Thus, applying nonce verification 

rule, the following is obtained:  

 

| |
i

Bob Alice M≡ ≡  (13) 

 

Then, by applying jurisdiction rule using Equation 

10, the following is obtained:  

 

|
i

Bob M≡  (14) 

 

From Equation 13 and 14, one can deduce that the 

proposed modification achieves the goals of 

authentication without bugs or redundancies. 

Conclusion 

SCSlib library that enables cloud service developers 

to transparently access protected sensor data was 

Start 

Receive sensor’s data 

Verify received data 
No 

Yes 

Decrypt protected 

signed data 

No 

Yes 

Verify signed plaintext 

Verified 
Attack 

discovered 

End 



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

801 

proposed by Henze et al. (2014). This library fails to 

simultaneously satisfy both the integrity and 

authenticity properties that are required for the sensor 

clouds. A third party can intercept the traffic between 

the sensor node and sensor cloud. Replay attack is a 

major trouble to the authenticity of the cloud. In this 

study, an improved scheme for SCSlib library that 

could prevent the users of the library from such attacks 

is proposed. This is done by using the “Sign-Encrypt-

Sign” approach. The proposed modification fulfills 

integrity, authenticity, confidentiality and availability at 

the same time. In addition, BAN logic is used in order 

to perform the security analysis of both SCSlib and our 

modified scheme. The analysis shows that SCSlib 

library does not fulfill the claimed security goals. On 

the other hand, the analysis shows that the proposed 

modification to SCSlib library achieves goals of 

authentication and integrity without bugs.  

Acknowledgement 

We thank Prof. Heba Aslan for assistance with 

reviewing and comments that greatly improved the 

manuscript. 

Author’s Contributions  

The author prepared the study, elaborated the 

methodology, performed the analysis and wrote the 

manuscript. 

Ethics  

This article is original and contains unpublished 

material. The corresponding author confirms that no 

ethical issues involved. 

References 

Abbas, A. and  S. Khan, 2014. A review on the state-of-

the-art privacy-preserving approaches in the e-health 

clouds.  IEEE J. Biomed. Health Informat., 18: 

1431-1441. DOI: 10.1109/JBHI.2014.2300846 

Abbas, H., O. Maennel and S. Assar, 2017. Security and 

privacy issues in cloud computing. Ann. 

Telecommun., 72: 233-235. 

 DOI: 10.1007/s12243-017-0578-3 

Burrows, M., M. Abadi and R. Needham, 1989. A logic 

of authentication. Math. Phys. Eng. Sci., 426:     

233-271. DOI: 10.1098/rspa.1989.0125 

Calik, P., P. Yilgora, P. Ayhanb and S. Demir, 2004. 

Oxygen transfer effects on recombinant 

benzaldehydelyase production. Chem. Eng. Sci., 59: 

5075-5083. DOI: 10.1016/j.ces.2004.07.070 

Casola, V., A. De Benedictis, M. Rak and E. Rios, 2016. 

Security-by-design in clouds: A security-SLA 

driven methodology to build secure cloud 

applications. Proc. Comput. Sci., 97: 53-62. 

 DOI: 10.1016/j.procs.2016.08.280 

Chouhan, P. and R. Singh, 2016. Security attacks on 

cloud computing with possible solution. Int. J. Adv. 

Res. Comput. Sci. Software Eng., 6: 92-96.  

Dinh, T., Y. Kim and H. Lee, 2017. A location-based 

interactive model of Internet of Things and cloud 

(IoT-cloud) for mobile cloud computing 

applications. J. Sensors, 2017: 489-489. 

 DOI: 10.3390/s17030489 

Finogeev, A. and A. Finogeev, 2017. Information attacks 

and security in wireless sensor networks of 

industrial SCADA systems. J. Industrial Inform. 

Integrat., 5: 6-16. DOI: 10.1016/j.jii.2017.02.002 

Henze, M., S. Bereda, R. Hummen and K. Wehrle, 2014. 

SCSlib: Transparently accessing protected sensor 

data in the cloud. Proc. Comput. Sci., 37: 370-375. 

DOI: 10.1016/j.procs.2014.08.055 

Hu, J., C. Chen, C. Fan and K. Wang, 2017. An 

intelligent and secure health monitoring scheme 

using IoT sensor based on cloud computing. J. 

Sensors, 2017: 1-11. DOI: 10.1155/2017/3734764 

Khan, N. and A. Al-Yasiri, 2016. Identifying cloud security 

threats to strengthen cloud computing adoption 

framework. Proc. Comput. Sci., 94: 485-490. 

 DOI: 10.1016/j.procs.2016.08.075 

Nasreldin, M., M. El-Hennawy, H. Aslan and A. El-

Hennawy, 2015. Digital forensics evidence 

acquisition and chain of custody in cloud 

computing. Int. J. Comput. Sci., 12: 153-160.  

Pawar, M. and J. Anuradha, 2015. Network security and 

types of attacks in network. Proc. Comput. Sci., 48: 

503-506. DOI: 10.1016/j.procs.2015.04.126 

Potey, M., C. Dhote and D. Sharma, 2016. 

Homomorphic encryption for security of cloud data. 

Proc. Comput. Sci., 79: 175-181. 

 DOI: 10.1016/j.procs.2016.03.023 

Saha, S., Das, R., Datta, S. and Neogy, S., 2016. A cloud 

security framework for a data centric WSN 

application. Proceedings of the 17th International 

Conference on Distributed Computing and 

Networking, Jan. 04-07, ACM, Singapore, pp: 1-6. 

DOI: 10.1145/2833312.2849559 

Sumitra, B., C.Pethuru and M. Misbahuddin, 2014. A 

survey of cloud authentication attacks and solution 

approaches. Int. J. Innovat. Res. Comput. Commun. 

Eng., 2: 6245-6253. 

Wessels, J., 2001. Application of BAN-Logic. Technical 

report, CMG Public Sector B.V.  



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

802 

Appendix 1: The Description of Both SCSlib 

and the Modified SCSlib Libraries 

SCSlib and the modified SCSlib libraries have the 

same configuration and setup processes. The differences 

between these libraries are: 

 

1. At sender side (the sensor networks): The way of 

creating Json file that will be sent to the cloud 

2. At the receiver side (sensor cloud): The way, the 

library will decrypt and verify the received Json file 

 

Setup Process of the Library 

For both libraries, the following packages are needed 

to be installed, through the respective packet manager in 

order to successfully build the library: 

 

• Libjansson (Version 2.5 was used for development) 

• Libssl 

• Automake 

• Autoreconf 

• Make 

• Gcc 

• Libtool 

• Autotools 

 

Installation 

Both libraries use automated tools as building 

environments. The following steps have to be performed 

in order to build and install the library: 

 

• Autoreconf -fi 

• ./configure 

• Make 

• Sudo make install 

 

Data Format at the Nodes 

The different parts in the Json file are: “Ciphertext” 

and “sig” tags. In SCSlib, these tags present the 

encrypted data and the outer signature, while in the 

modified SCSlib they present the encrypted-text (data + 

inner signature) and the outer signature. That is to say, at 

SCSlib: The Ciphertext → is the encrypted data only. 

While, at the modified SCSlib the ciphtertext -> is the 

encrypted (data + inner signature) 

Data Format at the Cloud 

SCSlib verifies the received data, by verifying the 

outer signature. Then, it generates the original data by 

decrypting the cipher text. On the other hand, modified 

SCSlib verifies the received data at the first time by 

verifying the outer signature. Then, it generates the 

original signed data by decrypting the cipher text. Later, 

it verifies the generated original message by verifying 

the inner signature. Finally, it compares the outer and the 

inner signature. 

Appendix 2: Building an Example 

In order to test the minimal example: 

 

• Make sure that the library is installed correctly.  

• Compile the example using the Make file by calling 

"make" (make sure that the library header:#include 

"headers/sensorcloud_crypto_library.h" is included) 

• Initialize the library: Initialization routine requires 

four parameters: 

• The service's RSA private key as a PEM-

encoded string 

• A public-key callback to handle the event of 

missing public keys 

• A symmetric-key callback to handle the event 

of missing symmetric data keys 

• A pointer to a SCErrorstruct that is filled by the 

library in case of errors 

 

The initialization function has the following 

signature: 

 

intsc_init( 

const char*pem_private_key, 

SCPublicKeyCallbackpublic_key_cb, 

SCSymmetricKeyCallbacksym_key_cb, 

SCError* sc_error); 

 

The public-key callback must have the following 

signature: 

 

JWK_PUBLIC_KEY scwi_public_key_callback( 

const char* key_id, 

PublicKeyTypekey_type); 

 

where, The key_id is a string containing the hexadecimal 

representation of thepublic key's SHA-1 message digest. 

The key_type denotes whether the missingpublic key is 

an RSA key (PUBLIC_KEY_RSA) or an ECDSA key 

(PUBLIC_KEY_ECDSA). 

 

• The callback must return a JWK string containing 

the missing public key. 

 

Similarly, the symmetric-key callback must have the 

following signature: 

 

• JWK_SYMMETRIC_KEY 

scwi_symmetric_key_callback(const char* key_id);  



Mohamed Rasslan et al. / Journal of Computer Science 2018, 14 (6): 793.803 

DOI: 10.3844/jcssp.2018.793.803 

 

803 

Only the key_id of the missing symmetric key has to be 

passed to the callback and, analogously to the previous 

callback, it must return a JWK string containing the 

missing symmetric key. 

 

 
 

The results for running the minimal example are: 

 

 


